
Contract Formation through

Preemptive Normative Conflict Resolution?

Wamberto W. Vasconcelos† and Timothy J. Norman‡

Dept. of Computing Science, University of Aberdeen, AB24 3UE, United Kingdom
†w.w.vasconcelos@abdn.ac.uk, ‡t.j.norman@abdn.ac.uk

Abstract. We explore a rule-based formalisation for contracts: the rules
capture conditional norms, that is, they describe situations arising during
the enactment of a multi-agent system, and norms that arise from these
situations. However, such rules may establish conflicting norms, that is,
norms which simultaneously prohibit and oblige (or prohibit and permit)
agents to perform particular actions. We propose to use a mechanism to
detect and resolve normative conflicts in a preemptive fashion: these
mechanisms are used to analyse a contract and suggest “amendments”
to the clauses of the contract. These amendments narrow down the scope
of influence of norms and avoid normative conflicts. Agents propose rules
and their amendments, leading to a contract in which no conflicts may
arise.

1 Introduction

We explore a rule-based formalisation for contracts: the rules capture conditional
norms, that is, they describe situations arising during the enactment of a multi-
agent system (MAS), and norms that arise from these situations. However, such
rules may establish conflicting norms, that is, norms which simultaneously pro-
hibit and oblige (or prohibit and permit) agents to perform particular actions.
We propose to use a mechanism to detect and resolve normative conflicts in a
preemptive fashion: these mechanisms are used to analyse a contract and suggest
“amendments” to the clauses of the contract. These amendments narrow down
the scope of influence of norms and avoid normative conflicts.

We envisage a scenario in which agents propose rules which will make up a
contract. Agents, however, may already be committed to existing contracts when
they are negotiating the terms of a new contract. Furthermore, these agents may
not want to divulge the terms of the contracts they have established, that is, they
may not want to justify why they need to propose amendments to a contract.

?
This research was sponsored by the U.S. Army Research Laboratory and the U.K. Ministry of

Defence and was accomplished under Agreement Number W911NF-06-3-0001. The views and con-

clusions contained in this document are those of the author(s) and should not be interpreted as

representing the official policies, either expressed or implied, of the U.S. Army Research Labora-

tory, the U.S. Government, the U.K. Ministry of Defence or the U.K. Government. The U.S. and

U.K. Governments are authorised to reproduce and distribute reprints for Government purposes

notwithstanding any copyright notation hereon.

Dagstuhl Seminar Proceedings 09121
Normative Multi-Agent Systems
http://drops.dagstuhl.de/opus/volltexte/2009/1920

1

The structure of this paper is as follows. In Section 2 we introduce norm-
governed multi-agent systems, also presenting our account of norms and their
formal underpinnings. Section 3 formally presents the syntax and semantics of
contracts as a set of rules; additionally that section provides a computational
model for contract enactments. In Section 4 we present mechanisms to detect and
resolve normative conflicts, using unification and constraint satisfaction tech-
niques. In Section 5 we introduce our preemptive approach to contract forma-
tion, whereby agents exchange messages with contract clauses and amendments
to these. We compare our approach with related work in Section 6 and conclude
in Section 7, where we also give directions for future work.

2 Norm-Governed Multi-Agent Systems

The design of complex multi-agent systems is greatly facilitated if we move away
from individual components and, instead, regard them as belonging to stereo-
typical classes or categories of components. One way to carry out this classifica-
tion/categorisation is through the use of roles as introduced in, e.g., [4, 17] – an
agent takes on a role within a society or an organisation, and this role defines a
pattern of behaviour to which any agent ought to conform. For instance, within
a humanitarian relief force, there are roles such as medical assistant, member
of mine clearance team, and so on, and agents adopt these roles (possibly more
than one) as they join the force. When agents adopt roles they commit them-
selves to the roles’ expected behaviours, with associated sanctions and rewards.
We shall make use of two finite, non-empty sets, Agents = {a1, . . . , an} and
Roles = {r1, . . . , rm}, representing, respectively, the sets of agent identifiers and
role labels.

The building blocks of our formalism are terms :

Definition 1. A term, denoted as τ , is any variable x, y, z (with or without
subscripts) or any construct fn(τ1, . . . , τn), where fn is an n-ary function symbol
and τ1, . . . , τn are terms.

Terms f0 stand for constants and will be denoted as a, b, c (with or without sub-
scripts). We shall also make use of numbers and arithmetic functions to build our
terms; arithmetic functions may appear infix, following their usual conventions.
We adopt Prolog’s convention [1] using strings starting with a capital letter to
represent variables and strings starting with a small letter to represent con-
stants. Some examples of terms are Price (a variable) and send(a, B, inform(c))
(a function).

We also define atomic formulae:

Definition 2. An atomic formula, denoted as ϕ, is any construct pn(τ1, . . . ,
τn), where pn is an n-ary predicate symbol and τ1, . . . , τn are terms.

When the context makes it clear what n is we can drop it. p0 stands for proposi-
tions. We shall employ arithmetic relations (e.g., =, 6=, and so on) as predicate
symbols, and these will appear in their usual infix notation. We also make use

2

of atomic formulae built with arithmetic relations to represent constraints on
variables – these atomic formulae have a special status, as we explain below. We
give a definition of our constraints, a subset of atomic formulae:

Definition 3. A constraint γ is an infix binary atomic formula τ C τ ′, where
C is any of the symbols =, 6=, >,≥, <, or ≤.

We shall denote a possibly empty set of constraints as Γ = {γ0, . . . , γn} and
it stands for a conjunction of the constraints, that is,

∧n
i=0 γi. Some sample

constraints are X < 120 and X < (Y + Z). To improve readability, constraints
of the form {10 ≤ X, X ≤ 45} will be written as {10 ≤ X ≤ 45}.

We need an account of those actions performed by agents:

Definition 4. An action tuple is 〈a :r, ϕ̄〉 where

– ϕ̄, a ground first-order atomic formula, representing an action
– a ∈ Agents is the agent who did ϕ̄
– r ∈ Roles is the role played by the agent a when it did ϕ̄

Agents perform their actions in a distributed fashion, contributing to the overall
enactment of the MAS. However, for ease of presentation, we make use of a
global (centralised) account for all actions taking place; therefore, it is important
to record the authorship of actions.

2.1 A Representation for Norms

In this section we introduce our representation of norms. We extend our previous
work [22, 23], adopting the notation of [17] for specifying norms, complement-
ing it with constraints [9]. Constraints are used to further refine the scope of
influence of norms on actions.

We associate constraints with first-order formulae, imposing restrictions on
their variables. We represent this association as ϕ ◦ Γ , as in, for instance,
deploy(s1, X, Y) ◦ {10 ≤ X ≤ 50, 5 ≤ Y ≤ 45}. When Γ is empty, we will
simply drop it from our formulae. Norms are thus defined:

Definition 5. A norm ω is any construct

– Oα:ρϕ ◦ Γ (an obligation),
– Pα:ρϕ ◦ Γ (a permission), or
– Fα:ρϕ ◦ Γ (a prohibition),

where α, ρ are terms, ϕ is a first-order atomic formula and Γ is a possibly empty
set of constraints.

Term α identifies the agent(s) to whom the norm is applicable and ρ is the role
of such agent(s). Oα:ρϕ ◦ {γ0, . . . , γn} thus represents an obligation on agent α
taking up role ρ to bring about ϕ, subject to all constraints γi, 0 ≤ i ≤ n. The
γi terms express constraints on variables of ϕ.

For simplicity, in our discussion we assume an implicit universal quantifi-
cation over variables in ω. For instance, PA:Rdeploy(X, b, c) stands for ∀A ∈

3

Agents.∀R ∈ Roles .∀X.PA:Rdeploy (X, b, c). However, our proposal can be nat-
urally extended to cope with arbitrary quantifications. Obligations normally
require the arguments of their actions to be existentially quantified, as in, for
instance

∀A ∈ Agents.∀R ∈ Roles .∃X.∃Y.∃Z.OA:Rdeploy(X, Y, Z)

Quantifications on agent ids and role labels may be universal or existential, and
the relative ordering of quantifications defines the applicability of the norm,
following the usual first-order logic semantics [5, 15].

We propose to formally represent from a global perspective the normative
positions [19] of all agents taking part in a virtual society. By “normative posi-
tion” we mean the “social burden” associated with individuals [6], that is, their
obligations, permissions and prohibitions.

2.2 Substitutions, Unification and Constraint Satisfaction

We use first-order unification [5] and constraint satisfaction [10] as the building
blocks of our mechanisms. Unification allows us (i) to detect whether norms are
in conflict and (ii) to detect the set of actions that are under the influence of a
norm. Initially, we define substitutions:

Definition 6. A substitution σ is a finite and possibly empty set of pairs x/τ ,
where x is a variable and τ is a term.

We define the application of a substitution in accordance with [5]. In addition,
we describe how substitutions are applied to sets of constraints and norms (X
stands for O, P or F):

1. c · σ = c for a constant c.
2. x · σ = τ · σ if x/τ ∈ σ; otherwise x · σ = x.
3. pn(τ0, . . . , τn) · σ = pn(τ0 · σ, . . . , τn · σ).
4. {γ0, . . . , γn} · σ = {γ0 · σ, . . . , γn · σ}
5. (Xα:ρϕ ◦ Γ) · σ = (X(α·σ):(ρ·σ)(ϕ · σ) ◦ (Γ · σ)).

A substitution σ is a unifier of two terms τ1, τ2, if τ1 ·σ = τ2 ·σ. Unification is a
fundamental problem in automated theorem proving and many algorithms have
been proposed [5]; recent work offers means to obtain unifiers efficiently. We use
unification in the following way:

Definition 7. unify(τ1, τ2, σ) holds iff τ1 · σ = τ2 · σ, for some σ. unify(pn(τ0,
. . . , τn), pn(τ ′0, . . . , τ

′
n), σ) holds iff unify(τi, τ

′
i , σ), 0 ≤ i ≤ n.

The unify relationship checks if a substitution σ is indeed a unifier for τ1, τ2, but
it can also be used to find σ. We assume that unify is a suitable implementation of
a unification algorithm which (i) always terminates (possibly failing, if a unifier
cannot be found); (ii) is correct; and (iii) has a linear computational complexity.

We make use of existing constraint satisfaction techniques [9, 10] to imple-
ment a satisfy predicate which checks if a given set of constraints admits one
solution, that is, the predicate holds if the variables of the constraints admit at
least one value which simultaneously fulfills all constraints:

4

Definition 8. satisfy({γ0, . . . , γn}) holds iff
∧n

i=0(γi · σ) is true for some σ.

This predicate can be implemented via different “off-the-shelf” constraint satis-
faction libraries; for instance, it can be defined via the built-in call residue

vars/2 predicate, available in SICStus Prolog [21] as:

satisfy({γ0, . . . , γn})← call residue vars((γ0, . . . , γn),)

Predicate call residue vars(Goals ,Vars) evaluates if Goals admit one possible
solution, collecting in Vars the list of residual variables that have blocked goals
or attributes attached to them. In our definition above, the value of Vars is not
relevant, as we simply want to know if Goals are satisfiable.

2.3 Meaning of Norms

We explain the meaning of our norms in terms of their relationships with action
tuples of global enactment states. We define when an individual action tuple is
within the scope of influence of a norm – we do so via the logic program of Fig. 1.
It defines predicate inScope which holds if its first argument, an action tuple (in

1 inScope(Action, ω)←
2 Action = 〈a :r, ϕ̄〉 ∧
3 ω = Xα:ρϕ ◦ Γ∧
4 unify(〈a, r, ϕ̄〉, 〈α, ρ, ϕ〉, σ)∧
5 satisfy(Γ · σ)

Fig. 1. Check if Action is within Influence of a Norm

the format of Def. 4), is within the influence of a norm ω (in the format of Def. 5),
its second parameter. Lines 2 and 3 define, respectively, the format of Action
and ω (where X is either P, F or O). Line 4 tests (i) if the agent performing the
action and its role unify with α, ρ of ω and (ii) if the actions ϕ̄ and ϕ unify. Line
5 checks if the constraints on ω (instantiated with the substitution σ obtained
in line 4) can be satisfied.

Agents may experience difficulties if an action is simultaneously within the
scope of influence of a prohibition and an obligation (or a prohibition and a
permission). In such circumstances, whatever the agents do or refrain from doing,
may give rise to an enactment state that is not norm-compliant. The agents will
thus violate a norm, and will be subject to sanctions.

If an agent has a set of candidate actions subject to a set of conflict-free
norms, then predicate inScope can be used to select among the actions, namely
those that are not within the scope of any prohibitions. Alternatively, agents
can use the mechanism above to select those actions that are within the scope
of obligations, and hence should be given priority. These strategies have been
explored in [6].

5

3 Contracts as Rules for Managing Enactment States

In this section we introduce a rule-based language for the explicit management of
events generated by agents and the effects they cause – we introduced alternative
versions of this formalism in [7, 8]: rules depict how norms should be inserted
and removed as a result of agents’ actions. A contract is a set of such rules,
specifying how agents’ normative positions change as a result of their actions.

For our computational model we propose a global account of all actions
performed, as well as all norms which currently hold. We make use of the set
∆ to store action tuples and norms – it represents a trace or a history of the
enactment of a society of agents from a global point of view:

Definition 9. A global enactment state ∆ is a finite, possibly empty, set of
action tuples 〈a :r, ϕ̄〉 and norms ω.

A global enactment state ∆ can be “sliced” into many partial states ∆a = {〈a :
r, ϕ̄〉 ∈ ∆ | a ∈ Agents} containing all actions of a specific agent a. Similarly,
we could have partial states ∆r = {〈a : r, ϕ̄〉 ∈ ∆ | r ∈ Roles}, representing
the global state ∆ “sliced” across the various roles. We make use of a global
enactment state to simplify our exposition; however, a fully distributed (and
thus more scalable) account of enactment states can be achieved by slicing them
as above and managing them in a distributed fashion1.

Figure 2 depicts how our computational model works. An initial enactment
state ∆0 (possibly empty) is offered (represented by “V”) to a set of agents
(ag1, . . . , agn). These agents can add their events (Ξ0

1 , . . . , Ξ0
n) to the state of

∆0 V

∆0

Ξ0

1 , · · · , Ξ0

n

l l
ag

1
· · · ag

n

∗
 ∆1 V

∆1

Ξ1

1 , · · · , Ξ1

m

l l
ag

1
· · · ag

m

∗
 · · ·

Fig. 2. Semantics as a Sequence of ∆’s

affairs (via “l”). Ξj
i is the (possibly empty) set of events added by agent i at

state of affairs ∆j . After an established amount of time, we perform an exhaustive

application of rules (denoted by “
∗
 ”) to the enactment state ∆0∪Ξ0

1 ∪· · ·∪Ξ1
n,

yielding a new enactment state ∆1. This new state will, on its turn, be offered
to the agents for them to add their events, and the same process will go on.

3.1 A Rule Language for Managing Normative Positions

Our rules are constructs of the form LHS RHS , where LHS contains a repre-
sentation of parts of the current enactment state which, if they hold, will cause

1
In [6] we present a distributed architecture for electronic institutions [4], in which global enactment
states are broken down into scenes, that is, agent sub-activities with specific purposes, such as
the registration process in a virtual auction room, the auction itself and the settlement of bills
(and delivery of goods).

6

the rule to be triggered. RHS describes the updates to the current enactment
state, yielding the next enactment state:

Definition 10. A rule R is defined by the following grammar:

R ::= LHS RHS
LHS ::= LHS ∧ LHS | ¬LHS |Action |ω | γ
RHS ::= RHS ∧ RHS | ⊕ ω | 	 ω

Intuitively, the left-hand side LHS describes the conditions the current enactment
state ought to have for the rule to apply. The right-hand side RHS describes
the updates to be performed to the current enactment state, yielding the next
enactment state.

3.2 Semantics of Rules

As suggested in Figure 2, we define the semantics of our rules as a relation-
ship between the current enactment state and the next enactment state. In this
section we define this relationship.

We first define the semantics of the LHS of a rule, that is, how a rule is
triggered:

Definition 11. sl(∆,LHS , σ) holds between an enactment state ∆, the left-hand
side of a rule LHS and a substitution σ depending on the format of LHS:

1. sl(∆,LHS ∧ LHS ′, σ) holds iff sl(∆,LHS , σ′) and sl(∆, LHS′ · σ′, σ′′) hold,
σ = σ′ ∪ σ′′.

2. sl(∆,¬LHS , σ) holds iff sl(∆,LHS , σ) does not hold.

3. sl(∆,Action , σ) holds iff Action · σ ∈ ∆.

4. sl(∆, ω, σ) holds iff ω · σ ∈ ∆.

5. sl(∆, γ, σ) holds iff satisfy({γ · σ}).

Case 1 depict the semantics of conjunctions and how their individual substitu-
tions are combined. Case 2 introduces the negation by failure: a negated action
is true if, and only if, it has not taken place, that is, it is not found in the enact-
ment state. Case 3 holds when an action is found in the enactment state. Case 3
holds when a norm is found in the enactment state. Case 5 holds if a constraint
is satisfiable, after applying a substitution σ to it.

We now define the semantics of the RHS of a rule:

Definition 12. Relation sr(∆,RHS , ∆′) mapping an enactment state ∆, the
right-hand side of a rule RHS and a new enactment state ∆′ is defined as:

1. sr(∆,RHS ∧RHS ′, ∆′′) holds iff sr(∆,RHS , ∆′) and sr(∆
′,RHS ′, ∆′′) hold.

2. sr(∆,⊕ω, ∆ ∪ {ω}) holds.

3. sr(∆,	ω, ∆ \ {ω}) holds.

7

Case 1 decomposes a conjunction and builds the new state by merging the partial
states of each update. Case 2 caters for the insertion of norms and case 3 defines
how a norm is deleted.

Our rules are exhaustively applied on the enactment states thus considering
all matching atomic formulae. We thus need relationship s∗l (∆,LHS , Σ) which
obtains in Σ = {σ0, . . . , σn} all possible matches of the left-hand side of a rule:

Definition 13. s∗l (∆,LHS , Σ) holds, iff Σ = {σ1, . . . , σn} is the largest non-
empty set such that sl(∆,LHS , σi), 1 ≤ i ≤ n, holds.

In the complete definition of the rule system, we define the semantics of our rules
as relationships between enactment states: rules map an existing enactment state
to a new enactment state. We adopt the usual semantics of production rules [14],
that is, we exhaustively apply each rule by matching its LHS against the current
state and use the values of variables obtained in this match to instantiate RHS .

3.3 An Interpreter for Contracts

The semantics above provides a basis for an interpreter for rules, shown in Fig. 3
as a logic program, interspersed with built-in Prolog predicates; for easy refer-
encing, we show each clause with a number on its left. Clause 1 contains the top

1. s∗(∆,Rs, ∆′)←
findall(〈RHS, Σ〉, (member((LHS RHS),Rs), s∗l (∆,LHS , Σ)),RHSs),
s′r(∆,RHSs, ∆′)

2. s∗l (∆,LHS , Σ)← findall(σ, sl(∆,LHS , σ), Σ)
3. sl(∆, (Action ∧ LHS), σ1 ∪ σ2)← sl(∆,Action , σ1), sl(∆,LHS , σ2)
4. sl(∆,¬LHS, σ) ← ¬sl(∆,LHS , σ)
5. sl(∆, Action, σ) ← member(Action · σ, ∆)
6. sl(∆, ω, σ)← member(ω · σ, ∆)
7. sl(∆, γ, σ) ← satisfy({γ · σ})

8. s′r(∆,RHS , ∆′)←
findall(∆′′, (member(〈RHS , Σ〉,RHSs), member(σ, Σ), sr(∆,RHS · σ, ∆′′)),AllDeltas),
merge(AllDeltas, ∆′)

9. sr(∆, (U ∧ RHS), ∆1 ∪∆2)← sr(∆,U , ∆1), sr(∆, RHS, ∆2)
10. sr(∆,⊕ω, ∆ ∪ {ω}))←
11. sr(∆,	ω, ∆ \ {ω}))←

Fig. 3. An Interpreter for Contracts

most definition: given a ∆ and a set of rules (a contract) Rs , it shows how we
can obtain the next state ∆′ by finding (via the built-in findall predicate2) all
those rules in Rs (picked by the member built-in) whose LHS holds in ∆ (checked
via the auxiliary definition s∗l). This clause then uses the RHS of those rules with
their respective sets of substitutions Σ as the arguments of s′r to finally obtain
∆′.

Clause 2 implements s∗l : it finds all the different ways (represented as indi-
vidual substitutions σ) that the left-hand side LHS of a rule can be matched in

2
ISO Prolog built-in findall/3 obtains all answers to a query (2nd argument), recording the values
of the 1st argument as a list stored in the 3rd argument.

8

an enactment state ∆ – the individual σ’s are stored in sets Σ of substitutions,
as a result of the findall/3 execution. Clauses 3-7 are adaptations of Def. 11.

Clause 8 shows how s′r computes the new enactment state using the current
enactment state and a list RHSs of pairs 〈RHS , Σ〉 (obtained in the second
body goal of clause 1): it picks out (via predicate member/2) each individual
substitution σ ∈ Σ and uses it in RHS to compute via sr a partial new state ∆′′

which is stored in AllDeltas . AllDeltas contains a set of partial new states and
these are combined together via the merge/2 predicate – it joins all the partial
states, removing any replicated components. Clauses 9-11 are adaptations of
Def. 12.

4 Norm Conflicts

This section provides definitions for norm conflicts, enabling their detection and
resolution. Constraints confer more expressiveness and precision on norms, but
mechanisms for detection and resolution must factor them in.

4.1 Conflict Detection

A conflict arises when an action is simultaneously prohibited and permitted/obliged,
and its variables have overlapping values. The variables of a norm specify its
scope of influence, that is, which agent/role the norm concerns, and which
values of the action it addresses. In Fig. 4, we show two norms over action

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

60

OA1:R1
deploy(s1, X1, Y1) ◦ {10 ≤ X1 ≤ 50, 5 ≤ Y1 ≤ 45}

FA2:R2
deploy(s1, X2, Y2) ◦ {5 ≤ X2 ≤ 60, 15 ≤ Y2 ≤ 40}

105

5

15

40

45

50

Fig. 4. Conflict Detection: Overlap in Scopes of Influence

deploy(S, X, Y), establishing that sensor S is to be deployed on grid position
(X, Y). The norms are

OA1:R1
deploy(s1, X1, Y1) ◦ {10 ≤ X1 ≤ 50, 5 ≤ Y1 ≤ 45}

FA2:R2
deploy(s1, X2, Y2) ◦ {5 ≤ X2 ≤ 60, 15 ≤ Y2 ≤ 40}

Their scopes are shown as rectangles filled with different patterns. The overlap
of their scopes is the rectangle in which both patterns are superimposed. Norm
conflict is formally defined as follows:

9

Definition 14. Norms ω, ω′ ∈ ∆, are in conflict under substitution σ, denoted
as conflict(ω, ω′, σ), X being O or P, iff:

– ω = Fα:ρϕ ◦ Γ , ω′ = Xα′:ρ′ϕ′ ◦ Γ ′ or
– ω = Xα:ρϕ ◦ Γ , ω′ = Fα′:ρ′ϕ′ ◦ Γ ′

and the following conditions hold:

1. unify(〈α, ρ, ϕ〉, 〈α′, ρ′, ϕ′〉, σ) and
2. satisfy((Γ ∪ Γ ′) · σ)

That is, a conflict occurs between a prohibition and either an obligation or a
permission if 1) a substitution σ can be found that unifies the variables of the
two norms, and 2) the constraints from both norms can be satisfied (taking σ
under consideration).

The norm conflict of Fig. 4 is indeed captured by Definition 14. We can obtain
a substitution σ = {X1/X2, Y1/Y2} and this is a first indication that there may
be a conflict or overlap of influence between both norms regarding the defined
action. The constraints on the norms may restrict the overlap and, therefore,
leave actions under certain variable bindings free of conflict. We, therefore, have
to investigate the constraints of both norms in order to see if an overlap of
the values indeed occurs. In our example, the obligation has constraints {10 ≤
X1 ≤ 50, 5 ≤ Y1 ≤ 45} and the prohibition has constraints {5 ≤ X2 ≤ 60, 15 ≤
Y2 ≤ 40}. By using the substitutions we can “merge” the constraints as {10 ≤
X2 ≤ 50, 5 ≤ X2 ≤ 60, 5 ≤ Y2 ≤ 45, 15 ≤ Y2 ≤ 40}; the overlap of the merged
constraints is 10 ≤ X2 ≤ 60 and 15 ≤ Y2 ≤ 40 and they represent ranges of
values for variables X1, X2 and Y1, Y2 where a conflict will occur.

For convenience (and without any loss of generality), we assume that our
norms are in a special format: all terms τ occurring in ω are replaced by a
fresh variable x (not occurring anywhere in ω) and a constraint x = τ is added
to Γ . This is an extended form of explicit unification [20] and the transforma-
tion of formulae from their usual format to this extended explicit unification
format can be easily automated by scanning ω from left to right, collecting all
terms {τ1, . . . , τn}; then we add {x1 = τ1, . . . , xn = τn} to Γ . For example,
norm PA:Rdeploy (s1, X, Y) ◦ {X > 50} becomes PA′:R′deploy(S, X ′, Y ′) ◦ {A′ =
A, R′ = R, S = s1, X

′ = X, Y ′ = Y, X > 50}. Although some of the added
constraints x = y may seem superfluous, they are required to ensure that un-
constrained variables are properly dealt by our conflict resolution mechanism
presented below.

4.2 Conflict Resolution

We resolve conflicts by manipulating the constraints associated to the norms’
variables, removing any overlap in their values. In Fig. 5 we show the norms
of Fig. 4 without the intersection between their scopes of influence3 – the pro-
hibition has been curtailed, its scope being reduced to avoid the values that

3
For clarity, in this example we show the norms in their usual format without explicit unifications.

10

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

OA1:R1
deploy(s1, X1, Y1) ◦ {10 ≤ X1 ≤ 50, 5 ≤ Y1 ≤ 45}

10 605

5

15

40

45

50

FA2:R2
deploy(s1, X2, Y2) ◦ {5 ≤ X2 < 10, 15 ≤ Y2 ≤ 40}

FA2:R2
deploy(s1, X2, Y2) ◦ {50 < X2 ≤ 60, 15 ≤ Y2 ≤ 40}

Fig. 5. Conflict Resolution: Curtailment of Scopes of Influence

the obligation addresses. Specific constraints are added to the prohibition in or-
der to perform this curtailment; these additional constraints are derived from
the obligation, as we explain below. In our example, we obtain two prohi-
bitions, viz., FA2:R2

deploy(s1, X2, Y2) ◦ {5 ≤ X2 < 10, 15 ≤ Y2 ≤ 40} and
FA2:R2

deploy(s1, X2, Y2) ◦ {50 < X2 ≤ 60, 15 ≤ Y2 ≤ 40}.
We formally define below how the curtailment of norms takes place. It is

important to notice that the curtailment of a norm creates a new set Ω of
curtailed norms:

Definition 15. Relationship curtail(ω, ω′, Ω), where

– ω = Xα:ρϕ ◦ {γ0, . . . , γn} and
– ω′ = X′α′:ρ′ϕ′ ◦ {γ′0, . . . , γ

′
m}

X and X′ being either O, F or P, holds iff Ω is a possibly empty and finite set of
norms obtained by curtailing ω with respect to ω′. The following cases arise:

1. If conflict(ω, ω′, σ) does not hold then Ω = {ω}; that is, the curtailment of
a non-conflicting norm ω is ω itself.

2. If conflict(ω, ω′, σ) holds, then Ω = {ωc
0, . . . , ω

c
m}, where ωc

j = Xα:ρϕ ◦
({γ0, . . . , γn} ∪ {¬(γ′j · σ)}), 0 ≤ j ≤ m.

In order to curtail ω, thus avoiding any overlapping of the values its variables may
have with those variables of ω′, we must “merge” the negated constraints of ω′

with those of ω. Additionally, in order to ensure the appropriate correspondence
of variables between ω and ω′ is captured, we must apply the substitution σ
obtained via conflict(ω, ω′, σ) on the merged negated constraints.

We combine the constraints of ω = Xα:ρϕ ◦ {γ0, . . . , γn} with the negated
constraints of ω′ = X′α′:ρ′ϕ′ ◦ {γ′0, . . . , γ

′
m}. If we regard the set of constraints as

a conjunction of constraints, that is, {γ0, . . . , γi} is seen as
∧n

i=0 γi, and if we
regard “◦” as the conjunction operator ∧, then the following equivalences hold

Xα:ρϕ ∧ (
n∧

i=0

γi ∧ ¬(
m∧

j=0

γ′j · σ)) ≡ Xα:ρϕ ∧ (
n∧

i=0

γi ∧ (
m∨

j=0

(¬γ′j · σ)))

11

We can rewrite the last formula as

m∨

j=0

(Xα:ρϕ ∧ (

n∧

i=0

γi ∧ ¬(γ
′
j · σ)))

That is, each constraint on ω′ leads to a possible solution for the resolution
of a conflict and a possible curtailment of ω, as it prevents the overlap among
variables. The curtailment thus produces a set of curtailed norms

m⋃

j=0

ωc
j =

m⋃

j=0

{Xα:ρϕ ◦ ({γ0, . . . , γn} ∪ {¬(γ
′
j · σ)})}

Although each of the ωc
j , 0 ≤ j ≤ m, represents a solution to the norm conflict,

all of them are added to Ω in order to replace the curtailed norm. This allows the
preservation of as much of the original scope of the curtailed norm as possible.
Fig. 5 illustrates this: the result of the curtailment are two new prohibitions
applicable to all those coordinates of the original prohibition which are not
covered by the obligation, rather than just one of them. However, replacing the
original prohibition with one of its curtailed versions would resolve the conflict.

5 Preemptive Normative Conflict Resolution

The rules of a contract create and remove norms. When new norms are intro-
duced, they may conflict with each other. A post-conflict approach would invoke
the norm curtailment mechanism above whenever a conflict arises during the
enactment of a multi-agent system which is subject to a contract. We have pur-
sued in [23] this approach: when a new norm is added to a set of norm, it is
checked for conflicts and, depending on explicit policies, either the new norm is
curtailed or existing norms are curtailed. When a norm is removed, any previ-
ous curtailments it caused on other norms are undone, this being achieved via
a “roll back”/“roll forward” mechanism: the sequence (i.e., the history) of all
enactment states is maintained and we roll back to the state before the norm
to be removed was introduced, then skip the following state and roll forward,
introducing all the norms from that point onwards.

However, this approach is computationally very expensive, as we reported
in [23]. We thus suggest a preemptive approach whereby rules are analysed be-
forehand for their potential conflicts, and then the norms appearing on their
right-hand sides are curtailed, thus preventing any normative conflicts in the
future.

Two rules R, R′ have the potential for raising a normative conflict if i) their
RHSs add conflicting norms to the enactment state and i) their LHS s can be
simultaneously triggered. The first check is straightforward: we can scan the
RHSs of the rules, collect their norms, and compare them two by two. The
second check, however, is much trickier as we cannot in general decide if two
LHSs will be simultaneously triggered: this check would require the exhaustive

12

generation of all histories (i.e., sequences of enactment states) and this could be
prohibitively costly or, in the case of MASs which should run forever, impossible.

We address the second check in a conservative fashion: instead of checking
whether the two LHS ’s simultaneously trigger, we check if the situations they
describe can possibly appear together. For instance, a if rule R has send(Ag1 :
R1,Ag2 : R2, offer(X)) on its LHS and rule R′ has ¬send(Ag1 : R1,Ag2 :
R2, offer(X)) on its LHS , then we know for sure that these rules will never
trigger simultaneously.

Given two rules R = LHS RHS and R′ = LHS ′ RHS ′, we propose
the compatible(LHS ,LHS ′) predicate to check if there could be an enactment
state in which both LHS and LHS ′ holds. This predicate works by incrementally
building an enactment state, adding to it all the actions, norms and constraints
from LHS that are checked for, then extending the enactment state with the
actions, norms and constraints that are checked for in LHS ′. In this approach,
we also add negated actions and norms to the state being built, so as to check if
the state has a pair 〈Action,¬Action〉, 〈ω,¬ω〉 or 〈γ,¬γ〉; if any of these appear
in the state, then the rules are not compatible.

We not formally define the potential conflicts between two rules of a contract:

Definition 16. Two rules R = LHS RHS and R′ = LHS ′ RHS ′ are
potentially in conflict, denoted as conflictr

p(R, R′, σ), iff compatible(LHS ,LHS ′)

holds, ⊕ω occurs in RHS, ⊕ω′ occurs in RHS ′, and conflict(ω, ω′, σ).

For the sake of simplicity, we assume in this paper that individual rules do not
add conflicting norms. However, the mechanism we describe below could also be
used to help engineers design individual rules, automatically spotting conflicts
and suggesting changes to the rules.

5.1 Contract Formation via Preemptive Conflict Resolution

If two rules are found to be potentially in conflict, then their norm conflict(s) can
be preemptively resolved by having the norms being added on their right-hand
side curtailed using the mechanism presented above.

In this paper, we address the scenario in which two or more agents attempt
to form a contract free from potential normative conflicts. The agents may have
their own private contract(s) which they will need to take into account when
forging new contracts. We consider two possible scenarios, explained below.

In the first scenario, an initiator agent ag1 sends a proposal to another agent
ag2, consisting of a single rule R to become part of a contract between ag 1 and
ag2. Agent ag2, the contacted agent, receives the rule and checks it against any
of its current norms as well as rules of other contracts it has forged previously.
Agent ag2 then sends back a set Rc = {Rc

1, . . . , R
c
n} of alternative versions of

rule R, in which some of its added norms have been curtailed. The proposing
agent ag1 then chooses one of the rules from Rc and sends a message to ag2

to inform its choice. This protocol is repeated again until the agents have a
complete contract.

13

The other scenario is similar to the previous one, however, in addition to the
set Rc = {Rc

1, . . . , R
c
n} of alternative versions of the proposed rule, agent ag 2

also provides a rationale or justification for the suggestions. This rationale is in
the form of ag2’s rules which have potential conflicts with R. When ag1 receives
the set Rc with the justifications, then (as in the previous scenario) it can accept
the suggestions or, more interestingly, ag1 may, on its turn, propose changes in
the rules ag2 used as rationale. This scenario may lead to longer interactions
through which a new contract is forged via the revision of existing contracts.
The revision of existing contracts use the same mechanism described here.

We present in Fig. 6 an algorithm which allows agents to analyse a proposed
set of rules R with respect to another (pre-existing) set of rules R′, providing a

algorithm preempt(R,R′,Rc)
input a proposed set of new rules R, and a set of old rules R′

output a revised set of proposed rules Rc

1 begin

2 Rc ← ∅
3 for each R′ ∈ R′, R′ = LHS ′

 RHS ′, do

4 begin

5 conflict flag ← false

6 Rt ← ∅
7 for each R ∈ R, R = LHS RHS , do

8 if conflictr
p(R, R′, σ) then

9 begin

10 conflict flag ← true

11 for each ⊕ω′ ∈ {RHS ′} do

12 for each ⊕ω ∈ {RHS} do

13 begin

14 curtail(ω, ω′, Ω)
15 for each ωc ∈ Ω do

16 begin

17 {RHS t} ← {RHS} \ {⊕ω} ∪ {⊕ωc}
18 Rt ← Rt ∪ {LHS RHS t}
19 end

20 end

21 end

22 if ¬conflict flag then

23 begin

24 Rc ← Rc ∪ {R}
25 R ← R \ {R}
26 end

27 else

28 R ← R \ {R} ∪ Rt

29 end

30 end

Fig. 6. Algorithm for Preemptive Contract Formation

set of recommended changes Rc to R. These changes will guarantee that there
will be no normative conflicts when the agent takes part in enactments of multi-
agent systems regulated by the contracts Rc and R′

In the algorithm we make use of {RHS} to refer to the set with all the
components of the right-hand side of the rule. More formally, we have:

Definition 17. If RHS = ⊗ω1 ∧ · · · ∧ ⊗ωn (where ⊗ is either ⊕ or) then
{RHS} = {⊗ω1, . . . ,⊗ωn}.

The algorithm of Fig. 6 works by comparing each rule from R′ with the
candidate rules of R. The algorithm makes use of a temporary set of changed

14

rules Rt which is initialised to ∅, the empty set, in line 6 at the start of each
loop with R ∈ R′. The algorithm also makes use of a flag conflict flag which is
set true if there is a potential conflict between any rule R′ ∈ R′, that is, a rule
from the set of old rules, and R ∈ R a new candidate rule – the flag is initialised
to false in line 5 (with each new rule R′ ∈ R′), and switched to true in line 10,
when a potential conflict is detected.

Loop 3–29 goes through the old rules R′ ∈ R′ and compares each of them with
the new rules R ∈ R (loop 7–21). For each pair R, R′ (respectively members from
sets R′ and R), the algorithm checks for potential conflicts (line 8). If there is a
potential conflict (cf. Def 16), lines 11-20 scan the RHS of both rules, obtaining
a set Ω (line 14; cf. with Def. 14) which is the result of the curtailment of norm
ω (from a new rule R ∈ R) with respect to ω′ (from an old rule R′ ∈ R′).

For each curtailed norm ωc ∈ Ω (lines 15–19), the algorithm creates an
alternative RHS , replacing the old ⊕ω with ⊕ωc (line 17). Line 18 updates the
temporary set Rt of curtailed rules, adding the new rules obtained by replacing
⊕ω with ⊕ωc. Lines 22–28, executed after the loop of lines 7–21, update the set
Rc of rules free from potential conflicts. Line 24 adds R to Rc, since it is free
from potential conflicts, and line 25 removes R from the set R; if however, there
has been a conflict, the set R should be updated, removing the conflicting R
from it, and adding all the alternative formulations to R assembled in Rt.

For the algorithm to work we make two assumptions. Firstly, we assume that
the rules in R do not add norms with conflicts in their RHSs. Secondly, we as-
sume that the rules in R do not have potential conflicts among themselves. The
second assumption can be accommodated in a realistic setting if rules (possibly
conflicting) are submitted one at a time to the algorithm; the first assumption
requires the adaptation of the algorithm to address the design of rules, interleav-
ing design with verification, a topic we elaborate further when we discuss future
work below.

6 Related Work

In this section we refer to related work addressing aspects of contracts and
normative systems.

A closely related work is that of [16]. The framework proposed in that pa-
per includes contract specification, negotiation and monitoring, as well as the
appropriate agent architecture to handle these aspects. However, in that paper
issues of contract formation are not explored.

The work in [13] presents legal issues and surveys efforts at standardising
contracts for electronic commerce. However, that paper does not propose a for-
mal representation for contracts, nor does it investigate how contracts can be
forged in an interactive way.

There are various other formulations for norms in the literature, as well as
different ways to represent clauses of contracts using norms. In [8] we compare a
rule-based formalism (notably more sophisticated than the one presented in this
paper) with a number of alternative approaches. We show that it is possible to

15

capture various normative phenomena with a rule-based formalism. Moreover,
the rule-based formulation proves to be more compact, elegant, and intuitive
than other formulations.

Our work is not concerned with contract negotiation based in game theoreti-
cal aspects, as explored in [2]. However, it has not escaped our attention that [2]
employs a rule-based formalism, although their notion of norms is quite differ-
ent from the one presented here; their conflicts are solved by means of priorities,
which are used to choose a course of action.

Our approach to norm conflict detection and resolution can be contrasted
with the work described in [11, 12]: the norms in their policies, although in an
alternative syntax, have the same components as the norms presented in this
paper, and hence the same expressiveness. However, conflicts are resolved in a
coarser fashion: one of the conflicting norms is “overridden”, that is, it becomes
void. It is not clear how constraints in the norms of [11, 12] affect conflict, nor
how conflicts are detected – from the informal explanation given, however, only
direct conflicts are addressed. Our conflict resolution is finer-grained: norms are
overridden for specific values (and not completely).

The work described in [3] analyses different normative conflicts – in spite of
its title, the analysis is an informal one. That work differentiates between ac-
tions that are simultaneously prohibited and permitted – these are called deontic
inconsistencies – and actions that are simultaneously prohibited and obliged –
these are called deontic conflicts. The former is merely an “inconsistency” be-
cause a permission may not be acted upon, so no real conflict actually occurs.
On the other hand, those situations when an action is simultaneously obliged
and prohibited represent conflicts, as both obligations and prohibitions influence
behaviours in an incompatible fashion. Our approach to detecting conflicts can
capture the three forms of conflict/inconsistency of [18], viz. total-total, total-
partial and intersection, respectively, when the permission entails the prohibi-
tion, when the prohibition entails the permission and when they simply overlap.

7 Summary, Conclusions and Future Work

We presented formal means to represent norms, that is, prohibitions, permis-
sions, and obligations, and how these can be combined with a rule-based formal-
ism to specify contracts. The left-hand side of our rule describe the circumstances
which ought to arise for a norm to be revoked (removed) or introduced; the right-
hand side of our rules specify which norms are to be revoked or introduced; we
provided a simple semantics for our norms and rules.

Our norm representation uses constraints: these allow for a fine-grained con-
trol of the scope of the norm, that is, the values of the variables the norm refers
to. These constraints are also useful when conflicts arise: we propose the res-
olution of normative conflicts via the careful manipulation of constraints. We
provide means to detect normative conflicts and how to resolve them, and use
these to propose a preemptive approach to contract formation, whereby agents
exchange rules of a contract, checking these against any existing norms or other

16

previously forged contracts. Our approach can be said to be preemptive because
normative conflicts are considered before the contract is enacted and hence before
any actual normative conflict arises.

We are exploring the proposed preemptive approach within the context of the
ITA research project4. More specifically, we want to support coalition of human
and software agents from disparate organisations (hence with different degrees
of loyalty and willingness to share information and assets) to agree on the terms
of a mission.

We want to adapt and extend the rule-based approach presented in this
paper, using instead a logical approach. We envisage the clauses of a contract
represented as formulae of a decidable fragment of first-order logic; in this ap-
proach a contract would be interpreted as a logical theory. Normative conflict
can be detected via the reasoning mechanism of the logic, and the manipulation
of constraints could still be used to resolve the conflicts.

References

1. K. R. Apt. From Logic Programming to Prolog. Prentice-Hall, U.K., 1997.
2. G. Boella and L. van der Torre. A Game Theoretic Approach to Contracts in Mul-

tiagent Systems. IEEE Transactions on Systems, Man, and Cybernetics, 36(1):68–
79, Jan. 2006.

3. A. A. O. Elhag, J. A. P. J. Breuker, and P. W. Brouwer. On the Formal Analysis
of Normative Conflicts. Information & Comms. Techn. Law, 9(3):207–217, Oct.
2000.

4. M. Esteva. Electronic Institutions: from Specification to Development. PhD thesis,
Universitat Politècnica de Catalunya (UPC), 2003. IIIA monography Vol. 19.

5. M. Fitting. First-Order Logic and Automated Theorem Proving. Springer-Verlag,
New York, U.S.A., 1990.

6. A. Garćıa-Camino, J.-A. Rodŕıguez-Aguilar, C. Sierra, and W. W. Vasconcelos. A
Distributed Architecture for Norm-Aware Agent Societies. In M. Baldoni, U. En-
driss, A. Omicini, and P. Torroni, editors, Procs. of the 3rd Int’l Worskhop on
Declarative Agent Languages and Technologies (DALT 2005), Selected and Re-
vised Papers, volume 3904 of Lecture Notes in Computer Science, pages 89–105.
Springer-Verlag, Utrecht, The Netherlands, July 25, 2005, 2006.

7. A. Garćıa-Camino, J.-A. Rodŕıguez-Aguilar, C. Sierra, and W. W. Vasconcelos. A
Rule-based Approach to Norm-Oriented Programming of Electronic Institutions.
ACM SIGecom Exchanges, 5(5):33–40, Jan. 2006.

8. A. Garćıa-Camino, J.-A. Rodŕıguez-Aguilar, C. Sierra, and W. W. Vasconcelos.
Constraint Rule-Based Programming of Norms for Electronic Institutions. Journal
of Autonomous Agents & Multiagent Systems, 18(1):186–217, Feb. 2009.

9. J. Jaffar and M. J. Maher. Constraint Logic Programming: A Survey. Journal of
Logic Progr., 19/20:503–581, 1994.

10. J. Jaffar, M. J. Maher, K. Marriott, and P. J. Stuckey. The Semantics of Constraint
Logic Programs. Journal of Logic Programming, 37(1-3):1–46, 1998.

4
The International Technology Alliance (ITA) is a US/UK consortium of academic, military and
industrial partners, pursuing research in technologies for knowledge management, communication
and coordination among members of coalitions engaged in joint operations. Details about the ITA
consortium are available at http://www.usukita.org/

17

11. L. Kagal and T. Finin. Modeling Communicative Behavior Using Permissions and
Obligations. In Lecture Notes in Computer Science, volume 3396, pages 120–133,
2005.

12. L. Kagal and T. Finin. Modeling Conversation Policies using Permissions and
Obligations. Journal of Autonomous Agents & Multiagent Systems, 14(2):187–206,
Apr. 2007.

13. I. R. Kerr. Ensuring the Success of Contract Formation in Agent-Mediated Elec-
tronic Commerce. Electronic Commerce Research, 1(1-2):183–202, 2001.

14. B. Kramer and J. Mylopoulos. Knowledge Representation. In S. C. Shapiro, editor,
Encyclopedia of Artificial Intelligence, volume 1, pages 743–759. John Wiley &
Sons, 1992.

15. Z. Manna. Mathematical Theory of Computation. McGraw-Hill Kogakusha, Ltd.,
Tokio, Japan, 1974.

16. F. R. Meneguzzi, S. Miles, M. Luck, C. Holt, M. Smith, N. Oren, N. Faci,
M. Kollingbaum, and S. Modgil. Electronic Contracting in Aircraft Aftercare:
A Case Study. In M. Berger, B. Burg, and S. Nishiyama, editors, Procs. 7th Int’l
Joint Conf. on Autonomous Agents & Multiagent Systems (AAMAS 2008), Indus-
try and Applications Track, pages 63–70, Estorial, Portugal, May 2008. IFAAMAS.

17. O. Pacheco and J. Carmo. A Role Based Model for the Normative Specification
of Organized Collective Agency and Agents Interaction. Autonomous Agents and
Multi-Agent Systems, 6(2):145–184, 2003.

18. A. Ross. On Law and Justice. Stevens & Sons, 1958.
19. M. Sergot. A Computational Theory of Normative Positions. ACM Trans. Comput.

Logic, 2(4):581–622, 2001.
20. L. Shapiro and E. Y. Sterling. The Art of Prolog: Advanced Programming Tech-

niques. The MIT Press, April 1994.
21. Swedish Institute of Computer Science. SICStus Prolog, 2005. http://www.

sics.se/isl/sicstuswww/site/index.html, viewed on 10 Feb 2005 at 18.16
GMT.

22. W. W. Vasconcelos, M. J. Kollingbaum, and T. J. Norman. Resolving Conflict
and Inconsistency in Norm-Regulated Virtual Organizations. In Procs. 6th Int’l
Joint Conf. on Autonomous Agents & Multiagent Systems (AAMAS 2007), pages
632–639, Hawai’i, U.S.A., May 2007. IFAAMAS.

23. W. W. Vasconcelos, M. J. Kollingbaum, and T. J. Norman. Normative Conflict
Resolution in Multi-Agent Systems. Journal of Autonomous Agents & Multia-
gent Systems, 2009. Volume and number to be confirmed. Available on-line at
http://www.springerlink.com/content/024242p7775530k6/.

18

