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Abstract. We present an algorithm for solving a linear system in a
symmetric M-matrix. In particular, for n × n symmetric M-matrix M ,
we show how to find a diagonal matrix D such that DMD is diagonally-
dominant. To compute D, the algorithm must solve O (log n) linear
systems in diagonally-dominant matrices. If we solve these diagonally-
dominant systems approximately using the Spielman-Teng nearly-linear
time solver [1], then we obtain an algorithm for approximately solving
linear systems in symmetric M-matrices, for which the expected running
time is also nearly-linear.
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1 Extended Abstract

1.1 Introduction

A symmetric M-matrix may be defined as a positive-definite matrix with non-
positive off-diagonal entries. Matrices of this sort have many notable properties.
For example, for every symmetric M-matrix M , there is a diagonal matrix D
such that DMD is diagonally-dominant. In this paper, we present an iterative
algorithm for computing this diagonal matrix. In particular, given an n × n
symmetric M-matric M with m non-zero entries, we show how to find a diagonal
matrix D that makes DMD diagonally dominant, by solving O (log n) linear
systems in diagonally-dominant matrices with at most m non-zeros.
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Our algorithm relies on another property of symmetric M-matrices, namely
that all such matrices have a width-2 factorization [2]. This means that if M is
a symmetric M-matrix, then it can be expressed as M = AAT for some matrix
A that has at most 2 non-zero entries per column. Our algorithm assumes that
we are given a width-2 factorization of the symmetric M-matrix.

Now, suppose that we wish to find the solution x for Mx = b, where M
is a symmetric M-matrix. Note that x = Dx ′, where x ′ is the solution to
(DMD)x ′ = Db. Thus, by using our algorithm to find a diagonal matrix D
that makes DMD diagonally-dominant, and then solving (DMD)x ′ = Db for
x ′, we are able to solve Mx = b by solving O (log n) linear systems in diagonally-
dominant matrices.

If we use the Spielman-Teng low-stretch support graph preconditioning al-
gorithm [1] to approximately solve the linear systems in diagonally-dominant
matrices in nearly-linear time, then our algorithm yields a nearly-linear time
algorithm for solving linear systems in symmetric M-matrices:

Theorem 1. For symmetric M-matrix M with m nonzeros, where a width-2
factorization of M is given, our algorithm solves Mx = b to within relative
error ε in expected time O

(
m logO(1)m log κ

ε

)
, where κ is the condition number

of M . The error is measured in the matrix norm ‖x‖M =
√

xTMx .

1.2 Algorithm Overview

The key to finding a diagonal matrix D that makes DMD diagonally-dominant
is the observation that a random diagonal matrix D will already make a constant
fraction of the diagonal entries of DMD dominate their rows. (We say that a
diagonal entry dominates its row if it is greater in absolute value than the sum
of the absolute values of all the other entries in the row.)

Lemma 1. For symmetric M-matrix M with diagonal entries mii, construct
a random diagonal matrix D by independently choosing the ith diagonal entry
uniformly at random from the interval (0,m−1/2

ii ). Then with positive constant
probability, a constant fraction of the diagonal entries of DMD dominate their
rows.

Once we have DMD for which a constant fraction of the diagonal entries
dominate their rows, we give a procedure to find a new diagonal matrix D′ such
that the number of diagonal entries of D′MD′ that do not dominate their rows
is fewer than in DMD by at least a constant factor. This procedure requires the
solution of a constant number of linear systems in diagonally-dominant matrices.
By repeating this procedure O (log n) times, we obtain a DMD that is entirely
diagonally-dominant, and we require altogether the solution of O (log n) linear
systems in diagonally-dominant matrices, as claimed.

Let us briefly describe this procedure for decreasing the number of rows not
dominated by their diagonal entries. We partition the rows (and columns) of M

into two groups, writing M =
(
M11 M12

M21 M22

)
and D =

(
D1

D2

)
such that the
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diagonal entries in the upper part of the matrix DMD dominate their rows,
while those in the lower part do not. (Without loss of generality, we may assume
that the rows and colums of M are permuted such that the diagonal entries that
dominate their rows come first.) We will take advantage of the fact that we are
already able to solve linear systems in M11 by solving equivalent linear systems
in the diagonally-dominant matrix D1M11D1.

We wish to find a D′ such that all the diagonal entries in the upper part of the
matrix D′MD′ still dominate their rows, and additionally a constant fraction
of the diagonal entries in the lower part of D′MD′ also dominate their rows.
It turns out that we can obtain such a D′ by applying Lemma 1 to the Schur
complement of M , namely MS = M22 −M21M

−1
11 M12.

To apply Lemma 1 to MS , we need to compute the diagonal entries of MS .
We may accomplish this using the width-2 factorization M = AAT , with the

rows of A =
(
A1

A2

)
partitioned into the same two groups as the rows of M . It so

happens that the diagonal entries of MS may be obtained by projecting the rows
of A2 onto the null space of A1. To compute these projections exactly would be
too computationally intensive. However, we may compute these values approx-
imately using Johnson-Lindenstrauss [3] style random projections, by solving
only O (1) linear systems in M11. As noted above, using the current value of D1

we are already able to reduce solving linear systems in M11 to solving systems
in the diagonally-dominant matrix D1M11D1.

For proofs and further details of the algorithm, please refer to [4].

1.3 Related Work

An interesting example of where symmetric M-matrices occur is in solving gen-
eralized network flow problems. These are network flow problems where each
edge is assigned a gain (or loss) factor that defines the ratio between the flow
into and out of the edge. When solving generalized network flow problems using
interior-point methods, each iteration of the interior-point method reduces to
solving a linear system in a symmetric M-matrix. (Compare the case of stan-
dard network flow problems where all gain factors are 1, and the interior-point
iterations reduce to solving a linear system in a diagonally-dominant matrix.)
In [4], we show that using our M-matrix algorithm as part of an interior-point
method yields new faster approximation algorithms for the generalized max flow
and min-cost flow problems, in the lossy case where no edge has more flowing
out than flowing in.
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