
Low-Memory Tour Reversal in Directed Graphs

Viktor Mosenkis1, Uwe Naumann1, Elmar Peise1

LuFG Informatik 12, RWTH Aachen University
52056, Aachen, Seffenter Weg 23, Germany

mosenkis@stce.rwth-aachen.de

We consider the problem of reversing a tour (i1, i2, . . . , il) in a directed graph
G = (V, E) with positive integer vertices V and edges E ⊆ V × V , where
ij ∈ V and (ij, ij+1) ∈ E for all j = 1, . . . , l − 1. The tour can be processed
in last-in-first-out order as long as the size of the corresponding stack does not
exceed the available memory. This constraint is violated in most cases when
considering control-flow graphs of large-scale numerical simulation programs.
The tour reversal problem also arises in adjoint programs used, for example,
in the context of derivative-based nonlinear optimization, sensitivity analysis, or
other, often inverse, problems. The intention is to compress the tour in order not
to run out of memory. As the general optimal compression problem was proven
to be NP-hard [1] and big control-flow graphs results from loops in programs
we do not want to use general purpose algorithms to compress the tour. We
rather want to compress the tour by finding loops and replace the redundant
information by proper representation of the loops.

Definition 1 A compressed tour C = (N, L) in a directed graph G = (V, E)
consists of a stack of integers N = (i1, i2, . . . , is) where ij ∈ V for j = 1, . . . , s
and a stack of loops L = (l1, l2, . . . , lp). A loop lk contains an entry index i− ∈
{1, . . . , s}, an exit index i+ ∈ {1, . . . , s}, such that i− ≤ i+, and an integer mk >
0 holding the loop’s multiplicity. For any two loops (i−1 , i+1 , m1) and (i−2 , i+2 , m2),
w.l.o.g. i−1 ≥ i−2 , we require disjointness or inclusion, that is

i+1 < i−2 ∨
(
i−2 ≤ i−1 ∧ i+1 ≤ i+2

)
∧ (i−1 , i+1) 6= (i−2 , i+2).

(i−1 , i+1) 6= (i−2 , i+2) is needed to ensure, that we do not have two equal loops in L.

f(C) := |N |

is the cost function of this compressed tour.

A compressed tour C = (N, L) in a directed graph G is decompressed by
unrolling all loops in L in LIFO order recursively. C is called a compressed
version of a tour T , if and only if the tour that results from the decompression
of C is equal to T .

As the problem of finding a compressed version of a tour T with minimal cost
exhibits the properties of overlapping subproblems and optimal substructure,
an optimal representation of a tour, exploiting the compression of loops, can be
found with the help of dynamic programming.

Dagstuhl Seminar Proceedings 09061
Combinatorial Scientific Computing
http://drops.dagstuhl.de/opus/volltexte/2009/2092

2 V. Mosenkis, U. Naumann, E. Peise

The required concatenation operation ◦ for two stacks s1 and s2 is defined
as follows: Let

s1 =

s′1,

i11, . . . , i
1
n

l11, . . . , l
1
u

︸ ︷︷ ︸

s′′

1

, and s2 =

i21, . . . , i
2
n

l21, . . . , l
2
u

︸ ︷︷ ︸

s′′

2

, s′2,

where s′1 and s′2 denote arbitrary substacks of s1 and s2, respectively, and lj
1

always indicates the loop from ij1 to ijl , j ∈ {1, 2}. If such a loop does not exist,

then mj
1 is set to one. In the case where s′′1 and s′′2 vary only in m1

1 and m2
1

s = s1 ◦ s2 ≡

[

s′1,
i11, . . . , i

1
n

l, l12, . . . , l
1
u,

, s′2

]

, where l = (i−
1

1, i
+1

1, m
1
1 + m2

1) .

An optimally compressed version of the subtour of T ranging from the i-th to
the j-th entry is denoted by di,j . The offline dynamic programming algorithm
computes di,j according to

f(di,j) =

{
1 i = j

min
i≤s<j

f(di,s ◦ ds+1,j) otherwise
.

The offline algorithm has two disadvantages. One needs to store the whole tour
first before the compression is started. But the uncompressed tour may exceed
the memory. The other problem is runtime. Dynamic programming yields a cubic
computational complexity. It is likely to be inefficient for real problems. Hence,
we look for good and fast online heuristics.

Compression should take place as soon as possible. The algorithm works on
a window of a predefined size s. To find loops we take a naive approach. Once a
new element has been added to the stack we start to search for loops of length
1, . . . , l, where l < s/2, in increasing order beginning from the new element.
The stack is compressed as soon as a loop is found by adding a corresponding
loop entry to the compressed tour followed by removing integers that are no
longer needed from the stack. The window is then refilled with entries on top
of the stack. The refilling of the window is important in order to be able to
find loops whose compressed version contains less than s/2 entries while their
uncompressed version is longer than the size of the window.

One can show that the online algorithm produce near-optimal results in
mostly relevant cases.

To decompress the compressed tour we unroll loops on top of the stack, for as
long as the the element on top of the stack is not a value element. This method
saves memory, and allows us to get away with the same amount of memory as
during the compression.

The Table 1 shows the compression rates that are achieved by applying the
online algorithm to the flow of control of three representative test problems.

Low-Memory Tour Reversal in Directed Graphs 3

Table 1. Compressions rates produced by online algorithm with window size
21 applied to control-flow stacks of the solid fuel ignition (sfi) [2], burger and
Leonard Jones cluster (ljc) [2] problems

Problem uncompr. stack size compr. stack size compr. rate

burger 3432 MB 144 Byte 25013889

sfi 4576 MB 168 Byte 28572380

ljc 3692 MB 703984 Byte 5500

References

1. Storer, A., Szymanski, T.G.: Data compression via textual substitution. Journal of
the Association for Computing Machinery 29 (1982) 928–951

2. Averik, B., Cartere, R., Moré, J.: The Minpack-2 test problem collection (prelimi-
nary version). Technical Report 150, Mathematical and Computer Science Division,
Argonne National Laboratory (1991)

	Low-Memory Tour Reversal in Directed Graphs
	Viktor Mosenkis, Uwe Naumann, Elmar Peise

