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Abstract. When applied to linear systems arising from scalar elliptic
partial differential equations, algebraic multigrid (AMG) schemes based
on aggregation exhibit a mesh size dependent convergence behaviour. As
the number of iterations increases with the number of unknowns in the
linear system, the computational complexity of such a scheme is non-
optimal. This contribution presents a stabilisation of the aggregation
AMG algorithm which adds a number of subspace projection steps at
different stages of the algorithm and allows for variable cycling strategies.
Numerical results illustrate the advantage of the stabilised algorithm over
its original formulation.
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1 Introduction

Aggregation based algebraic multigrid schemes with piecewise constant restric-
tion and prolongation operators result in an acceptable operator complexity [1]
and are relatively easy to implement. The main drawback when applied to scalar,
elliptic PDEs is their non-optimal computational complexity [2] as the number
of iterations increases with the number of unknowns in the linear system.

In an effort to improve the convergence speed without increasing the operator
complexity, Notay and Vassilevski [3] proposed the so-called k-cycle. The k-cycle
uses the aggregation AMG as preconditioner for a flexible Krylov method to
compute the coarse grid correction on each level.

The modification considered in this contribution relies on residual minimi-
sation as the guiding principle for its subspace projection steps. By construc-
tion, the AMG solver is hence applicable to both, symmetric and mildly non-
symmetric matrices arising from scalar elliptic PDEs. The remainder of this
extended abstract contains the description of the stabilised algorithm in section
2, results of numerical experiments in section 3, and some short conclusions in
section 4.

2 Stabilised aggregation AMG

To introduce the notation, let

Afuf = bf with Af ∈ IRNf×Nf , uf , bf ∈ IRNf
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denote the linear system to be solved. We assume that the matrix Af is symmet-
ric and positive definite. In the straightforward aggregation AMG, the prolon-
gation operator P : IRNc → IRNf is piecewise constant, the restriction operator
R is chosen to be the transpose of the prolongation, and the coarse level system
matrix Ac ∈ IRNc×Nc is given by the Galerkin product Ac := RAfP = PT AfP .
Algorithm 1 describes one iteration of the two-level cycle.

Algorithm 1 Basic two-level cycle
Input: approximation u(k)

Smooth u(k) in Af u(k) = bf

ru = bf −Af u(k)

Coarse level correction:
ω = PA−1

c P T ru

Smooth ω in Af ω = ru

u(k+1) = u(k) + ω
Output: u(k+1)

In [4], Brandt mentions different strategies to improve the robustness of mul-
tilevel schemes in general. One of these options is the recombination of iterants,
which aims to construct a better approximation u(k) at iteration k through a
linear combination of m previous approximations u(k−1), . . . , u(k−m). Our sta-
bilisation approach includes a variant of his suggestion, in that it projects the
residual after the pre-smoothing at iteration k onto the vector Af ω(k−1), where
ω(k−1) is the correction at the previous iteration. In addition, two more pro-
jection steps and another smoothing stage are introduced after the coarse level
correction and more than one coarse level correction per iteration is allowed.
The numerical experiments in the next section show that already one additional
correction step, which effectively replaces the V-cycle by a W-cycle, results in
a marked improvement. Algorithm 2 shows the stabilised AMG iteration for a
two-level scheme, the extension to several levels is done by recursion as usual.

3 Numerical experiments

We compare the basic aggregation AMG scheme to the stabilised one for the
standard test case, the Laplace operator with homogeneous Dirichlet boundary
conditions on the unit interval in 1D and the unit cube in 3D, respectively.
The discretisation employs second order, centred finite differences on uniform
grids. The right hand side vectors are chosen to yield the analytic solutions
u(x) = −x(x− 1) in 1D and u(x, y, z) = −x(x− 1)y(y− 1)z(z− 1) in 3D. These
analytic solutions, together with the starting vector u(0) = 0, imply that the
initial errors are smooth and dominated by low frequency components. As in [1],
we employ double pairwise aggregation, which typically results in a reduction
factor between 3 and 4 in the dimension of the matrix from one level to the
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Algorithm 2 Stabilised two-level cycle
Input: approximation u(k), previous correction ω(k−1)

Smooth u(k) in Af u(k) = bf

ru = bf −Af u(k)

Find α ∈ IR such that ‖ru − αAf ω(k−1)‖ ≤ ‖ru − βAf ω(k−1)‖ ∀β ∈ IR
u(k) ← u(k) + αω(k−1)

for ci = 1 to 2 do
Coarse level correction:

ru = bf −Af u(k)

ω = PA−1
c P T ru

Smooth ω in Af ω = ru

Improving the correction
rω = ru −Af ω
V4 := span{rω, Af rω, A2

f rω, A3
f rω}

Find ν ∈ V4 with ‖rω −Af ν‖l2 ≤ ‖rω −Af z‖l2∀z ∈ V4

ω ← ω + ν
Smooth ω in Af ω = ru

Find α ∈ IR such that ‖ru − αAf ω‖ ≤ ‖ru − βAf ω‖ ∀β ∈ IR
ω ← αω

end for
u(k+1) = u(k) + ω
Output: u(k+1)

next coarser one. Both schemes rely on two iterations of a symmetric Gauß-
Seidel iteration as smoother and both schemes continue until the approximation
satisfies the stopping criterion ‖bf −Af u(k)‖l2 < 10−7.

Table 1. Number of AMG iterations for the 1D problem. The first value in
each field corresponds to the basic aggregation scheme (V-cycles), the value in
brackets to the stabilised algorithm (W-cycles).

2 levels 3 levels 4 levels

h = 1/128 58 (17) 173 (18) 214 (18)

h = 1/256 63 (22) 231 (23) 433 (23)

h = 1/512 66 (22) 265 (26) 736 (26)

One observes from the results in table 1 that the basic aggregation scheme
suffers from two types of problems. Not only does the number of iterations in-
crease with the problem size, it also depends strongly on the number of levels
in the multilevel scheme. Both features are clearly highly undesirable. The sta-
bilised scheme with its computationally more expensive iterations is much more
robust, even if a slight dependence on the problem size seems to remain.

Surprisingly perhaps, the number of iterations for the basic aggregation
scheme increases more slowly in 3D than in 1D! However, the dependence on
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Table 2. Number of AMG iterations for the 3D problem. The first value in
each field corresponds to the basic aggregation scheme (V-cycles), the value in
brackets to the stabilised algorithm (W-cycles).

2 levels 3 levels 4 levels 5 levels

h = 1/32 18 (7) 27 (7) 31 (7) 33 (7)

h = 1/64 21 (10) 39 (11) 50 (11) 62 (11)

the number of levels is still evident. Again, the stabilised scheme manages to
suppress the dependence on the number of levels. However, further tests are
required to check whether the dependence on the mesh size remains.

4 Conclusions

The stabilisation of the aggregation AMG algorithm outlined in section 2 is
flexible in the sense that the added stages do not rely on any property of the
system matrix at a given level apart from being non-singular. The numerical
experiments illustrate that the stabilisation strongly reduces the h-dependence
present in the basic scheme and that it is robust with respect to the number
of levels employed. However, the number of operations per cycle is significantly
higher in the stabilised scheme than in the basic one, which obviously leaves
some scope for improvement of the approach.
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