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Abstract. In this work we present a Bio-PEPA model describing the Nuclear
Factor κB (NF-κB) signalling pathway. In particular our model focuses on the
dynamic response of NF-κB to an external stimulus. Each biochemical species in
the pathway is represented by a specific Bio-PEPA component and the external
stimulus is abstracted by Bio-PEPA events.
The Bio-PEPA model is a formal intermediate representation of the pathway on
which various kinds of analysis can be performed. Both stochastic and determin-
istic simulations are carried out to validate our model against the experimental
data in the literature and to verify some properties, such as the impact of the stim-
ulus duration and of the NF-κB initial amount on the behaviour of some species.
Finally, sensitivity analysis is considered to investigate the most influential pa-
rameters of the model.
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1 Introduction

Nuclear Factor κB (NF-κB) is a protein complex that regulates numerous genes that
play important roles in inter- and intra-cellular signalling, cellular stress response, cell
growth, survival and apoptosis [1,2]. The investigation of the specific mechanisms that
govern NF-κB activities is essential for the understanding of various biological pro-
cesses and for the potential use of NF-κB as a drug target. In the literature there are
numerous models describing different aspects of the NF-κB pathway [3,4,5,6]. Most of
them are defined in terms of Ordinary Differential Equations (ODEs) and the validation
and analysis are based on numerical integration of these ODE systems.

Recently there have been various applications of process algebras for the modelling
and analysis of biochemical networks [7,8,9,10,11]. These formalisms, originally de-
fined in computer science for the specification and study of complex systems, are also
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useful in the context of biochemical systems. They offer a formal representation of the
model on which various kinds of analysis can be performed, from stochastic simula-
tion to ODE-based analyses, to verification of properties by means of model checking.
Furthermore, they support a compositional approach for the construction of the model.

In this work we consider the process algebra Bio-PEPA [12,13]. This language has
some features that are useful in describing biochemical networks: it permits the repre-
sentation of generic kinetic laws by means of functional rates, it supports the explicit
definition of stoichiometry, the role of the species in each reaction and locations, and it
is enriched with events, constructs able to represent some changes in the system due to
trigger conditions.

We focus on a detailed model describing the NF-κB pathway [5] and we represent
it in Bio-PEPA. The aim of this work is twofold. First, we would like to demonstrate
the power of Bio-PEPA as a modelling language for biochemical networks. In partic-
ular, we show how to abstract in Bio-PEPA some features of these networks, such as
compartments and the presence of external stimuli which cause the activation of some
reactions. These are described by locations and temporal events, respectively. Second,
we would like to use some of the analysis techniques supported by Bio-PEPA in order
to extend the existing analysis of the model, essentially based on ODE numerical inte-
gration, and therefore possibly understand more properties of the pathway. Specifically,
we consider stochastic simulation to verify the impact of fluctuations on the behaviour
of some species of interest and we use sensitivity analysis to isolate the most influential
parameters of the model. Sensitivity analysis is applied to the stochastic version of our
model using a novel algorithm, based on the definition of histogram distance over the
simulation runs [14], implemented in the version of the Dizzy simulator developed at
the University of Edinburgh [15].

For these purposes, we follow the following approach. First we translate the original
model in [5] into a Bio-PEPA model. Our model is then validated against the original
model, which was proved to be in agreement with the available experimental data [5].
After that we define a stochastic version of the model; it is compared with the ODE
model and is used to verify some properties, such as the impact of stimulus duration
and the initial amount of NF-κB on the behaviour of some species. Sensitivity analysis
is finally applied to the stochastic model.

The rest of the paper is structured as follows. The NF-κB pathway and the Bio-PEPA
model of the pathway are described in Sect. 2 and Sect. 4, respectively. Bio-PEPA is
introduced in Sect. 3. In Sect. 5 the validation of the our model and some analysis results
are presented. Finally, in Sect. 6 we report some concluding remarks.

2 The NF-κB pathway

The study of NF-κB is of intense interest as it regulates numerous genes important for
pathogen or cytokine inflammation, immune response, cell proliferation and survival
[1,2].

There is a vast literature of models for the NF-κB signalling pathway [3,4,5,6]. Here
we focus on the model presented in [5]. A schema of the pathway is reported in Fig. 1.
The species involved are the IκB kinase (IKK), NF-κB, the protein A20, the protein
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IκBα, their complexes and mRNA transcripts of A20, IκBα and an hypothetical control
gene (cgen). Under normal conditions, NF-κB is kept in the cytoplasm by the inhibitor
protein IκBα. When an upstream stimulus (SIGNAL), such as the Tumor Necrosis Fac-
tor (TNF), is activated the protein IKK in the neutral form (IKKn) is transformed into
its active phosphorylated form (IKKa). In this form it is capable of triggering the degra-
dation of IκBα and, as a result, free cytoplasmic NF-κB is released. This enters the
nucleus and upregulates the transcription of the two inhibitors, A20 and IκBα, and a
large number of other genes. The newly synthesized IκBα again inhibits NF-κB while
A20 inhibits IKKa by catalysing its transformation into another inactive form (IKKi),
which is not able to trigger the degradation of IκBα anymore.

SIGNAL 0/1

IKKn

IKKa

IKKi

A20

A20 mRNA

IkBa mRNA

IkBa

IkBa

IkBa|NF-kB

IkBa|NF-kB
NF-kB

NF-kB

cytoplasm nucleus

Fig. 1. Schematic depiction of the NF-κB signalling pathway considered in the paper.
The rectangles represent mRNAs whereas ovals represent proteins. The red arrows are
the interactions triggered by the signal, the brown arrows the transport reactions be-
tween compartments, the blue arrows the translation of mRNAs into proteins, black
arrows represent all the other kinds of interaction (association and dissociation reac-
tions). Compartments are delimited by green lines.

The pathway is characterized by the following main features:

1. There are two compartments, the nucleus and the cytoplasm. Some biochemical
species can move from one compartment to the other. In other models compart-
ments are not considered explicitly or they are based on the (non realistic) assump-
tion that they have the same size [3]. Here compartments have different sizes and
this information is taken into account in the derivation of rates and concentrations.
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2. The external stimulus is represented by a signal, active from time T1= 1 to T2= 7
(hours). When the signal is present, some reactions are enabled (the rate is different
from zero): the activation of IKKn and the transformation of IKKa into IKKi.

3. There are two regulatory feedback loops: the former involves IκBα and the lat-
ter A20. Indeed nuclear NF-κB upregulates the transcription of both proteins and
these, in turn, inhibit the activity of NF-κB. In the latter feedback loop the action
of A20 on the regulation of NF-κB is not direct: A20 inactivates IKKa, this stops
the degradation of IκBα and, consequently, there is an increase in the inhibition of
NF-κB.

The model in [5] is in terms of ODEs where variables describe species concen-
trations (in µM). The model was validated against the available experimental data and
some analyses were carried out. A hybrid model for the same pathway is described in
[6]: ordinary differential equations, used for description of fast reaction channels of pro-
cesses involving a large number of molecules, are combined with a stochastic switch to
account for the activity of the genes involved.

3 Bio-PEPA

In this section we give a short description of Bio-PEPA [12,13], a language that has
recently been developed for the modelling and analysis of biological systems. The
main components of a Bio-PEPA system are the species components, describing the be-
haviour of each species, and the model component, describing the interactions between
the various species. The species initial amounts are given in the model component.

The syntax of the Bio-PEPA components is defined as:

S ::= (α, κ) op S | S + S | C with op = ↓ | ↑ | ⊕ | 	 | � P ::= P BC
L

P | S (x)

where S is the species component and P is the model component. In the prefix term
(α, κ) op S , κ is the stoichiometry coefficient of species S in reaction α, and the pre-
fix combinator “op” represents the role of S in the reaction. Specifically, ↓ indicates
a reactant, ↑ a product, ⊕ an activator, 	 an inhibitor and � a generic modifier. We
can use “α op ” and “(α, κ) op ” as abbreviations for “(α, κ) op S ” and “(α, 1) op S ”,
respectively. The operator “+” expresses the choice between possible actions, and the
constant C is defined by an equation C

def
= S . The process P BC

L
Q denotes synchronisa-

tion between components P and Q, the set L determines those activities on which the
operands are forced to synchronise, with BC

∗
denoting a synchronisation on all com-

mon action types. In the model component S (x), the parameter x ∈ R represents the
initial concentration (or the number of molecules in a discrete-stochastic setting). The
reader is referred to [13] for further details on the language and its semantics.

Recently Bio-PEPA has been extended to incorporate events [16] and to support
biological locations [17].

Events are constructs that represent changes in the system due to some triggering
conditions. This allows biochemical perturbations to the system to be represented, such
as the timed introduction of reagents or the modulation of system components by exter-
nal stimuli. A Bio-PEPA event has the form (id, trigger, event assignment, delay), where



Modelling and analysis of the NF-κB pathway in Bio-PEPA 5

id is the event name, trigger is a mathematical expression involving the components of
the Bio-PEPA model and/or time, event assignment is a list of assignments causing
some changes to elements in the system, and delay is either 0 (immediate events) or a
positive real value (delayed events).

Locations represent both biological compartments and membranes. They are static
(i.e. they have a fixed structure) but they can change size with time. In the definition
of locations it is possible to express their position with respect to the other locations of
the system and their kind (i.e. compartment or membrane). The notation C@L indicates
that the species represented by the component C is in the location L. The structure of the
biological system is modelled as a static hierarchy, represented as a tree whose nodes
represent locations (compartments and membranes); each node has one child for each
of their sub-locations. The locations are defined as follows.

Definition 1. Each location is described by “L : s unit, kind”, where L is the (unique)
location name, “s” expresses the size and can be either a positive real number or a more
complex mathematical expression depending on time t; the (optional) “unit” denotes
the unit of measure associated with the location size, and “kind” ∈ {M,C} expresses if
it is a membrane or a compartment, respectively.

A Bio-PEPA system representing a biochemical network consists of a set of se-
quential components, a model component, and a context (defining information such as
kinetics rates, parameters, locations, and events). Its formal definition is the following.

Definition 2. A Bio-PEPA system P is a 8-tuple 〈t, L,N ,K ,FR,Comp, P, Events〉,
where: t is time, L is the set of locations, N is the set of (auxiliary) information for
the species,K is the set of parameters, FR is the set of functional rates, Comp is the set
of species components, P is the model component and Events is the set of events.

Bio-PEPA offers a formal intermediate compositional representation of biochemi-
cal systems, on which different kinds of analysis can be carried out, through the defined
mappings into continuous-deterministic and discrete-stochastic modelling languages.
The Bio-PEPA language is supported by software tools (for instance the Bio-PEPA
Workbench [18]) which automatically process Bio-PEPA models and generate other
representations in forms suitable for different kinds of analysis [13,19]. In particular, the
generated simulation model can be executed using MATLAB [20] and the Dizzy simu-
lation tool [21], in which both stochastic simulation algorithms and differential equation
solvers are implemented. Here we use a version of the Dizzy simulator developed at the
University of Edinburgh [15], which extends the original tool with sensitivity analysis
techniques and additional simulation methods.

4 A Bio-PEPA model for the NF-κB pathway

In the following we illustrate the Bio-PEPA model describing the NF-κB pathway pre-
sented in Sect. 2. We show the mapping from each biochemical entity (species, reaction,
· · · ) to Bio-PEPA. We report just the main ideas of the abstraction, the full model is re-
ported in Appendix A.



6 F. Ciocchetta, A. Degasperi, J. Heath, J. Hillston

The pathway is characterised by the presence of two compartments (and the trans-
port of some species between them) and by the influence of an external signal. These
features can be easily represented in Bio-PEPA using locations and events.

Compartments The nucleus and the cytoplasm are abstracted by locations in Bio-
PEPA:

location nuc : kind = C, size = 3.33 · 10−13 l;
location cyt : kind = C, size = 1.65 · 10−12 l

They are both of kind C (i.e. compartments) and their sizes are as given in [5].
Reactions Each reaction is associated with an action type and with a functional rate.

For instance, in the case of degradation of the protein A20 we have the action type
a20 degradation and the associated functional rate:

fa20 degradation = f MA(c5)

where f MA(r) stands for mass-action with constant rate r.
Species Each biochemical species in the pathway is abstracted by a species component,

describing its behaviour in terms of the interactions in which it is involved.
For instance the protein A20 is represented as:

A20@cyt
def
= (a20 synthesis, 1) ↑ +

(a20 degradation, 1) ↓
(trans f ormation IKKa into IKKi by A20, 1) ⊕ +

This species is in the cytoplasm and it is involved in three interactions: its synthesis,
its degradation and it is an activator of the transformation of IKKa into the inactive
form IKKi.
The species and their possible interactions are represented by the model component:

IKKn@cyt[0] BC
∗

IKKa@cyt[0]IKKi@cyt[0] BC
∗
BC
∗
· · · A20@cyt[0]

where the number between square brackets represents the initial concentration.
Signal The signal (TNF stimulus) is abstracted in Bio-PEPA by two events, represent-

ing the start and the end of the signal.

(begin signal, t = T1, signal = 1, 0);
(end signal, t = T2, signal = 0, 0)

In our case T1 = 1 and T2 = 7 (time expressed in hours) and both events are
immediate.

Note that the rates and the initial amounts in the Bio-PEPA model are in terms of
concentration. In order to derive a stochastic model or, generally, a model in terms of
molecule numbers, the continuous concentration values must be translated into discrete
numbers of molecules and the rates must be modified in order to take this transforma-
tion into account. In general, assuming concentrations are expressed in molars (M), the



Modelling and analysis of the NF-κB pathway in Bio-PEPA 7

initial amounts must be multiplied by the scaling factor NA · V (where NA is the Avo-
gadro number and V is the volume of the compartment where the reactions take place),
and the kinetic parameters must be rescaled accordingly (see [22] for details).

In our model we have two compartments with different volume sizes, so we have to
define two scaling factors and use them according to the location of each species and
reaction. Specifically, the two scaling factors are:

nscale = Vn · NA · 106 = 2 · 105 cscale = Vc · NA · 106 = 106

where nscale and cscale are the scaling factors and Vn and Vc for the volume sizes of the
nucleus and cytoplasm, respectively. As the concentrations are in terms of µM instead
of M we have to multiply by the scaling factor 106. Furthermore, we have to define
the proportion factor between the two compartments k = Vc/Vn = 5. This parameter
is used to rescale in the appropriate way the rates of the reactions involving reactants
and products in two different compartments, such as the transport of a species from the
nucleus to the cytoplasm.

5 Validation and analysis

The Bio-PEPA model for the NF-κB pathway was implemented in the Bio-PEPA Work-
bench [18]; from it various kinds of analysis can be performed. Here we consider the
ODE MATLAB model for the validation and the Dizzy model for the stochastic simu-
lation and sensitivity analysis. Gillespie’s direct method [22] is the stochastic algorithm
chosen for our analysis. The same results are obtained if other stochastic algorithms
implemented in Dizzy (including the ones supporting events) are used. The graphs have
time expressed in seconds.

5.1 Validation

In order to validate our model against the original ODE model and the available experi-
mental data in [5], we consider the ODE MATLAB model obtained from the Bio-PEPA
Workbench [18]. The species are defined in terms of concentration.

In [5] the following approach is used for the simulation. At time 0 just the complex
cytoplasmic IκBα |NF-κB is present (0.06 µM) and all other species are zero. First, the
simulation is run for 100 hours in order to reach the resting cell equilibrium state. The
simulation is then run for a further 7 hours, with the external signal enabled after 1 hour.
The ODE solver used is the MATLAB ode23tb, an implementation of TR-BDF2 [23].
This is an implicit Runge-Kutta formula with a first stage that is a trapezoidal rule step
and a second stage that is a backward differentiation formula of order two. This solver
is useful for stiff systems.

In Figure 2 we report the results obtained by running our MATLAB ODE model
following the approach described above. The results are in full agreement with the
results shown in the paper.

The same results (but rescaled by the appropriate scaling factors) are obtained if we
consider the ODE model in terms of number of molecules both in MATLAB and Dizzy.
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Fig. 2. Validation of the ODE MATLAB model obtained from Bio-PEPA (concentra-
tions). The time is in seconds.

In Figure 3 we report the results in terms of molecules for the nuclear NF-κB and IKKa,
as these two species are the ones which our further analyses focus on and the other two
species cytoplasmic IκBα and IκBα |NF-κB. In Dizzy we use the ODEtoJava-dopr54-
adaptive solver [24]. This solver uses a variable time-step size that is controlled by an
adaptive method involving a formula for estimating the error. If the error gets too large,
the time-step size is decreased until the error is acceptable.

The agreement between the two ODE models in terms of concentration and number
of molecules confirms that our scaling is appropriate.

5.2 Stochastic simulation

From Bio-PEPA it is possible to define a stochastic version of the model, in terms of
number of molecules. While deterministic models are good approximations of real bio-
chemical systems when the number of molecules is sufficiently high, at low copy num-
bers the effect of random fluctuations becomes significant and so stochasticity needs
to be taken into account to obtain a faithful representation of the real biochemical sys-
tem [25]. This is particularly true when the activation of genes is involved, as generally
there ate few copies of each gene in the cell.
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Fig. 3. ODE simulation results in terms of number of molecules for some species
in the pathway: nuclear NF-κB (top-left), cytoplasmic IκBα (top-right), cytoplasmic
IκBα |NF-κB (bottom-left) and IKKa (bottom-right). These species correspond to the
species in the subgraphs H, E, F and C of Figure 2, respectively.
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Our aim was to verify the effect of stochasticity on the system behaviour. Figure 4
reports the average and the standard deviation of some species. 100 simulation runs are
considered. The average behaviour for these species is very close to the deterministic
solution. This is unsurprising since the amount of these species is indeed quite high.
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Fig. 4. Stochastic simulation for some species in the pathway: nuclear NF-κB (top-
left), cytoplasmic IκBα (top-right), cytoplasmic IκBα |NF-κB (bottom-left) and IKKa
(bottom-right). For each of them the average value and the standard deviation are
shown. 100 simulation runs are considered. Gillespie’s direct method is the algorithm
used. These species correspond to the species in the subgraphs H, E, F and C of Figure
2, respectively.

5.3 Some experiments

Our model can be then used to predict the behaviour of the system under different
assumptions. In particular, it is interesting to study what happens when we change the
duration of the external stimulus and what the effect of the initial amount of total NF-κB
over the nuclear NF-κB is.

Figure 5 shows the average over 100 stochastic runs for IKKa and nuclear NF-κB
when the stimulus lasts for 15 minutes, 60 minutes and 6 hours (original value). The
three graphs show the same behaviour for both IKKa and nuclear NF-κB for the first
three hours. In particular, the pulse of nuclear NF-κB starts after one hour, has a peak at
one hour and a half and lasts about one hour. This similarity between the three situations
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described above may be due to the fact the pulse of NF-κB is strictly influenced by
IKKa and the behaviour of IKKa is the same for all the three cases. Indeed, the IKKa
activation seems, at least in part, independent from the duration of the TNF stimulus.
However, the duration of the stimulus has an impact on the behaviour of NF-κB after
the pulse: when the stimulus lasts for 15 minutes or 1 hour nuclear NF-κB drops to a
very small amount (2 or 4 molecules, respectively). Moreover with the longer stimulus
we see a pronounced oscillation.
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Fig. 5. IKKa (red line) and nuclear NF-κB (blue line) at and after 15 minute-long (left),
60 minute-long TNF stimulation (centre) and at and after 6 hours (right). The graphs
show the average amount over 100 simulation runs.

In Figure 6 we report the average behaviour over 100 runs of the nuclear NF-κB for
different assumptions about the initial amount of the total NF-κB. An increase in the
total amount of total NF-κB makes the oscillation more pronounced whereas a decrease
smooths out the oscillations.
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Fig. 6. Nuclear NF-κB when the initial total NF-κB is 6 · 104 (original value, left), is
1.8 · 105 (three times the original value, centre), and 2 · 104 (one third of the original
value, right). The graphs show the average amount over 100 simulation runs.
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5.4 Sensitivity analysis
Sensitivity Analysis (SA) aims to identify the relationships between the inputs and out-
puts of mathematical models of biochemical networks [26]. A key goal is the production
of Sensitivity Indices (SI) that quantify these relationships, revealing which factors are
the most influential with respect to model outcome. The most widespread SA method is
“one-at-a-time” (OAT). Given a mathematical model with parameters set to those con-
sidered the most likely (also called nominal parameters), each parameter is perturbed
individually by a fixed value or by a percentage of its nominal value, and the change
in the output(s) of interest measured. OAT has seen widespread use in ODE models of
biochemical interactions.

In [14] this method has been extended to stochastic models. In this case, the output
at a given time is not just a value representing the amount of a species as in ODEs; it is,
instead, a set of possible values, obtained from independent stochastic simulations. The
SA extension has been obtained by substituting the difference between perturbed and
nominal output values employed in the traditional approach with a difference measure
based on the density distribution surface of the output, estimated with a suitable number
of simulations. An estimation of this density distance based on stochastic simulations
can be obtained using histogram distance, as originally presented in [27]. This stochas-
tic version of OAT therefore applies when one is interested in observing the change
in the distribution of the amount of a particular species at a given time. This method
was implemented in the version of the Dizzy simulator developed at the University of
Edinburgh [15].

Here we present a preliminary investigation concerning the isolation of the three pa-
rameters that have most impact on the various forms of NF-κB (nuclear or cytoplasmic,
free or in complex with other species). We consider an OAT approach with histogram
distance as described above and we apply it to our stochastic model. As a result of our
study, we obtain that the most influential parameters are the following:

– c1a, the rate of transcription of IκBα mRNA induced by NF-κB;
– c4a, the rate of translation of IκBα;
– c3a, the rate of degradation of IκBα mRNA.

In the following we focus on the the parameter c1a and we show what happens to
the behaviour of nuclear NF-κB when we change the value of c1a. Figure 7 reports the
results of stochastic simulation (Gillespie direct, average of 100 runs) when c1a = 0
and c1a is three times the original value. The first case corresponds to the case of A20
deficient cells. With respect to the wild-type cells (represented by our original model)
NF-κB accumulates in the nucleus and remains there throughout the TNF stimulation.
This is probably due to the fact that IKKa presents a constant level of activity different
from zero in the tail following the peak. In the second case, nuclear NF-κB shows
stronger oscillations and the final amount is lower than in the original wild-type cells.
These results are in agreement with the reported experimental data [5].

6 Conclusions

In this work we presented a Bio-PEPA model for the NF-κB signalling pathway. With
our model we were able to describe some features of the system, such as compartments
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Fig. 7. NF-κB when c1a = 2.5 · 10−6 (original value, left) c1a = 0 (A20 deficient cells,
centre), c1a = 3·2.5·10−6 (right). Gillespie direct algorithm with 100 runs is considered.

and the activation of NF-κB by an external stimulus. The former are represented by lo-
cations whereas the latter by means of temporal events. We validated our model against
the experimental data present in the literature [5]. Furthermore we defined a stochastic
version of the model in order to investigate the effect of fluctuations over the behaviour
of the system. Finally, sensitivity analysis was considered to isolate the most relevant
parameters of the model.

There is a vast literature of models describing NF-κB signalling pathway [3,4,5,6];
most of previous work involves ODE models. There are just a few applications of pro-
cess algebras for the modelling and the study of this pathway [28,29]. In [29] the path-
way previously reported in [3] is represented in BetaWB, a language based on Beta
binders [10]. The analysis is based on stochastic simulation. Note that in [3] the two
compartments are assumed to have the same size and they are not considered explicitly
in the BetaBW model but their size is just reflected in the derivation of the number of
molecules and stochastic rates. In [28] the authors defined a PEPA [30] model for the
pathway presented in [4], describing in detail the first part of the signalling cascade up
to the activation of NF-κB. The map from the PEPA model into the associated ODE
model is presented and ODE numerical integration results are shown.

A main feature of Bio-PEPA is that it is a intermediate formal representation of
biochemical systems, on which various kinds of analysis can be performed. Here we
focused just on deterministic simulation, stochastic simulation and sensitivity analysis.

Concerning sensitivity analysis, we considered a local approach, i.e. it focuses around
a specific point in the parameter space. This can still be informative, giving an idea of
the impact of parameter changes on the behaviour of the system. In the future, we plan
to apply some global methods in order to explore the full parameter space (or a mean-
ingful subset of it) and to quantify the relationships between different parameters.

Among the different mappings from Bio-PEPA to models for analysis, there is the
mapping to continuous time Markov chain (CTMC). In particular, it is possible to derive
a PRISM [31,32] model in order to verify some properties by model checking. Two
main problems for the use of model checking with our model are the dimension of the
state space (it is large) and the presence of temporal events. For the former problem, one
possibility is to apply some abstract-view for the CTMC in terms of concentration levels
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[33]. This approach is helpful for the reduction of the state space. The latter problem is
still open and we are looking for some approaches to handle it.
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A The Bio-PEPA Model for the NF-κB pathway

In this Appendix we report the full Bio-PEPA model of NF-κB pathway studied in this
paper. First, the set of locations is considered. Then the set of functional rates and the
set of parameters are reported. The name of each action type describes the function
of the associated reaction. The notation f MA(r) indicates that the kinetic law is mass-
action with constant rate r. After that, there is the definition of species components and
of the model component. Finally, the events describing entrainment are defined. Here
we do not report the set N with auxiliary information for species as this information
is not considered in our study. Note that species and parameters are given in terms of
concentration.

location nuc : kind = C, size = 3.33 · 10−13 l;
location cyt : kind = C, size = 1.65 · 10−12 l
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production IKKn = [kprod];
degradation IKKn = [fMA(kdeg)];
activation IKKn = [fMA(signal · k1)];
transformation IKKa into IKKi = [fMA(k3)];
transformation IKKa into IKKi by A20 = [fMA(signal · k2)];
a20 synthesis = [fMA(c4)];
a20 degradation = [fMA(c5)];
a20t transcription = [c2];
a20t transcription by NFkBn = [fMA(c1)];
a20t degradation = [fMA(c3)];
cgent transcription = [c2c];
cgent transcription by NFkBn = [fMA(c1c)];
cgent degradation = [fMA(c3c)];
association IkBa IKKa = [fMA(a2)];
dissociation IkBaIKKa = [fMA(t1)];
association IKKa IkBaNFkB = [fMA(a3)];
dissociation IKKaIkBaNkKB = [fMA(t2)];
association IkBa NFkB = [fMA(a1)];
association IkBa NFkBn = [fMA(a1n)];
dissociation IKKaIkBaNFkB = [fMA(c6a)];
transport IkBa cyt nucl = [fMA(i1a)];
transport IkBa nucl cyt = [fMA(e1a)];
transport IkBaNFkBn nucl cyt = [fMA(e2a)];
transport NFkB cyt nucl = [fMA(i1)];
ikBa synthesis = [fMA(c4a)];
ikBa degradation = [fMA(c5a)];
ikBat transcription = [c2a];
ikBat transcription by NFKBn = [fMA(c1a)];
ikBat degradation = [fMA(c3a)]
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kprod = 0.000025; kdeg = 0.000125; k1 = 0.0025; k3 = 0.0015; k2 = 0.1;
c1 = 5 · 10−7; c2 = 0; c3 = 0.0004; c4 = 0.5; c5 = 0.0003; t1 = 0.1; t2 = 0.1;
c1a = 5 · 10−7; c2a = 0; c3a = 0.0004; c4a = 0.5; c5a = 0.0001; c6a = 0.00002;
a1 = 0.5; a2 = 0.2; a3 = 1; a1n = 0.5; c1c = 5 · 10−7; c2c = 0; c3c = 0.0004;
i1a = 0.001; e1a = 0.0005; e2a = 0.01; i1 = 0.0025

IKKn@cyt
def
= (production IKKn, 1) ↑ + (degradation IKKn, 1) ↓ +

(activation IKKn, 1) ↓
IKKa@cyt

def
= (activation IKKn, 1) ↑ + (trans f ormation IKKa into IKKi, 1) ↓ +

(trans f ormation IKKa into IKKi by A20, 1) ↓ +
(degradation IKKa, 1) ↓ +
(association IkBa IKKa, 1) ↓ +
(dissociation IkBaIKKa, 1) ↑ + (association IKKa IkBaNFkB, 1) ↓ +
(dissociation IKKaIkBaNFkB, 1) ↑

IKKi@cyt
def
= (trans f ormation IKKa into IKKi, 1) ↑ +

(trans f ormation IKKa into IKKi byA20, 1) ↑ +
(degradation IKKi, 1) ↓

A20@cyt
def
= (trans f ormation IKKa into IKKi by A20, 1) � +

(a20 synthesis, 1) ↑ + (a20 degradation, 1) ↓
IκBα@cyt

def
= (IkBa synthesis, 1)↑ + (IkBa degradation, 1)↓ +

(association IkBa IKKa, 1) ↓ + (association IkBa NFkB, 1) ↓+
(transport IkBa cyt nucl, 1) ↓ + (transportIkBa nucl cyt, 1) ↑

NF-κB@cyt
def
= (dissociation IkBaNFkB, 1) ↑ + (association IkBa NFkB, 1)↓+

(dissociation IKKaIkBaNFkB, 1) ↑ +
(transport NFKB cyt nucl, 1) ↓

complex1 def
= (association IkBa NFkB, 1) ↑ + (dissociation IkBaNFkB, 1) ↓ +

(association IKKa IkBaNFkB, 1) ↓ +
(transport IkBaNFkBn nucl cyt, 1) ↑

complex2 def
= (association IkBa IKKa, 1) ↑ + (dissociation IkBaIKKa, 1) ↓

complex3 def
= (association IKKa IkBaNFkB, 1) ↑ +

(dissociation IKKaIkBaNFkB, 1) ↓
IκBα@nuc

def
= (association IkBan NFkBn, 1) ↓ +

(transport IkBa IkBa cyt nucl, 1) ↑ + (transport IkBa nucl cyt, 1) ↓
NF-κB@nuc

def
= (a20 transcription by NFkBn, 1) � +

(cgent transcription by NFkBn, 1) � +
(ikBat transcription by NFkBn, 1) � +
(association IkBa NFkBn, 1) ↓ +
(transport NFkB cyt nucl, 1) ↑

complex4 def
= (association IkBa NFkBn, 1) ↑ +

(transport IkBaNFKBn nucl cyt, 1) ↓
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A20t@cyt
def
= (a20 synthesis, 1) � + (a20t transcription, 1) ↑ +

(a20t transcription by NFkBn, 1) ↑ + (a20t degradation, 1)↓
IκBαt@cyt

def
= (ikBat transcription, 1) ↑ + (ikBat transcription by NFkBn, 1) ↑ +

(ikBat degradation, 1) ↓ + (ikBa synthesis, 1)�
Cgent@cyt

def
= (gent transcription, 1) ↑ + (cgent transcription by NFkBn, 1) ↓ +

(cgent degradation, 1) ↓

where the names complex1, complex2, complex3 and complex4 stand for IκBα |
NF-κB@cyt, IKKa | IκBα@cyt, IKKa | IκBα | NF-κB@cyt and IκBα | NF-κB@nuc,
respectively. The species components A20t, IκBαt and cgent are the mRNA transcripts
of the proteins A20, IκBα and cgen and are assumed in the cytoplasm as in the original
model.

IKKn@cyt[0] BC
∗

IKKa@cyt[0] BC
∗

IKKi@cyt[0] BC
∗

A20@cyt[0] BC
∗

IκBα@cyt[0] BC
∗

NF-κB@cyt[0] BC
∗

IκBα | NF-κB@cyt[0.06] BC
∗

IKKa | IκBα@cyt[0] BC
∗

IKKa | IκBα | NF-κB@cyt[0] BC
∗

IκBα@nuc[0] BC
∗

NF-κB@nuc[0] BC
∗

IκBα | NF-κB@nuc[0] BC
∗

A20t@cyt[0] BC
∗

IκBαt@cyt[0] BC
∗

Cgent@cyt[0]

Events = [(begin signal, time = T1, signal = 1, 0);
(end signal, time = T2, signal = 0, 0)]

In our case T1 = 1 and T2 = 7 (time expressed in hours).

Parameters for the stochastic model

The stochastic version of the model is obtained rescaling all the initial species con-
centrations by the factors nscale (species in the nucleus) and cscale (species in the
cytoplasm) and modifying the parameters in order to take the number of molecules into
account. The initial concentration of the cytoplasmic complex IκBα |NF-κB is therefore
0.06 · cscale = 60000 molecules and all the other species are zero.

Below we report how the parameters are rescaled; just the modified ones are shown.

kprod = 0.000025 · cscale = 25; k2 = 0.1/cscale = 1 · 10−7;
c1 = 5 · 10−7 · k = 2.5 · 10−6; c2 = 0 · k = 0;
c1a = 5 · 10−7 · k = 2.5 · 10−6; c2a = 0 · k = 0;
a1 = 0.5/cscale = 5 · 10−7; a2 = 0.2/cscale = 2 · 10−7;
a3 = 1/cscale = 1 · 10−7; a1n = 0.5/nscale = 2.5 · 10−6;
c1c = 5 · 10−7 · k = 2.5 · 10−6; c2c = 0 · k = 0;
e1a = 0.0005 · k = 0.0025; e2a = 0.01 · k = 0.05
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