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Abstract

We develop algorithms to compute edge sequences, Voronoi diagrams, shortest
path maps, the Fréchet distance, and the diameter for a polyhedral surface. Dis-
tances on the surface are measured either by the length of a Euclidean shortest path
or by link distance.
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1. Introduction

Two questions are invariably encountered when dealing with shortest path prob-
lems. The first question is how to represent the combinatorial structure of a shortest
path. In the plane with polygonal obstacles, a shortest path can only turn at obsta-
cle vertices, so a shortest path can be combinatorially described as a sequence of
obstacle vertices [28]. On a polyhedral surface, a shortest path need not turn at
vertices [35], so a path is often described combinatorially by an edge sequence
that represents the sequence of edges encountered by the path [1]. A benefit of
representing shortest paths by edge sequences is that a series of unfolding rotations
can be used to reduce the problem of computing a shortest path on a polyhedral
surface into a two-dimensional problem. This process is described more fully in
section 3.

The second commonly encountered shortest path question is how to compute
shortest paths in a problem space with M vertices. The following preprocessing
schemes compute combinatorial representations of all possible shortest paths. In a
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simple polygon, Guibas et al. [28] give an optimal Θ(M) preprocessing scheme
that permits a shortest path to be computed between any two points in O(logM)
time. In the plane with polygonal obstacles, Chiang and Mitchell [16] support
shortest path queries between any two points after O(M11) preprocessing. On a
convex polyhedral surface, Mount [37] shows that Θ(M4) combinatorially distinct
shortest path edge sequences exist, and Schevon and O’Rourke [40] show that only
Θ(M3) of these edge sequences are maximal (i.e., they cannot be extended at either
end without creating a suboptimal path). Agarwal et al. [1] use these properties
to compute the Θ(M4) shortest path edge sequences in O(M62α(M) logM) time
and the diameter in O(M8 logM) time, where α(M) is the inverse Ackermann
function. The diameter is the largest shortest path distance between any two points
on the surface. Despite recent efforts by Chandru et al. [13] to improve the run-
times of Agarwal et al. [1], these runtimes have not improved since 1997. Our
main result improves the edge sequence and diameter algorithms of [1] by a linear
factor. We achieve this improvement by combining the star unfolding technique
of [1] with the kinetic Voronoi diagram structure of Albers et al. [3]. A kinetic
Voronoi diagram allows its defining point sites to move.

A popular alternative to precomputing all combinatorial shortest paths is to
precompute a shortest path map structure SPM(s) that describes all shortest paths
from a fixed source s. In the plane with polygonal obstacles, Hershberger and
Suri [30] use the continuous Dijkstra paradigm to support all queries from a fixed
source after Θ(M logM) preprocessing. On a (possibly non-convex) polyhedral
surface, Mitchell, Mount, and Papadimitriou [35] use the continuous Dijkstra
paradigm to construct SPM(s) by propagating a wavefront over a polyhedral sur-
face in O(M2 logM) time and O(M2) space. Chen and Han [15] solve the same
polyhedral surface problem in O(M2) time and space by combining unfolding and
Voronoi diagram techniques. Schreiber and Sharir [41] use the continuous Dijk-
stra paradigm to construct an implicit representation of a shortest path map for a
convex polyhedral surface in O(M logM) time and space.

Another popular variation on shortest path problems is to consider different
methods of measuring the length of a shortest path. For example, suppose the
“length” of a path is measured not by its Euclidean distance but by the number of
edges on the path. The link distance [7, 25, 32, 36, 42] between two points is
the minimum number of edges necessary to connect the points with a polygonal
path. In a simple polygon, Suri [42] shows how to construct a shortest path map
that can answer queries from a fixed source in Θ(M) time and space. Both Arkin,
Mitchell, and Suri [7] and Efrat et al. [25] give Θ(M3) time and space algorithms
that support queries between any two points in a simple polygon. In the plane with
polygonal obstacles, Mitchell, Rote, and Woeginger [36] support queries from a
fixed source after Θ(M4) time and space preprocessing. Surprisingly, this paper
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appears to be the first to consider link distance problems on a polyhedral surface.
One reason that shortest path and link distance problems are of crucial impor-

tance is that they can serve as building blocks for higher level problems such as
the Fréchet distance. The Fréchet distance measures the similarity of continuous
shapes [5, 8, 11, 26, 39] by calculating a distance-based value that represents
the similarity of the shapes. Although the traditional Fréchet distance operates in
a space that is free of obstacles, recent works have realized the potential of the
Fréchet distance in domains with obstacles. Efrat et al. [26] apply the Fréchet
distance to create constrained morphs. Buchin et al. [11] compute the Fréchet dis-
tance between simple polygons. Chambers et al. [12] explore a homotopic vari-
ation of the Fréchet distance. Cook and Wenk [18] compute the Fréchet distance
inside a simple polygon. Maheshwari and Yi [33] explore the Fréchet distance on
a convex polyhedral surface.

1.1. Notation
Throughout this paper, M is the total complexity of a polyhedral surface and

any objects such as points, line segments, and polygonal curves that lie on the sur-
face. A shortest path on a polyhedral surface between points s and t is denoted by
π(s, t), and d(s, t) signifies the Euclidean length of π(s, t). The notations πL(s, t)
and dL(s, t) represent analogous concepts for link distance. A convex polyhe-
dral surface is denoted by P , and a non-convex polyhedral surface is signified by
PN . The extremely slowly growing inverse Ackermann function is represented by
α(M). The line segment with endpoints a and b is denoted by ab.

1.2. Our Euclidean Shortest Path Results
Table 1 summarizes our Euclidean shortest path results. For a convex polyhe-

dral surface, Agarwal et al. [1] give algorithms to compute the diameter and either
the exact set or a superset of all Θ(M4) shortest path edge sequences. All three
of these algorithms are improved by a linear factor in sections 3.1 and 3.2. Our
improvement takes advantage of small combinatorial changes between adjacent
events and combines star unfolding and kinetic Voronoi diagram techniques.

Section 3.3 contains an algorithm to compute the Fréchet distance between
polygonal curves on a convex polyhedral surface, and this algorithm is a linear
factor faster than the algorithm of Maheshwari and Yi [33]. In addition, section
3.3 contains the first algorithm to compute the Fréchet distance between polygonal
curves on a non-convex polyhedral surface. Our motivation for studying the Fréchet
distance on a polyhedral surface is that teaming up two people for safety reasons
is common practice in many real-life situations, ranging from scouts in summer
camp, to fire fighters and police officers, and even to astronauts exploring the moon.
In all of these applications, two team members need to coordinate their movement
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Time Space

Star Unfolding PN O(M4) O(M4)

maintained over all edges

Kinetic Voronoi Diagram P O(M52α(M) logM) O(M52α(M))

maintained over all edges

Edge Sequences (superset) P O(M5) O(M5)

Edge Sequences (exact) P O(M52α(M) logM) O(M42α(M))

Diameter P O(M7 logM) O(M4)

Fréchet Distance P O(M6 log2M) O(M2)

PN O(M7 log2M), Ω(M4) O(M3)

SPM(ab,P) P O(M42α(M) logM) O(M42α(M))

SPM(ab,PN ) PN O(M9+κ) O(M9)

Table 1: Our Euclidean shortest path results. P (resp. PN ) indicates a convex (resp. non-convex)
polyhedral surface. ab is a line segment with endpoints a and b. The shortest path maps SPM(ab,P)
and SPM(ab,PN ) support queries from any point s ∈ ab to any point on the surface. The Fréchet
distance lower bound applies to the complexity of the free space diagram. κ is any constant greater
than zero.

in order to stay within "walking distance" so that fast assistance can be offered in
case of an emergency. The Fréchet distance is an ideal model for this scenario.

Section 3.3 also demonstrates that a subset of the star unfolding called the
“core” can overlap itself for a non-convex polyhedral surface. Section 3.4 describes
shortest path maps that support queries from any point on a line segment.

1.3. Our Link Distance Results

Link distance is fundamentally different from Euclidean distance and has a
wealth of applications including robotic motion, wireless communications, geo-
graphic information systems, VLSI, computer vision, solid modeling, image pro-
cessing, and even water pipe placement. These applications are naturally modeled
by link distance because turns are costly while straight line movements are inex-
pensive.

Table 2 summarizes all of our link distance results on a polyhedral surface.
Section 4.1 describes algorithms to compute link-based shortest path maps, and
these structures are used to compute link-based diameters and Voronoi diagrams.
Section 4.2 describes link-based algorithms for the Hausdorff distance and Fréchet
distance on a polyhedral surface. Surprisingly, one of our Fréchet distance results
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Time Space

SPM(ab, C) C Θ(M) Θ(M)

SPM(s, N ), SPM(mins∈ab , N ) N* Θ(M4) Θ(M4)

SPM(ab,cd) N O(M6λ6(M)), Ω(M4) O(M7)

Link-Based Diameter C O(M2) O(M)

N O(M
19
3 log3.11M) O(M3)

Voronoi Diagram C Θ(M) Θ(M)

N O(M6), Ω(M4) O(M6)

Hausdorff Distance C O(M logM) O(M)

for points N O(M
10
3 log3.11M) O(M2)

Hausdorff Distance C O(M logM) O(M)

for line segments N* O(M4α(M) log2M) O(M3)

Fréchet Distance C O(M2), Ω(M2) O(M2)

N* O(M9 logM), Ω(M6) O(M4)

Table 2: Our link distance results. C is a convex subdivision of a polyhedral surface such that no
two adjacent faces are coplanar, andN is an arbitrary polyhedral surface (see section 4). The shortest
path map SPM(ab, C) supports dL(s, t), πL(s, t) queries from any point s ∈ ab ∈ C to any point
t ∈ C, SPM(s, N ) supports dL(s, t), πL(s, t) queries from a fixed source point s to any point t ∈
N , SPM(mins∈ab , N ) supports mins∈ab dL(s, t) and mins∈ab πL(s, t) queries, and SPM(ab,cd)
supports dL(s, t), πL(s, t) queries between any points s ∈ ab ∈ N and t ∈ cd ∈ N . The Fréchet
distance lower bounds apply to the complexity of the free space diagram. An asterisk * indicates
that, in addition to the exact runtimes that are shown, we also give approximation algorithms.

can be computed a logarithmic factor faster than the traditional Fréchet distance in
the plane [5].

2. Preliminaries

A polyhedral surface is a “connected union of a finite number of polygonal
faces, with any two polygons intersecting in a common edge, a common vertex,
or not at all,” and each edge belonging to at most two polygons [34]. A Voronoi
diagram [10, 38] of M sites is a subdivision of a space such as the plane into
maximal regions such that all points within a given region have the same nearest
neighbor site with respect to some distance measure. A shortest path map is also
a subdivision of a space into maximal regions. A traditional shortest path map
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SPM(s) [34] is defined from a fixed source s such that all points within a region
have the same combinatorial shortest path to s.

The Hausdorff distance [5, 6] is a similarity metric commonly used to com-
pare sets of points or sets of higher-dimensional objects such as line segments or
triangles. Since the Hausdorff distance relies heavily on nearest neighbor distance
calculations, it is often computed with a Voronoi diagram. The directed Hausdorff
distance is δ̃H(A,B) = supa∈A infb∈B d(a, b), where A and B are compact sets
and d is a distance metric for points. The (undirected) Hausdorff distance is the
larger of the two directed distances: δH(A,B) =max(δ̃H(A,B), δ̃H(B,A)).

The Fréchet distance [5] is a similarity metric for continuous shapes that is
defined for two polygonal curves A,B : [0, 1]→ Rd as

δF (A,B) = inf
α,β:[0,1]→[0,1]

sup
t∈[0,1]

d( A(α(t)), B(β(t)) )

where α and β range over continuous non-decreasing reparameterizations and d is
a distance metric for points. For a given constant ε ≥ 0, free space is {(s, t) | s ∈
A, t ∈ B, d(s, t) ≤ ε}. A cell is the parameter space defined by two line segments
ab ∈ A and cd ∈ B, and the free space inside the cell consists of all points
{(s, t) | s ∈ ab, t ∈ cd, d(s, t) ≤ ε}.

Alt and Godau’s [5] Fréchet decision problem decides whether the Fréchet
distance δF (A,B) ≤ ε for some constant ε ≥ 0. To make this decision, they
build a free space diagram which measures the distance between all pairs of points
s ∈ A and t ∈ B. Dynamic programming is then used to check for the existence
of a monotone path through the free space. Such a monotone path only permits
non-decreasing reparameterizations. The Fréchet optimization problem [5] returns
the smallest value of ε such that the decision problem returns true, and this optimal
value of ε is the Fréchet distance.

3. Shortest Path Problems on a Polyhedral Surface

This section contains all of our Euclidean shortest path results on a polyhedral
surface. Sections 3.1 and 3.2 describe algorithms that compute shortest path edge
sequences and the diameter of a convex polyhedral surface. These results improve
algorithms of Agarwal et al. [1] by a linear factor. Sections 3.3 and 3.4 contain
algorithms to compute the Fréchet distance and shortest path maps.

3.1. Shortest Path Edge Sequences
This section contains superset and exact algorithms to compute the Θ(M4)

shortest path edge sequences on a convex polyhedral surface P . Both of these
algorithms improve results of Agarwal et al. [1] by a linear factor.
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Figure 1: (a) A convex polyhedral surface P . (b) The star unfolding of P is created by cutting along
the shortest paths from s to every vertex v1, ..., v20 of P . The source point s has an image si in the
star unfolding for each vertex vi. The heavily-shaded core of P is a simple polygon defined by the
closed polygonal equator through the points v1, ..., v20, v1 [1, 15].

Let v1, ..., vM be the vertices of P , and let Π = {π(s, v1), ..., π(s, vM )} be
an angularly ordered set of non-crossing shortest paths from a source point s ∈ P
to each vertex vj ∈ P . The star unfolding S is a simple polygon [9] defined by
cutting P along each of the shortest paths in Π and unfolding the resulting shape
into the plane. Since the source point s touches all of the M cuts, s ∈ P maps
to M image points s1, ..., sM on the (two-dimensional) boundary of the unfolded
simple polygon S (see Figures 1 and 3).

The equator [15] in the star unfolding is the closed polygonal curve through
the points v1, ..., vM , v1. The region inside the equator contains no source image
and is called the core [23].1 The regions outside the core each contain a source
image and are collectively referred to as the anti-core [23]. A core edge is an
image of an edge of P that was not cut during the unfolding process. Each of the
O(M) core edges has both of its endpoints at vertices and is entirely contained in
the core. Each of the Θ(M2) anti-core edges is an image of an edge of P that was
cut during the unfolding process (see Figure 1b).

The star unfolding of s can be used to compute a shortest path π(s, t) for points
s, t ∈ P as follows. The shortest path π(s, t) can always be represented by a
two-dimensional shortest path in the star unfolding that originates from one of the
source images s1, ..., sM and terminates at the image of t. If the image of t lies
in the anti-core region containing si, then the two-dimensional shortest path in the
star unfolding from si to the image of t is optimal. By contrast, if the image of

1The core has also been referred to as the kernel or the antarctic in [1, 15]. Note that neither the
star unfolding nor its core are necessarily star-shaped [1].
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t lies in the core, then the nearest source image can be determined with Voronoi
diagram techniques, and the two-dimensional shortest path in the star unfolding
from this nearest source image to the image of t is optimal. This means that it is
easier to determine a shortest path when t maps to an anti-core region than when t
maps to the core.

Agarwal et al. [1] partition the M edges of the convex polyhedral surface
P into O(M3) line segment edgelets such that all source points on an edgelet
can be associated with the same combinatorial star unfolding. These edgelets are
constructed in O(M3 logM) time by computing a shortest path between each pair
of vertices on P and intersecting these O(M2) shortest paths with each of the M
edges of P [1]. Agarwal et al. [1] compute a star unfolding for each edgelet and
use these structures to construct an O(M6) superset of the Θ(M4) shortest path
edge sequences for P in O(M6) time and space [1]. In addition, Agarwal et al.
[1] show how to compute the exact set of Θ(M4) shortest path edge sequences in
O(M62α(M) logM) time.

Although we have previously mentioned the star unfolding only for a convex
polyhedral surface P , the concept generalizes to a non-convex polyhedral surface
PN because the star unfolding can still be defined by an angularly ordered set
of non-crossing shortest path cuts from the source to every vertex [15, 35]. In
addition, there are still O(M3) edgelets on PN because a shortest path between
each pair of vertices can intersect each edge at most once.

We show how to maintain a combinatorial star unfolding in O(M4) total time
and space as a source point varies continuously over all O(M3) edgelets on a
possibly non-convex polyhedral surface PN . Our approach takes advantage of
small combinatorial changes between adjacent edgelets and achieves a linear factor
improvement over the approach [1] of computing a separate star unfolding for each
edgelet.

Theorem 1. A star unfolding can be maintained as a source point s varies con-
tinuously over all M edges of a (possibly non-convex) polyhedral surface PN in
O(M4) time and space.

Proof. Let Π = {π(s, v1), ..., π(s, vM )} be an angularly ordered set of non-crossing
shortest path edge sequences from a source point s ∈ P to each vertex vj ∈ P .
Since a star unfolding is defined combinatorially by Π, we first maintain Π as s
varies continuously over all M edges of PN . To do this, we compute a star unfold-
ing for each vertex vj ∈ PN in O(M3) total time and space [15], and we compute
O(M3) edgelets in O(M3 logM) time and space [1]. As s varies continuously
over all edges, a shortest path π(s, vj) ∈ Π can only change combinatorially when
s touches one of theO(M3) edgelet endpoints. Each edgelet endpoint is defined by
an edge of a shortest path map SPM(vj) and consequently identifies which shortest
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path π(s, vj) changes at that endpoint. The new path π(s, vj) can be looked up
using the precomputed star unfolding for vj and substituted for the old path in Π in
O(M) time. Thus, Π can be maintained over all edgelets in O(M ·M3) total time.

Each change to Π requires removing and adding a constant number of O(M)
complexity anti-core regions from the star unfolding S and possibly updating all
O(M) core edges in S.As s varies continuously in the interior of an edgelet, each
source image is parameterized along a line segment in the star unfolding, and the
remaining vertices in the star unfolding are fixed [1]. See Figures 3a and 3b. Thus,
O(M · M3) time and space is sufficient to maintain S combinatorially over all
edgelets.

The below lemma computes a superset of the shortest path edge sequences on
P in O(M5) time and space. Note that we do not attempt to compute shortest path
edge sequences on a non-convex polyhedral surface PN because Mount [37] has
shown that there can be exponentially many shortest path edge sequences on PN .

Theorem 2. A superset of the Θ(M4) shortest path edge sequences for a convex
polyhedral surface P with M vertices can be constructed in O(M5) time and
space.

Proof. Each edgelet defines a star unfolding with source images s1, ..., sM . For
each si, construct an edge sequence from si to each of the O(M) anti-core edges
in the anti-core region containing si and to each of the O(M) core edges. This
yields O(M2) edge sequences per edgelet, and O(M5) edge sequences over all
edgelets. The result is the desired superset because only core edges have shortest
path edge sequences to multiple sites, and this approach considers all possibilities.
These edge sequences can be stored withO(M5) space in the traditional prefix tree
structure of [1].

The exact set of shortest path edge sequences for each combinatorial star un-
folding can be determined with a kinetic Voronoi diagram that allows its defining
point sites to move. In our case, the moving sites are the source images s1, ..., sM ,
and a result of Agarwal et al. [1] ensures that each source image is parameter-
ized along a line segment as a source point varies continuously over an edgelet.
Albers et al. [3] show that for point sites moving along line segments at constant
speeds, each pair of sites defines λ4(M) = O(M2α(M)) Voronoi events. They
also show how to maintain a kinetic Voronoi diagram in O(logM) time per event
with a sorted event queue.

Theorem 3. A kinetic Voronoi diagram of source images s1, ..., sM can be main-
tained in O(M42α(M) logM) time and O(M42α(M)) space as a source point
varies continuously over one edge e of a convex polyhedral surface P .
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Proof. A kinetic Voronoi diagram for the first edgelet on e definesO(M2·M2α(M))
events [3] due to the linear motion of O(M2) pairs of source images in the star
unfolding. Each of the O(M2) subsequent edgelets on e can be handled by re-
moving one source image site and adding one new source image site. All other
sites continue to be parameterized along the same line segments as in the previ-
ous edgelet. Thus, each of these O(M2) edgelets contributes M − 1 new pairs of
sites and O(M ·M2α(M)) new events to the event queue. Handling each event in
O(logM) time and O(1) space as in [3] yields the stated runtime.

We construct the exact set of shortest path edge sequences as follows. For the
moment, fix an edgelet α and a core vertex vi ∈ S such that vi touches the anti-core
region that contains the source image si. Maintaining a kinetic Voronoi diagram
over all points s ∈ α yields a two-dimensional parameterized Voronoi cell ϕi for
the source image si. Due to the properties of Voronoi diagrams, the unique edge
sequence in the star unfolding from si to a core edge e represents a shortest path
if and only if e intersects ϕi for some s ∈ α. This follows because si must be a
nearest source image to some point on e in order to define a shortest path to e.

One way to decide whether a core edge e ever intersects a parameterized ki-
netic Voronoi cell ϕi is to represent each vertex of ϕi as an algebraic curve and
to exhaustively test whether each algebraic curve intersects e. However, this ap-
proach ultimately requires testing whether each algebraic curve intersects each of
the O(M) (fixed) core edges. To improve this technique from O(M) time per al-
gebraic curve to O(logM) time per algebraic curve, Agarwal et al. [1] combine
triangulation and upper envelope techniques to ensure that each algebraic curve
defines at most two maximal shortest path edge sequences. A modified version of
their approach is described below.

Agarwal et al. [1] triangulate the region of the core that is directly visible to
core vertex vi such that each triangle ∆ has apex vi. The dual graphD of the (fixed)
core for the edgelet α is a tree [1] that defines candidate edge sequences. Let the
portion of D inside a fixed triangle ∆ be the subtree D∆. By [1], the maximum
degree of any vertex in D∆ is three, and there is at most one degree three vertex.
This follows for two reasons (see Figure 2). First, a triangle ∆ cannot contain a
core vertex in its interior, so each core edge is a chord of ∆. Second, a degree three
vertex must have three core edges defining its face, and this happens at most once.

Agarwal et al. [1] compute each subtree D∆ in O(M) time. In the following
lemma, we improve this process to O(logM) time.

Lemma 1. A subtree D∆ can be computed in O(logM) time.

Proof. Assume ∆ has vertices vi, vj , vk (see Figure 2). Since D∆ has at most one
degree three vertex and the maximum degree of any vertex in D∆ is three, D∆
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vi

vk

vj

d3

Figure 2: The subtree D∆ has at most one degree three vertex d3. Core edges are dashed.

consists of one path from the face containing vi to the face containing vj and a
second path from the face containing vi to the face containing vk (see Figure 2).
Point location in the core can identify the endpoints of these two paths in the tree
D in O(logM) time, and these paths define a representation of D∆.

After computing the subtree D∆ for each triangle ∆, Agarwal et al. [1] use
polar coordinates centered at core vertex vi to compute an upper envelope µ of
the algebraic curves defining the kinetic Voronoi cell ϕi. This upper envelope is
then refined into a set of curve segments such that each curve segment is contained
in some triangle ∆. For each curve segment, a binary search is performed on the
two paths in D∆. The deepest edge on each of these two paths that is intersected
by a curve segment defines a maximal shortest path edge sequence. Repeating
this technique for all core vertices defined by all edgelets yields Θ(M3) maximal
shortest path edge sequences. The set of all prefixes of these maximal sequences
defines all Θ(M4) shortest path edge sequences of P [1].

Theorem 4. The exact set of Θ(M4) shortest path edge sequences for a convex
polyhedral surface P with M vertices can be constructed in O(M52α(M) logM)
time and O(M42α(M)) space.

Proof. Let ni be the total number of parameterized Voronoi vertices over all edgelets,
and let t∆ be the time to process each triangle ∆. There are O(M5) possible tri-
angles ∆ because each of the O(M3) edgelets defines O(M) core vertices, and
each of these vertices defines O(M) triangles. The technique of Agarwal et al. [1]
requires O(ni logM + M5t∆) time. Since they assume ni ∈ O(M62α(M)) and
t∆ ∈ O(M), this yields O(M62α(M) logM) time.

We improve this runtime as follows. By Theorem 3, ni ∈ O(M52α(M)) over
all O(M) edges of P . By Lemma 1, t∆ ∈ O(logM) time. Thus, we achieve
O(M52α(M) logM) total time. The space bound follows by storing the kinetic
Voronoi diagram for only one edge at a time.
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3.2. Diameter

The diameter of a polyhedral surface is the largest shortest path distance be-
tween any pair of points on the surface. Agarwal et al. [1] have previously shown
how to compute the diameter for a convex polyhedral surface in O(M8 logM)
time. They compute shortest paths between all pairs of vertices, and these shortest
paths induce an arrangement of O(M4) ridge-free regions on the surface. A bene-
fit of this construction is that all source points in a ridge-free region have the same
combinatorial star unfolding. For each ridge-free region, a parameterized lower
envelope with O(M4) vertices can be built that corresponds to a kinetic Voronoi
diagram [1]. This structure is parameterized to allow the source point to vary
continuously over an entire ridge-free region. The below approach computes the
diameter a linear factor faster than [1] by taking advantage of small combinatorial
changes between adjacent ridge-free regions.

Theorem 5. The diameter of a convex polyhedral surface P with M vertices can
be constructed in O(M7 logM) time and O(M4) space.

Proof. Pick an initial ridge-free region and construct its kinetic Voronoi diagram
in O(M4) time as in [1]. Process the remaining ridge free regions in depth-first
order so that the current ridge-free region rc is always adjacent to a previously
processed region rp. This ordering takes advantage of small combinatorial changes
between adjacent ridge-free regions. In particular, the star unfolding for rc can
be obtained from the star unfolding for rp by removing and inserting one source
image site. This implies that the kinetic Voronoi diagram for rc involves only
M − 1 pairs of sites that are not present in rp. Each of these M − 1 pairs defines
O(M2) Voronoi vertices by [1], so each ridge-free region rc defines O(M3) new
Voronoi vertices. This yields a total of O(M7) parameterized Voronoi vertices
over all O(M4) ridge-free regions. Each parameterized Voronoi vertex v can be
associated with a function f(v) that represents the distance from v to its defining
source image, and the maximum value for each f(v) can be determined [1] in
O(logM) time. The diameter of P is the largest distance defined by any of these
functions.

3.3. Fréchet Distance

This section contains algorithms to compute the Fréchet distance on both con-
vex and non-convex polyhedral surfaces. Let δC(A,B) (resp. δN (A,B)) denote
the Fréchet distance between polygonal curves A and B on a convex (resp. non-
convex) polyhedral surface. We define M as the number of vertices in a triangu-
lated version of the surface such that every edge of A and B appears as a set of
edges in the triangulation.
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Maheshwari and Yi [33] have previously shown how to compute δC(A,B)
in O(M7 logM) time by enumerating all edge sequences. However, their ap-
proach relies on [31] whose key claim “has yet to be convincingly established”
[1]. By contrast, we use the star unfolding from section 3.1 to compute δC(A,B)
in O(M6 log2M) time and O(M2) space. We build a free space diagram [5] to
measure the distance d(s, t) between all pairs of points s ∈ A and t ∈ B. Each
cell in our free space diagram is the parameter space defined by an edgelet α ∈ A
and either a core edge or an anti-core edge in the combinatorial star unfolding for
α. A cell is always interior-disjoint from all other cells.

To compute δC(A,B), we determine for a given constant ε ≥ 0 all points
{(s, t) | s ∈ A, t ∈ B, d(s, t) ≤ ε} that define the free space [5]. The star
unfolding S maps a fixed source point s ∈ A to a set s1, ..., sM of source image
points in S and maps the polygonal curveB to a set β1, ..., βO(M2) of core and anti-
core edges in S. Since s maps to multiple images in S, free space is defined by the
union of a set of disks d1, ..., dM , where each disk di has radius ε and is centered
at si (see Figure 3). This follows by [9, 13] because all L2 distances in the star
unfolding for a convex polyhedral surface are at least as large as the shortest path
between those two points (even when the L2 path does not stay inside the boundary
of the star unfolding). As the source point s varies continuously over an edgelet
α ∈ A, the core is fixed and each si is parameterized along a line segment li in the
star unfolding [1]. This is illustrated in Figures 3a and 3b. The below δC(A,B)
decision problem decides whether the Fréchet distance between polygonal curves
A and B on a convex polyhedral surface is at most some given constant ε ≥ 0.

Theorem 6. The δC(A,B) decision problem can be computed in O(M6 logM)
time and O(M2) space.

Proof. Partition the polygonal curve A into O(M3) edgelets and maintain a star
unfolding for these edgelets in O(M4) total time by Theorem 1. Let β be an anti-
core edge that lies in the anti-core region containing the source image si. The
anti-core edge β changes length inside its triangular anti-core region as s varies
continuously over an edgelet α ∈ A (see Figure 3b). In the free space diagram, this
motion defines a constant complexity algebraic cellC that represents the parameter
space for the edgelet α ∈ A and the anti-core edge β ∈ B. Free space in the cell
C is defined by the intersection of C with the ellipse Eli,β = {(s, t) | s ∈ li, t ∈
β, ||s− t|| ≤ ε} [5]. This follows because the anti-core edge β is always at least
as close to the source image si as to any other source image sj 6=i [13]. Since the
free space defined by each anti-core edge has constant complexity and is interior-
disjoint from all other cells, the O(M5) anti-core edges contribute O(M5) total
complexity to the free space diagram.
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Figure 3: (a) A source point s on a polyhedral banana with vertices v1, ..., v5 defines a star unfolding
S with source images s1, ..., s5. (b) As s varies continuously along an edgelet α, the darkly-shaded
core of S is fixed while the images of s vary along line segments l1, ..., l5 [1]. Although the lightly-
shaded triangles in the anti-core vary continuously with respect to s ∈ α, their movement does not
change the combinatorial structure of S. (c) Inside the core, there are O(M) images of the edges
of P (e.g., βj) that touch two vertices of P . Inside the anti-core, there are O(M2) images of the
edges of P (e.g., βi) that were cut during the unfolding process. Free space for edges in the anti-core
is completely described by a single disk (e.g., the disk centered on l5 is always closest to βi). Free
space for edges in the core (e.g., βj) is defined by the union of all O(M) disks.

The O(M) core edges have fixed positions as s varies continuously over an
edgelet α, and the free space for any core edge γ is defined by the union of the M
ellipses El1,γ , ..., ElM ,γ (see Figure 3c). The union of these ellipses has O(M2)
complexity and can be computed for each core edge in O(M22α(M)) time [2].
Thus, the free space defined by all O(M) core edges has O(M3) total complex-
ity per edgelet and O(M6) complexity over all edgelets. Reachability informa-
tion can be propagated through the free space diagram via plane sweep [19] in
O(M6 logM) time. By storing one star unfolding, one cell, and one vertical line
segment of the free space diagram at a time, O(M2) space is sufficient.2 The de-
cision problem is affirmative if and only if the upper right corner of the free space
diagram is reachable.

For a non-convex polyhedral surface, the star unfolding can overlap itself [15],
and shortest paths can turn at vertices in the star unfolding [35]. By Chen and
Han [15], a shortest path π(s, t) is either a line segment in the star unfolding from

2One vertical line segment of the free space diagram is defined by all distances between a fixed
point s ∈ A and the polygonal curve B. The free space defined by s and the polygonal curve B
hasO(M2) complexity because each of theO(M2) anti-core edges is intersected with a single fixed
ellipse and each of the O(M) core edges is intersected with O(M) fixed ellipses.
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Figure 4: (a) A non-convex polyhedral surface can define (b) a star unfolding with an unfolded core
that overlaps itself. Vertices on the boundary of the core are shown in the sequence a, b6, t6, t5, b5,
b4, t4, t3, b3, b2, t2, t1. The core begins to overlap itself in this ordering after vertex b3, and these
edges are drawn dashed. The three unfolded images of s are labeled s1, s2, and s3.

some source image si to an unfolded image of t, or π(s, t) is the concatenation of
π(s, vj) with π(vj , t), where vj is a vertex of the star unfolding.

Figure 4b illustrates a star unfolding for a non-convex polyhedral surface. No-
tice that only some of the lightly-shaded anti-core regions contain a vertex that is
a source image. The remaining anti-core regions contain a vertex vj that is similar
to a source image but is additively weighted by d(s, vj) [15]. For example, the
shortest path π(s, p1) can be obtained from the star unfolding in Figure 4b as the
concatenation of π(s, b′5) with π(b′5, p1).

Although it was previously known [15] that anti-core regions for a non-convex
polyhedral surface could overlap other anti-core regions, it was not previously
known whether the core could overlap itself. The below lemma asserts that the
core can overlap itself.

Lemma 2. The core of the star unfolding for a non-convex polyhedral surface can
overlap itself.

Proof. Figure 4 illustrates a non-convex polyhedral surface whose star unfolding
has an overlapping core. The three-dimensional surface consists of three rectan-
gular faces and eleven triangular faces. The three rectangular faces all lie in a
common plane and are defined by the set of vertices V = {b1, ..., b6, t1, ..., t6}.
The eleven triangular faces are all defined by a common apex vertex a and two ver-
tices from V . The eleven angles incident to a are ∠b1at1, ∠t1at2, ∠t2ab2, ∠b2ab3,
∠b3at3, ∠t3at4, ∠t4ab4, ∠b4ab5, ∠b5at5, ∠t5at6, and ∠t6ab6. The sum of these
angles can be greater than 2π by making the three rectangular faces sufficiently tall
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(because this causes the six angles ∠biati for i = 1, ..., 6 to exceed π
3 ). Shortest

paths from the source point s = b1 to each vertex are shown as thick dash-dotted
line segments. Note that the shortest path π(s, a) is the line segment from s to a
that overlaps the edge b1a. Cutting along these shortest paths and unfolding into
the plane yields the star unfolding for this surface. The shortest paths π(s, t4) and
π(s, t6) turn at a vertex because all vertices in V lie in the same plane, and the
π
2 angles defining the rectangular faces prevent shortcuts through the interiors of
“alley” faces such as b2ab3.

The rectangular faces and the hidden face b1at1 in Figure 4a map to anti-core
regions in the star unfolding because each of these faces can be associated with one
maximal shortest path edge sequence. We now justify why the remaining heavily-
shaded points map to the core in the star unfolding. Consider the points p2, p3 in
the interior of the face t2ab2 in Figure 4a. The shortest path π(s, p2) travels from
s to a to p2 while π(s, p3) travels from s to edge t2b2 to p3. These two unique
shortest path edge sequences imply that the face t2ab2 must lie in the core. The
remaining heavily-shaded faces lie in the core by analogous reasoning. Figure 4b
illustrates that faces in the core such as b6at6 and b2at2 partially overlap when
the core is unfolded into the plane. This follows because the sum of the eleven
angles incident to a is greater than 2π. Thus, the core of the star unfolding for a
non-convex polyhedral surface can overlap itself.

Even though the star unfolding of a non-convex polyhedral surface can overlap
itself, the star unfolding can still be defined by an angularly ordered set of non-
crossing shortest path cuts from the source to every vertex [15, 35], and a core
can still be defined by a polygonal equator with O(M) complexity that connects
adjacent endpoints in the ordering.

Since a shortest path can only turn at vertices in the star unfolding [35], an
anti-core region must have an hourglass shape [27, 28, 18]. This follows because
an anti-core region is bounded by a point or line segment source, a line segment,
and two shortest paths in the unfolded plane. For example, an hourglass in Figure
5 is bounded by l1, v2v15, and shortest paths from the endpoints of l1 to v2 and
v15. Another hourglass is bounded by v′10, v12v14, π(v′10, v12), and π(v′10, v14).3

Such hourglasses encode all shortest paths from a source to any point in its anti-
core region. The free space defined by an hourglass is a connected, piecewise
hyperbolic shape with O(M) complexity by [18]. The below δN (A,B) decision
problem decides whether the Fréchet distance between polygonal curves A and B
on a non-convex polyhedral surface is at most some given constant ε ≥ 0.

3The hourglass containing v′10 is actually a simplified type of hourglass called a “funnel” [27,
28, 18].
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Figure 5: In general, the star unfolding for a non-convex polyhedral surface can overlap itself but
still has a heavily-shaded core and a lightly-shaded anti-core. Each of the anti-core regions is an
hourglass.

Theorem 7. The δN (A,B) decision problem can be computed in O(M7 logM)
time and O(M3) space.

Proof. Partition the polygonal curve A into O(M3) edgelets and maintain a star
unfolding for these edgelets in O(M4) total time by Theorem 1. Let C be the
constant complexity parameter space for an edgelet and either a core edge or an
anti-core edge. Free space for an anti-core edge is the intersection of C with the
O(M) complexity free space for one hourglass. Free space for a core edge is the
intersection of C with the union of the free spaces for O(M) hourglasses. This
union has O(M3) complexity because the free space for any pair of hourglasses
intersects O(M) times. Since each core edge is a chord of the core, the dual graph
of the core is a tree. Consequently, the O(M) hourglasses for a core edge γ can be
defined by iteratively extending an hourglass from every vertex in the star unfolding
[15] through the dual graph of the core to γ.

In total, the free space for each edgelet has O(M4) complexity because it in-
volves O(M2) anti-core edges and O(M) core edges, and this free space can be
computed in O(M4 logM) time [2]. Thus, each of the O(M3) edgelets con-
tributes O(M4) complexity to the free space diagram. A plane sweep [19] can be
used to answer the decision problem in O(M7 logM) time. By storing one star
unfolding, one cell, and one vertical line segment of the free space diagram at a
time, O(M3) space is sufficient.

Critical values [5] are candidate values of ε that are caused by a geometric
configuration change of the free space. The smallest critical value ε∗ that causes
the decision problem to return true defines the exact value of the Fréchet distance.
The standard approach [5] to find ε∗ is to apply parametric search with Cole’s [17]
sorting trick. An alternative to parametric search is to run the decision problem
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once for every bit of accuracy that is desired [44]. In the following theorem, we
apply parametric search to a set of parameterized free space vertices.

Theorem 8. The Fréchet distance can be computed on a convex polyhedral surface
in O(M6 log2M) time and O(M2) space and on a non-convex polyhedral surface
in O(M7 log2M) time and O(M3) space, where M is the total complexity of the
surface and the polygonal curves A,B. Furthermore, the free space diagram for a
non-convex polyhedral surface can have Ω(M4) complexity.

Proof. Represent each of the O(M6) (resp. O(M7)) free space vertices from The-
orems 6 and 7 as a (possibly partially defined) algebraic curve ρi(ε) that has con-
stant degree and description complexity. There are three types of critical values.
Type (a) critical values are values of ε such that some ρi(ε) touches a corner of
the free space diagram. Type (b) critical values occur when two ρi(ε) intersect
or when free space becomes tangent to a cell boundary. Monotonicity-enforcing
type (c) critical values occur when a pair of intersection points lie on a horizon-
tal/vertical line.

Given theO(M6 logM) (resp. O(M7 logM)) decision problem runtimes from
Theorems 6 and 7, parametric search with Cole’s [17] sorting trick can be applied
to the ρi(ε) functions to compute the Fréchet optimization problem inO(M6 log2M)
(resp. O(M7 log2M)) time. The space requirements are identical to the decision
problems.

We now show that the free space diagram for a non-convex polyhedral surface
can have Ω(M4) complexity. Consider the parameter space C defined by ab ∈
A and cd ∈ B. Figure 6 illustrates a two-dimensional situation where Ω(M2)
points in C have the same shortest path distance, and all other distances in C are
larger. Hence, for an appropriate choice of ε, the free space in C is defined by
Ω(M2) disjoint regions. Define the polygonal curves by their vertices as A =
{a, b, a, b, ..., a, b} and B = {c, d, c, d, ..., c, d}. Since the M2

4 parameter spaces
defined by ab and cd can each have Ω(M2) complexity, the free space diagram can
have Ω(M4) complexity.

3.4. Shortest Path Maps

This section develops shortest path maps on convex and non-convex polyhedral
surfaces. Throughout this section, M denotes the complexity of either a convex or
non-convex polyhedral surface.

Theorem 9. A shortest path map SPM(ab,P) can be built for a convex polyhedral
surface P in O(M42α(M) logM) time and O(M42α(M)) space. For all points
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Figure 6: (a) A non-convex polyhedral surface can define a (b) parameter space with Ω(M2) com-
plexity. Dashed lines depict shortest paths.

s ∈ ab ∈ P and t ∈ P , SPM(ab,P) can return d(s, t) in O(log2M) time and
π(s, t) in O(log2M +K) time, where K is the complexity of any returned path.4

Proof. The line segment ab can be partitioned into O(M2) edgelets, and a kinetic
Voronoi diagram can be maintained for these edgelets in O(M42α(M) logM) total
time and O(M42α(M)) space by Theorem 3. Point location queries in this kinetic
Voronoi diagram take O(log2M) time by [24].

Our next theorem uses the star unfolding [1] and the hourglass structure of
[27] to encode all shortest paths between two line segments. Such an hourglass
defines a piecewise hyperbolic free space that has O(M) complexity [18].

Theorem 10. A shortest path map SPM(ab,PN ) can be built for a non-convex
polyhedral surface PN in O(M9+κ) time and O(M9) space for any constant κ >
0. For all points s ∈ ab ∈ PN and t ∈ PN , SPM(ab,PN ) can return d(s, t) in
O(logM) time and π(s, t) in O(logM +K) time, where K is the complexity any
returned path.

Proof. Let α represent one of the O(M2) edgelets on ab (see section 3.1). A
shortest path between a point s ∈ α and any fixed point in the anti-core can be
resolved using one hourglass (cf. section 3.3). Distance and shortest path queries in
this hourglass can be resolved in the desired query times by [28, 27]. By contrast,
all shortest paths between s ∈ α and a fixed point in a face of the core are defined
by O(M) hourglasses (see section 3.3). To support logarithmic query time for

4O(logM) time queries are also possible by [24] but at the cost of essentially squaring both the
time and space preprocessing bounds.
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all points in a fixed face of the core, we can form O(M3) constant complexity
distance functions from these hourglasses and compute their lower envelope and
a vertical decomposition structure in O(M6+κ) time and O(M6) space, for any
constant κ > 0 [2]. Repeating this procedure for all O(M) faces in the core yields
O(M7+κ) time per edgelet and O(M9+κ) time over all O(M2) edgelets.

4. Link Distance Problems on a Polyhedral Surface

This section investigates link distance problems on two kinds of polyhedral
surfaces. We define C as a special type of polyhedral surface such that every face
of C is convex and no two adjacent faces are coplanar. We define N as a special
type of polyhedral surface such that no two adjacent faces are coplanar. N can
be created from any polyhedral surface by triangulating the surface and merging
adjacent triangles that are coplanar. The essential property of both C and N is that
a path must turn whenever it enters a new face. The difference between C and N
is that the faces of C are convex while the faces of N need not be convex and can
contain holes. Throughout this section, we assume that s, t are points and ab, cd
are line segments on either C or N . The link distance between s and t is denoted
by dL(s, t), and πL(s, t) denotes a link distance path between s and t. We define
M as the complexity of C and N .

4.1. Shortest Path Maps, Voronoi Diagrams, and Diameters

This section explores link-based shortest path maps, Voronoi diagrams, and
diameters on C and N . All of the shortest path maps in this section support link-
based queries in O(logM + K) time, where K is the complexity of any returned
path.

Since each face of C is convex, link-based paths only turn in C when they enter
a new face. Hence, a breadth-first search is sufficient to mark the link distance of
each face to a nearest source. Such a breadth-first search can be used to obtain the
following three results.

Corollary 1. A link-based shortest path map SPM(ab, C) can be constructed on C
in Θ(M) time and space. This structure supports dL(s, t), πL(s, t) queries from
any s ∈ ab to any t ∈ C.

Corollary 2. A link-based Voronoi diagram for M point or line segment sites can
be computed on C in Θ(M) time and space provided that the line segment sites are
interior-disjoint.5

5This runtime requires that each site has previously been associated with the face that contains
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Corollary 3. The link diameter of C can be computed in O(M2) time and O(M)
space.

Note that the above Voronoi diagram’s line segment sites are interior-disjoint
merely to avoid having Ω(M2) intersection points. The link diameter of C is the
largest link distance between any pair of faces. We now investigate data structures
on N .

Theorem 11. Link-based shortest path maps SPM(s, N ) and SPM(mins∈ab , N )
can be constructed on N in Θ(M4) time and space. SPM(s, N ) supports queries
from a fixed source point s to any point t ∈ N . SPM(mins∈ab , N ) supports
queries mins∈ab dL(s, t) and mins∈ab πL(s, t) from a fixed line segment ab ∈ N
to any point t ∈ N . Implicit representations of SPM(s,N ) and SPM(mins∈ab ,N )

can be built in O(M
7
3 log3.11M) time and O(M) space to support exact queries

in O(M) time and queries accurate to within one link in O(logM +K) time.

Proof. Each face of N is a polygonal domain (a two-dimensional polygon with
polygonal holes). Mitchell, Rote, and Woeginger [36] compute a shortest path map
in a polygonal domain by iteratively constructing the set of points at link distance
1, 2, ...,M from the source in Θ(M4) [43] time and space. This approach can be
modified to work on the surfaceN by propagating link distance paths into adjacent
faces at each step. The technique of [36] also supports exact O(M) time queries
and approximate queries to within one link of optimal in O(logM) time.

Notice that SPM(mins∈ab , N ) only supports mins∈ab dL(s, t) queries. As an
alternative, we can also construct a shortest path map SPM(ab, cd) that supports all
possible queries between any s ∈ ab ∈ N and t ∈ cd ∈ N . The below observation
and lemma will be useful to construct SPM(ab, cd).

Observe that all link distances between a pair of line segments ab, cd on any
polyhedral surface must equal i, i+ 1, or i+ 2, for some fixed integer i ≥ 0. This
is true because any link distance path between s ∈ ab and t ∈ cd can be extended
by at most two extra links into a path that connects any s′ ∈ ab and t′ ∈ cd. See
Figure 7.

Observation 1. All link distances dL(s, t) for any points s ∈ ab ∈ N and t ∈
cd ∈ N equal either i, i+ 1, or i+ 2, where i = mins∈ab, t∈cd dL(s, t).

The below lemma efficiently computes the intersection of a line segment with
our Θ(M4) complexity shortest path maps from Theorem 11.

it. When this is not the case, either point location techniques [22] or a brute force approach may be
used to associate each site with the face that contains it.
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Figure 7: All distances dL(s, t) for s ∈ ab ∈ N and t ∈ cd ∈ N equal either i, i+ 1, or i+ 2.

Lemma 3. The intersection of a line segment cd with the Θ(M4) complexity short-
est path maps SPM(s, N ), SPM(mins∈ab , N ) can be constructed in O(M2α(M)
log2M) time and O(M2) space (without precomputing either shortest path map).

Proof. By Observation 1, all link distances between ab and cd equal either i, i+ 1,
or i + 2, where i = mins∈ab, t∈cd dL(s, t). Suri and O’Rourke [43] have demon-
strated that all points with link distance i, i+1, or i+2 from ab can be represented
by the union of O(M2) triangles. These triangles intersect cd in O(M2) intervals
that can be constructed in O(M2α(M) log2M) time and O(M2) space by modi-
fying the algorithm of [36] so that it propagates link distance paths into adjacent
faces of the surface N at each step.

We use the following terminology of Arkin, Mitchell, and Suri [7] to construct
SPM(ab, cd). The combinatorial type of a (link-based) shortest path map is a listing
of the combinatorial types of its edges. The combinatorial type of a shortest path
map edge E is a vertex-edge pair (v, e) such that E has one endpoint at a vertex v
and has its other endpoint on an edge e. As the source point s varies continuously
along ab, the position of E’s endpoint on e is parameterized homographically by
g(s) = A+Bs

C+Ds for constants A,B,C,D. We also define an edgelet α as a line
segment such that the shortest path map for every source point s ∈ α has the same
combinatorial structure.6

Theorem 12. The link-based shortest path map SPM(ab, cd) can have Ω(M4)
complexity and can be constructed on N in O(M7) space and either O(M7)
expected time or O(M6λ6(M)) deterministic time. The SPM(ab, cd) structure
supports dL(s, t), πL(s, t) queries for any s ∈ ab ∈ N and t ∈ cd ∈ N in
O(logM +K) time, where K is the complexity of any returned path.

Proof. SPM(ab, cd) is a partition of the parameter space defined by ab and cd into
maximal regions such that for all points (s, t) in a region the shortest path πL(s, t)

6Arkin, Mitchell, and Suri [7] refer to an edgelet as an atomic segment.
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has the same combinatorial structure. Edgelet endpoints are defined by positions
s ∈ ab where there are at least two distinct shortest paths πL(s, v) to some vertex
v ∈ N [7]. A total of O(M3) edgelet endpoints can be defined by computing ab
∩ SPM(v, N ) for every vertex v ∈ N in O(M ·M2α(M) log2M) total time and
O(M3) space (see Lemma 3).

For each edgelet α ∈ ab, choose a point s ∈ α, and construct SPM(s, N ). A
shortest path map edge E ∈ SPM(s, N ) is a vertex-edge pair (v, e) that is homo-
graphically parameterized by s ∈ α such that E ∩ cd defines a constant complexity
algebraic curve in the parameter space for ab and cd. Constructing such a curve for
each choice of v and e yieldsO(M2) curves whose arrangement can be constructed
in O(M4) space and O(M4) expected time or O(M3λ6(M)) deterministic time
[2]. Since there are O(M3) edgelets, SPM(ab,cd) has O(M3 ·M4) complexity.

Figure 8 illustrates that SPM(ab, cd) can have Ω(M4) complexity. In Figure
8a, ab and cd are enclosed in rectangles with tiny openings, and Ω(M2) line of
sight edges can be drawn between pairs of these openings. Let the intersections
of these Ω(M2) edges with ab be a1, ..., aΩ(M2) and the intersections with cd be
c1, ..., cΩ(M2). The points a1, ..., aΩ(M2) and c1, ..., cΩ(M2) define a grid of Ω(M2)
line segments in SPM(ab, cd) such that all link distances on these line segments
are at most two, and all other link distances are three (see Figure 8b). Thus,
SPM(ab, cd) can have Ω(M4) complexity.

a b
c

d

c d

ba

c1 c2 cΩ(M2)...

a1 a2
aΩ(M2)...

(a) (b)

a1a2 ... aΩ(M2)

c1

c2

cΩ(M2)

..

.

Figure 8: (a) Two line segments on N can define (b) a link-based shortest path map SPM(ab,cd)
with Ω(M4) complexity.

Corollary 4. The link diameter of N can be computed in O(M
19
3 log3.11M) time

and O(M3) space.

Proof. Partition each of the O(M) edges of N into O(M3) edgelets with Lemma
3. Choose a point s in each of these O(M4) edgelets. For each of these points,
construct theO(M2) possible (v, e) edges of SPM(s,N ) without computing the ar-
rangement of these edges. This can be done in O(M

7
3 log3.11M) time per edgelet
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by the techniques of [36] and Theorem 11. The largest link distance defined by
any of these edges is the link diameter for N .

The next theorem develops a link-based Voronoi diagram for N .

Theorem 13. A link-based Voronoi diagram for M point or line segment sites can
be computed on N in O(M6) time and space and can have Ω(M4) complexity.

Proof. For each point site s on N , construct the O(M2) possible (v, e) edges that
define SPM(s, N ) using the techniques of [36] and Theorem 11. Similarly, con-
struct theO(M2) possible (v, e) edges that define SPM(mins∈ab ,N ) for each line
segment site ab onN . Since there areM sites, this procedure definesO(M3) edges
onN . The arrangement of these edges can be constructed with an output-sensitive
algorithm [14] in O(M6) time and space. Since some edges in this arrangement
should not appear in the final Voronoi diagram, a breadth-first postprocessing step
should merge adjacent faces with link distance i that are separated by a suboptimal
edge with link distance j > i. The Ω(M4) lower bound follows from the lower
bound for SPM(s, N ).

4.2. Similarity Metrics

This section contains link-based algorithms to compute the Hausdorff distance
and Fréchet distance on the polyhedral surfaces C and N . These surfaces were
defined at the beginning of section 4.

Theorem 14. The link-based Hausdorff distance can be computed between two
sets of M interior-disjoint line segments on C in O(M logM) time and O(M)
space.

Proof. Corollary 2 can be used to build a Voronoi diagram for the line segments
in Θ(M) time and space. Once this Voronoi diagram is known, the Hausdorff
distance can be computed in O(M logM) time and O(M) space by [4].

Theorem 15. The link-based Hausdorff distance can be computed between two
sets of M points on N in O(M

10
3 log3.11M) time and O(M2) space and between

two sets ofM line segments onN inO(M4α(M) log2M) time andO(M3) space.
In addition, the Hausdorff distance can be approximated to within two links of
optimal for line segments on N in O(M

10
3 log3.11M) time and O(M2) space.

Proof. For point sets onN , Theorem 11 can be used to construct an implicit short-
est path map for every point. These shortest path maps are sufficient to return the
Hausdorff distance.
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Line segment sets A,B ∈ N can be handled as follows. Intersecting a fixed
line segment ab ∈ A with SPM(mint∈cd , N ) for every cd ∈ B produces a set
of piecewise-constant distance functions. The lower envelope of these functions
defines for every point s ∈ ab the nearest neighbor distance mint∈B dL(s, t). Such
a lower envelope can be computed for each ab ∈ A in O(M3α(M) log2M) time
and O(M3) space by combining Lemma 3 with a plane sweep [20] technique.
Repeating this step for each ab ∈ A and returning the largest distance on any lower
envelope yields the Hausdorff distance δH(A,B) in O(M4α(M) log2M) time.
The Hausdorff distance can also be approximated to within two links of optimal
for line segment sets on N by computing the Hausdorff distance of the endpoints
of the line segments (see Observation 1).

The below theorem shows how to compute the link-based Fréchet distance on
C a logarithmic factor faster than the traditional Fréchet distance in the plane [5].

Theorem 16. The link-based Fréchet distance between two polygonal curvesA,B ∈
C can be computed inO(M2) time and space, and the free space diagram can have
Ω(M2) complexity. The total complexity of A, B, and C is M .

Proof. Although the free space in a cell defined by ab ∈ A and cd ∈ B can
be disconnected, we show that reachability information can always be propagated
through a cell solely based on the cell’s boundary. In the simplest case, ab and cd
are in the same convex face of C, and all link distances in the cell are either zero (at
any intersection points of ab and cd) or one. When ab and cd are in separate faces,
all points in the interior of a cell have the same link distance; furthermore, all link
distances on the interior of a boundary edge are the same (see Figure 9). This
behavior ensures that reachability information can always be propagated through a
cell in constant time solely based on the cell’s boundary.

The distances defining all cell boundaries of the free space diagram can be
computed in Θ(M2) time using shortest path map structures from Corollary 1.
The Fréchet distance can be computed by building a planar graph on the free space
diagram and applying a linear-time shortest path algorithm (e.g., [29]).

We now use the shortest path map SPM(ab, cd) from Theorem 12 to compute
the link-based Fréchet distance on N . The Fréchet decision problem [5] decides
whether the Fréchet distance δF (A,B) ≤ ε for some constant ε ≥ 0.

Theorem 17. The link-based Fréchet distance between two polygonal curvesA,B ∈
N can be computed exactly in O(M9 logM) time and O(M4) space, and the free
space diagram can have Ω(M6) complexity. The Fréchet distance can also be ap-
proximated to within one link of optimal in O(M4α(M) log2M) time or to within
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Figure 9: (a) When ab and cd are in separate faces of C, all distances in the interior of a cell defined
by ab and cd have the same value. (b) Free space in a cell can be disconnected by choosing ε = i so
that all link distances less than or equal to i define the free space.

two links of optimal in O(M
10
3 log3.11M) time. Both approximations use O(M2)

space.

Proof. Let i = mins∈ab, t∈cd dL(s, t). To approximate the Fréchet distance to
within one link of optimal, determine the representative value i + 1 for each of
the O(M2) cells defined by ab ∈ A and cd ∈ B by computing SPM(mint∈cd ,
N ) ∩ ab. This intersection defines for every s ∈ ab the distance mint∈cd dL(s, t),
and the smallest of these distances equals i. Repeating this process for each of
the O(M2) cells in the free space diagram takes O(M2 ·M2α(M) log2M) total
time and O(M2) working space by Lemma 3. The approximation to within two
links of optimal uses the implicit shortest path map from Theorem 11 to compute
any link distance i, i + 1, or i + 2 to represent a cell (cf. Observation 1). Once a
representative value is known for each cell, the approximate Fréchet distance can
be computed in O(M2) time by constructing a directed acyclic graph on the free
space diagram and performing a breadth first search.

The exact decision problem is computed by representing each of the O(M2)
cells defined by ab ∈ A and cd ∈ B by the SPM(ab,cd) structure of Theorem 12.
The O(M9) faces in these shortest path maps form a partition of the free space
diagram, and each face has the same link distance throughout its interior. The
decision problem can be computed in O(M9 logM) time by combining dynamic
programming [5] with a plane sweep [20] that propagates reachability information
through each cell. O(M4) storage is sufficient to store one edgelet of SPM(ab,cd)
at a time (see Theorem 12).

After executing either of the above approximation algorithms, the Fréchet dis-
tance is known to withinO(1) links of its true value. Thus, the exact decision prob-
lem can be executedO(1) times to return the exact Fréchet distance inO(M9 logM)
time. The Ω(M6) lower bound for the complexity of the free space diagram fol-
lows because each cell can have Ω(M4) complexity by Theorem 12.
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5. Conclusion

We develop algorithms to compute edge sequences, Voronoi diagrams, shortest
path maps, the Fréchet distance, and the diameter for a polyhedral surface. Despite
efforts by Chandru et al. [13] to improve edge sequence algorithms, these runtimes
had not improved since 1997. Our work speeds up the edge sequence and diameter
approaches of Agarwal et al. [1] by a linear factor and introduces many new short-
est path and link distance algorithms that apply to both convex and non-convex
polyhedral surfaces. It would be interesting to lower the gaps between our vari-
ous lower and upper bounds. In particular, future work could attempt to construct
the Θ(M4) shortest path edge sequences on a convex polyhedral surface in o(M5)
time.
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