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1 Introduction

Learning Vector Quantization (LVQ) [1] is a popular method for multiclass clas-
sification. Several variants of LVQ have been developed recently, of which Robust
Soft Learning Vector Quantization (RSLVQ) [2] is a promising one. Although
LVQ methods have an intuitive design with clear updating rules, their dynam-
ics are not yet well understood. In simulations within a controlled environment
RSLVQ performed very close to optimal. This controlled environment enabled
us to perform a mathematical analysis as a first step in obtaining a better theo-
retical understanding of the learning dynamics. This extended abstract provides
the outline of our theoretical analysis and its results. Moreover, we will focus on
the practical application of RSLVQ to a real world data set containing extracted
features from facial expression data.

2 LVQ

Learning Vector Quantization (LVQ), originally posed by Kohonen [1,3] and
known by the name LVQ1, is a method of online supervised competitive learning.
Many variations on the basic scheme of LVQ1 have been suggested, among which
LVQ2.1 and LVQ3 [3,4], GLVQ [5] and RSLVQ [6,2], with the aim of obtaining
better generalization capacity.

During learning, data samples and their class labels are presented sequen-
tially, or so called ’on-line’. From a set of prototype vectors, defined in the same
(potentially high dimensional) space as the data, the closest (set of) prototype(s)
is determined and updated such that if the class label coincides with the class
label of the data sample, the prototype is attracted to the data, otherwise re-
pelled. The data, carrying labels of different classes, is assumed to be distributed
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around a specified number of prototypes. Note that there can be more than one
prototype per class, enabling a good fit of prototypes to data that contains highly
complex class boundaries. After training, classification is done by determining
the closest of all prototypes and returning the class label corresponding to this
winning prototype. The decision boundaries between the prototypes can also be
considered as the Voronoi tessellation of the feature space.

The variations of LVQ-algorithms mainly differ in which specific prototypes
are updated (for example only the closest conflicting prototypes or the clos-
est prototype with corresponding and closest with conflicting label) and how
these prototypes are updated. The generic structure of an LVQ algorithm can
be expressed in the following way:

wl
µ = wl

µ−1 + ∆wl
µ,

= wl
µ−1 +

η

N
f({wi

µ−1}, ξµ, σµ, . . .)(ξµ −wl
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with l, i = 1 . . . c, µ = 1, 2, . . .

Where wµ
l is prototype wl (of class l) at time step µ, η is the so-called learning

rate, N is the dimensionality of the system. The specific form of the update
strength function f is determined by the specific LVQ variant.

2.1 RSLVQ

LVQ variants as LVQ2.1 or Learning From Mistakes (LFM) [7] apply updates
with update strength 0 or 1, referred to as a hard or crisp update. Robust Soft
LVQ uses the relative distance between a data sample and the prototypes to
soften this update strength. The update formula of RSVLQ, as defined by Seo
and Obermayer [2] is as follows:
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where Pl(l̃|ξµ) and P (l̃|ξµ) are assignment probabilities:
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Pl(l̃|ξµ) describes the posterior probability that the data sample {ξµ, σµ} is
assigned to prototype wl̃ of class l, given that the data sample was generated by
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the correct class. P (l̃|ξµ) describes the posterior probability that the data sam-
ple is assigned to prototype wl̃ of all prototypes of all classes. f(ξ,wµ

l̃
) describes

the assumed distribution of the data around the prototypes in such a way that
K(l̃)exp

(
f(ξ,wµ

l̃
)
)

gives the probability that the data vector ξµ is assigned to
prototype wl̃.

In our analysis we assume a Gaussian distribution, i.e., K(l̃) = (2πvl̃)
N/2 and

f(ξ,wµ

l̃
) = −(ξ−wµ

l̃
)2/2vl̃, and equal width and strength of all prototypes, i.e.,

the variances and priors are equal: ∀S :: vS = vsoft, p(S) = 1
#wS

. Furthermore
we consider a two class data set to be represented with one prototype per class.

With these assumptions the update rule (2) becomes:

wl
µ = wl

µ−1 +
η

Nvsoft
(δlσµ −Ωl)(ξµ −wl

µ−1) (4)

Where δlσµ is the Kronecker delta and Ωl = (1 + exp(
dµ

l −dµ
−l

2vsoft
))−1.

3 Analysis

In order to study the algorithm analytically, we restrict ourselves to a model of
artificial data, as described in more detail in [8]. It considers a mixture of two
Gaussian clusters which overlap fully in all dimensions, however there exists a
linear projection to a plane in which there is controllable less overlap. Seven
characteristic quantities are chosen such that they characterize the full system
and are used to visualize the learning system evolving over time.

Conceptually, the analysis consists of the following steps:

1. Description of the development of characteristic quantities in terms of recur-
rence relations

2. Reformulation of recurrence relations as differential equations (ODE), yield-
ing a coupled system of 7 ODE’s

3. Performing averages on the ODE’s to describe generalization ability

The update formula of RSLVQ (4) cannot be integrated analytically, as will
be needed in the analysis. We use the observation that 1

1+exp(x) is very similar to
Φ(−x

c ), where c ∈ R is a constant which controls the slope of the Φ-function (we
derived c = 4√

2π
for the best fit). This adaptation allows an analytical solution

of the ODE’s in the limit N →∞ and η → 0.
We compared the analytical results with simulations and found that they

coincide. The Φ-replacement however causes for slight deviations from the origi-
nal RSLVQ behavior. The generalization error (the parameter of main interest),
however, is not affected and thereby well described by the ODE’s. Note that the
differential equations are determined in the limit N →∞. The simulations were
performed with N = 100, which is obviously sufficient to match the theory for
N →∞, see [8] for a discussion of finite N corrections.
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We studied the effect of the hyperparameter of RSLVQ, vsoft. While simula-
tions with a large number of epochs show a slightly increasing error for larger
softness, the analytical results show that there is no effect on the softness (in-
dicating that in the simulations the system had, because of finite training time,
not converged fully for large softness settings).

4 Practical application: Facial Expression Recognition

We applied RSLVQ to a real world data set consisting of features extracted from
photos of facial expressions from the Cohn-Kanade database [9]. The features
extracted are so termed Local Binary Patterns (LBP), which are composed as
follows: Per grey valued pixel (ic) the LBP value is calculated by comparing the
pixel to its eight neighbors, resulting in a binary string of which the decimal
value is taken, according to:

LBP (xc, yc) =
7∑

n=0

s(in − ic)2n (5)

Where s is the Heaviside step function. The 28−1 possible outcomes are reduced
to L = 59 by regarding only those LBP values with at most 2 bitwise transitions,
as proposed by Ojala et al. [10].

The images are divided into (42) regions Rj , where per region a histogram
Hi =

∑
x,y δLBP (x,y),i (with (x, y) ∈ Rj , i = 0, . . . , L − 1) is built. These

histograms are placed next to each other, forming a single vector of length
N = 42 ∗ 59 = 2478. Another variant uses overlapping regions, resulting in
a vector of length N = 8437.

The data set contains the facial expressions of 95 university students, show-
ing 7 emotions: Anger, Disgust, Fear, Joy, Sadness, Surprise, Neutral. In total
there are 1214 instances which we used in 10-fold cross validation, in such a way
that the test set contains not only unseen expressions, but unseen faces.

The results, given in Table 1, indicate that RSLVQ competes well with Sup-
port Vector Machine (SVM) [11], a leading technique in facial expression classi-
fication. LVQ2.1 showed severe stability issues, therefore its performance listed
should not be given too much credit.

Table 1. Performance on facial expression data (10 fold cross validation)

LBP LBP with overlap

SVM (linear kernel) [12] 90.9± 5.6% 92.9± 5.0%

RSLVQ 92.2± 2.0% 93.2± 2.6%

LVQ2.1 83.2% (stability issues)

The influence of the softness parameter on the performance of RSLVQ turned
out to be quite small and showed similar patterns as found in the mathematical
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analysis. The influence of choosing more than one prototype per class was only
marginal for this data set.

5 Conclusions

In conclusion we have shown the outline of our mathematical analysis of RSLVQ,
enabling an analytical exploration of the behavior and performance in terms of
generalization ability within a controlled environment. The analysis showed that
there is no influence of the hyperparameter on the asymptotic generalization
error, however in practice (with finite training time), larger softness values tend
to lead to larger generalization error. Moreover, we showed that in a practical
application on facial expression data, RSLVQ competes well with the leading
classifier in the field, SVM.
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