
A Model for Task Repartioning under Data
Replication

Erkan Okuyan1, Cevdet Aykanat2 and B. Barla Cambazoglu3

1 Bilkent University, Computer Science Department
Ankara, Turkey

eokuyan@cs.bilkent.edu.tr
2 Bilkent University, Computer Science Department

Ankara, Turkey
aykanat@cs.bilkent.edu.tr

3 Yahoo! Research
Barcelona, Spain

barla@yahoo-inc.com

Abstract. We propose a two-phase model for solving the problem of
task repartitioning under data replication with memory constraints. The
hypergraph-partitioning-based model proposed for the first phase aims
to minimize the total message volume that will be incurred due to the
replication/migration of input data while maintaining balance on compu-
tational and receive-volume loads of processors. The network-flow-based
model proposed for the second phase aims to minimize the maximum
message volume handled by processors via utilizing the flexibility in as-
signing send-communication tasks to processors, which is introduced by
data replication. The validity of our proposed model is verified on par-
allelization of a direct volume rendering algorithm.

Keywords. Task repartitioning, data replication, hypergraph partition-
ing with fixed vertices, assignment flow network

1 Introduction

Many parallel scientific computing applications require repeating the same com-
putation over a problem instance with different parameters. In general, the
quality of the initial task-to-processor or data-to-processor mapping in such
applications tends to deteriorate in terms of computational load balance and
communication requirements, as the computational structure of the problem or
application parameters change between successive computational instances. A
promising solution to this problem is to rebalance the load distribution in the
parallel system as needed by rearranging the assignment of tasks to processors
via a process known as repartitioning (remapping).

Novel repartitioning models are essential for efficient parallelization. The suc-
cess of a repartitioning model depends on its ability to rebalance the load distri-
bution as well as to minimize the overheads introduced due to the repartition-
ing process itself. Although it is problem-dependent, most typical repartitioning

Dagstuhl Seminar Proceedings 09061 
Combinatorial Scientific Computing 
http://drops.dagstuhl.de/opus/volltexte/2009/2090



2 E. Okuyan, C. Aykanat, B. B. Cambazoglu

overheads are due to task migration, data replication, and repartitioning com-
putations.

Recently, succesful combinatorial models [1], [2], [3], which are based on graph
and hypergraph partitioning by fixed vertices, are proposed as solutions to the
repartitioning problems arising in different types of applications. In all three
models, the computational structure of an underlying application is represented
by a graph/hypergraph, where vertices represent tasks and edges/hyperedges
represent the interaction between/among the tasks. In [1] and [3], vertices are
fixed to the parts according to the initial task-to-processor mapping, whereas
in [2], the hyperedges, which represent the data primitives, are fixed to the parts
according to the initial data-to-processor mapping. The fixed vertex formulations
adopted in these models encapsulate the cost of task and/or data migration.

2 A task repartitioning model

The focus of this work is on parallel scientific computing applications in which
similar type of computations are succesively repeated over the same dataset
instance for many times with different parameters. There is no dependency be-
tween tasks and the only reason for inter-task interaction is the existence of
data primitives that are inputs to several tasks. Both computational structure
and expected task execution times may change during succesive computational
instances. Change in computational structure means change in the data primi-
tive requirements of tasks. Since the individual processors of the parallel system
have a limited storage capacity, we can reserve a limited amount of storage for
holding replicas at each processor. For the parallelization of a particular compu-
tational stage, the repartitioning model should utilize the replication pattern of
the previous computational stage(s) for reducing the communication overhead
due to the data replication requirement of the current stage.

We propose a two-phase model for solving this problem. The hypergraph-
partitioning-based model proposed for the first phase is an enhanced version of
our previous model in [2] and it aims to minimize the total message volume
that will be incurred due to the replication/migration of input data while main-
taining balance on computational and receive-volume loads of processors. The
network-flow-based model proposed for the second phase is an adaptation of [4]
and it aims to minimize the maximum message volume handled by processors
via utilizing the flexibility in assigning send-communication tasks to processors,
which is introduced by data replication. The validity of our proposed model is
verified on image-space parallelization of a direct volume rendering algorithm.

References

1. C. Aykanat, B.B. Cambazoglu, F. Findik, and T. Kurc, “Adaptive Decomposi-
tion and Remapping Algorithms for Object-Space-Parallel Direct Volume Ren-
dering of Unstructured Grids”, J. Parallel and Distributed Computing, vol. 67,
no. 1, pp. 77–99, Jan. 2007.



Task Repartioning under Replication 3

2. B.B. Cambazoglu and C. Aykanat, “Hypergraph-Partitioning-Based Remap-
ping Models for Image-Space-Parallel Direct Volume Rendering of Unstructured
Grids”, IEEE Trans. Parallel and Distributed Systems, vol. 18, no. 1, pp. 1–14,
Jan. 2007.

3. U.V. Catalyurek, E.G. Boman, K.D. Devine, D. Bozdag, R.T. Heaphy, and L.A.
Riesen, “Hypergraph-based Dynamic Load Balancing for Adaptive Scientific
Computations”, in Proc. IPDPS’07, pp. 1–11, Mar. 2007.

4. A. Pinar and B. Hendrickson, “Improving Load Balance with Flexibly Assignable
Tasks”, IEEE Trans. Parallel and Distributed Systems, vol. 16, no. 10, pp. 956–
965, Oct. 2005.


	A Model for Task Repartioning under Data Replication
	Erkan Okuyan, Cevdet Aykanat and B. Barla Cambazoglu 



