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On Tuesday evening, March 10, 2009, we held an open problem discussion at the Dagstuhl-
Seminar on Computational Geometry. The problems span a range of topics, including fundamental
algorithms, discrete geometry, algebra, combinatorics, and optimization.

Problem 1 (Jack Snoeyink). Limited visibility polygons for mobile point agents: Consider a
scenario in which the behavior of each moving agent is affected by the behaviors of nearby agents
that they see. Each agent would like to have, not an output-sensitive algorithm for visibility, but an
output-bounded algorithm that will compute the visibility polygon until it becomes too cluttered.

Let P be a floorplan, which is a polygon with holes made up of n interior-disjoint line segments.
Let A = {a1,...an} be a set of mobile agents, represented by points in P. We say that the
description complexity of any region R is the number of line and circle segments needed to represent
RN P, plus the number of agents in RN A.

Denote the visibility polygon from p € P by V), the ball of radius r by B,(r). I'll drop most of
the p subscripts since all visibility in this paragraph will be from the chosen point or agent p. For
a bound K on description complexity, define the limit radius

rg = arg In>161 description complexity (V, N B(r)) > K.
/r'_

I’d like an algorithm that computes a region R of description complexity O(K) such that B(rg/2)N
Vp = RNV, preferably in O*(K), where the asterisk denotes that there may be a multiplicative
polylog(n)-factor, after preprocessing the floorplan, and possibly the agent positions, into an O*(n)-
space data structure.

This problem was suggested by Glenn Elliot at UNC Chapel Hill, who points out that many
current agent simulations depend on proximity and do not take visibility into account — thus, in
many demos you can see agents interacting across walls.

Problem 2 (Erik Demaine). Algorithmic 3D Dissection: Find a finite algorithm to dissect one
polyhedron into another with the same volume and Dehn invariant. A dissection is a carving of
the first polyhedron into finitely many polyhedral shapes and a rigid motion of these pieces so
that they union to the second polyhedron. Dehn proved in 1900 that having these two conditions
are necessary for there to be a dissection (answering Hilbert’s Third Problem), and Sydler proved
in 1965 that these conditions are also sufficient. Vladik Kreinovich [Geombinatorics 18(1):26-34,
2008] recently proved that there is a finite algorithm deciding the equality of two Dehn invariants.
But what about finding a dissection in that case?
This problem appears in “Hinged Dissections Exist” by Timothy G. Abbott, Zachary Abel,
David Charlton, Erik D. Demaine, Martin L. Demaine, and Scott D. Kominers. [SoCG’08; arXiv:0712.2094]
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Problem 3 (Giinter Rote). For 3D convex polytopes, we know the worst-case number of edge
sequences for geodesic paths is ©(n?). What can be said about the number of different face
sequences for geodesic paths on the surface of a convex polytope in 4D? Is it polynomial? Is it
polynomial for a fixed source point? (conjectured by Miller and Pak)

Problem 4 (Giinter Rote). Given n red and blue points. Perform least-squares matching, while
rotating the blue points. How many different optimal assignments are there? Is there a polynomial
bound? (The optimal assignment is unchanged under translations and scalings. With rotation,
the problem can be transformed into a parametric assignment problem with costs of the form
cij = a;j +t-bi;, t € R. Carstensen [1] has shown that for a general parametric problem of this
type, there can be a super-polynomial number of different optimal solutions.)

Problem 5 (Christian Knauer). Klee’s measure problem.
Depth of an arrangement of n hyperplane sin R?¢ (d is not fixed): Is it NP-hard to determine?
(Sariel mentions that this may be known in the learning theory community.)

Problem 6 (Mohammad Abam). Given a set of disjoint disks in the plane, can one find a t-
spanner with O(n) edges and one point per disk that remains a t-spanner for the points no matter
where they lie within their respective disks? (It is possible if the disks are all of the same radius
and for disks with arbitrary sizes the best known result is a t-spanner with O(nlogn) edges.)

Problem 7 (Mohammad Abam). Perform halfplane range reporting in the kinetic setting (for
moving points in the plane) with polylogarithmic event-handling time and few events (perhaps
O(n?) events and O(n?) events would be perfect) such that at current time a half-plane query can
be answered in time O(logn + k)?

Problem 8 (Mohammad Abam). Is it possible to build a BSP of complexity O(n?) for n disjoint
convex objects of arbitrary sizes in 3D? (O(n?) is known.)

Problem 9 (Mohammad Abam). Given n points in %2, can one find a subset of size Q(n) that
has a bounded degree triangulation? More precisely, for a given constant ¢, what is the minimum
value t such that any set of n points has a subset of ¢ points such that it has a triangulation of
maximum degree c?

Problem 10 (Jeff Erickson). Acute triangulations in 2D (can do), 3D (sometimes, but for exactly
what values of N7), 4D (open), 5D (known to be impossible).

Problem 11 (Joe Mitchell). (A problem given as homework in my CG class, 10 points extra
credit.) Given a planar polygonal domain P (with holes), how complex is it to decide if P has
a triangulation whose graph is 3-colorable? Of course, any triangulation of P can be (vertex)
4-colored, by planarity. There are examples (with as few as 7 vertices) for which no triangulation
of P can be 3-colored. (Finding a smallest such example was the main exercise in the homework
problem; showing hardness was extra credit.)

Follow-up: This problem is indeed NP-hard, from 3-colorability of planar graphs (thanks to
Oswin Aichholzer and Giinter Rote, who each get 10 points of extra credit!).

Problem 12 (Sariel Har-Peled). Given a set L of n lines in 2, and an € > 0. Is there an e-net,
S C L, for L of size |S| = O(1/€)? (so that any vertical segment that intersects en lines of L must
intersect at least one line of )



Problem 13 (Joe Mitchell). Given an n-vertex nonconvex polyhedron P in 3-space, how effi-
ciently can one find a longest line segment within P?

Problem 14 (Giinter Rote). Given a self-intersecting closed curve in the plane, how fast can
one decide whether it is the vertical projection of the boundary of a disk embedded in space for
which the same side is always the “upper side” (facing the +z coordinate direction)? (Shown to
be NP-hard when the surface is allowed to have arbitrary topology, see Eppstein and Mumford [2].
note=arxiv:0806.1724,) The restriction to a disk amounts to requiring that the total net turning
angle of the curve is 27.)

Problem 15 (Jean-Daniel Boissonnat). (Contributed by email.) The problem is motivated
by the construction of Delaunay triangulations in ®¢. Due to memory storage limitation, we only
represent the 1-skeleton of the triangulation (edges and vertices). Two vertices are called neighbors
if they belong to a Delaunay edge. The d-simplices are reconstructed on-line when needed (see our
paper to be presented at SoCG 2009).

A basic operation is then the following. Given a d-simplex ¢, and a vertex p € t, we want to
find the vertex p’ that defines the d-simplex (p'f) adjacent to t through the face f =t \ {p}. Since
the edges of the triangulation are stored, the problem reduces to intersecting the lists of neighbors
of the vertices of f (and deciding which the true one). The problem is: what is the size W of this
intersection (i.e. the vertices that are neighbors of all vertices of f)?

We have observed experimentally that, for uniformly distributed points, W grows quite slowly,
much slower than the number M of neighbors of a vertex. For example, for d = 5, M = 73,
W =6.5,d =06, M =164.6, W = 11.6 on average.
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