FSL — Fibred Security Language

Valerio Genovese!, Dov M. Gabbay?, Guido Boella!, Leon van der Torre®

! Dipartimento di Informatica. Universita di Torino - IT.
E-mail: guido@di.unito.it; valerio.click@gmail.com
2 Dept. Computer Science, King’s College London - UK.
E-mail: dov.gabbay@kcl.ac.uk
3 Computer Science and Communications, University of Luxembourg, Luxembourg.
E-mail: leon.vandertorre@Quni.lu

Abstract. We develop a fibred security language capable to express
statements of the form

{z}o(z) says ¢

where {z}p(z) is the set of all = that satisfy ¢ and 4 is any formula. ¢
and v may share several free variables. For example, we can express the
following: ” A member m of the Program Committee can not accept a
paper P; in which one of its authors says that he has published a paper
with him after 2007”

~({m}[PC(m) A{ytauthor_of (y, P1) says Ip(paper(p) A
author_of(m,p) A author_of(y,p) A year(p) > 2007)] says accept(Py))

1 Introduction

Access control is a pervasive issue in security: it consists in determining whether
the principal (a machine, user, program) that issues a request to access a resource
should be trusted on its request, i.e., if it is authorized. Authorization can be
based in the simplest case on access control lists (ACL) associated with resources
or with capabilities held by principals, but it may be complicated by, for instance,
membership of groups, roles and delegation. Thus, logics for access control are
often used to express policies and to enable reasoning about principals and their
requests, and other general statements.

In many cases first-order/propositional logic suffices, but it does not in the
case of distributed policies and delegation, e.g., "administrator says that Alice
can be trusted when she says to delete file;”: Alice speaks for the administrator
concerning the deletion of file;, thus she should be trusted as much as the
administrator.

In this paper we present a Fibred Security Language (FSL) for access control
in distributed systems. Fibring is a general methodology due to Gabbay [1] that
aims to combine logics.

Dagstuhl Seminar Proceedings 09121
Normative Multi-Agent Systems
http://drops.dagstuhl.de/opus/volltexte/2009,/1908

Suppose we have two different logics C and D with languages L¢, Lp and
semantics S¢, Sp respectively. Intuitively, the fibring process consists in defining
a combined language L O L ULp together with a new semantics S in which we
can evaluate formulas of both C and D.

From a semantical point of view, logics for distributed access control rely on
one of the following approaches

— Operational Semantics [2].
— Declarative Semantics [3,4].
— Classical /Intuitionistic Modal logic [5,6,7,8].

Each view has positive and negative aspects.

Operational Semantics, if rules are wisely crafted, could be extremely clear
but very often tractability must be sacrificed for simplicity. SecPAL, for instance,
has an extremely clear semantics expressed with just three rules, but in practice
they are awkward to employ in evaluating formulas. To overcome this difficulty
queries in [2] are evaluated exploiting Datalog that has a stable model semantics
which is not clearly related with the rules of the operational semantics.

Logics that rely on declarative semantics have a clearly specified notion of
proof of compliance which is strictly based on the framework in which the rea-
soning is carried out. PROLOG and Datalog seems to be the most used solutions
to obtain answer sets from a database of distributed policies. The negative as-
pect is that using declarative approaches it could be extremely difficult to have
a formal "meaning” for every set of policies and credentials, so that one can
compute this meaning and inspect whether it is the same as the policy author’s
intention.

Modal logic have been employed by Abadi [6] to model logics for access
control, in this view a logic can be studied through its axiomatization or on the
basis of its semantics analyzing how to link models with formulas. One major
advantage is that with a clear bound between syntax and semantics the proof of
compliance procedure is based on well-understood, formal foundation. A mayor
loss is that it could be extremely difficult to compose different logics within a
common framework if we do not rely on fibring.

Every approach has some positive aspects that should not be left out in
modelling a logic for distributed access control. With FSL we propose a general
language to compose (fibring) existing logics on the basis of their semantics,
in particular Section 4.2 is devoted to introduce an authorization logic called
predicate FSL in which we fibre intuitionistic logic with multimodal logic. Future
papers will be devoted to extend and compose existing access control logics (see
Section 6).

In predicate FSL we have formulas of the kind

{a}o(z) says o (1)

where {x}p(x) represents the group composed by all the principals* that
satisfy ¢(z) and v is a general formula. We see the says as a modality to express
that a certain principal supports some statement (see Section 2).

In this view, Formula 1 becomes

Ofo}o(@)¥ (2)

In which ¢ is the statement that the extension of ¢(x) as a group of indi-
viduals supports; note also that the modality is indexed by principals. Up to
authors knowledge, existing approaches that employ the says operator do not
offer the possibility to have a first-order formula specifying the principals.

This view on access control logics offers a wide range of expressiveness in
defining policies and freedom in crafting logics. In fact we can let ¢(z) and ¥
belong to two different languages IL,, and L. as language of principals and security
expressions respectively which refers to two different systems (semantics).

For instance we can think of formulas in L, be SQL queries and formulas in
L. be Delegation Logic [3] expressions.

The main problem is to formally specify how to evaluate expressions like 2
and this is the main role of the fibring methodology [1] which, depending on the
chosen languages (and systems), must be carefully defined in order to have a
combined logic which is coherent and does not collapse.

In this paper, in order to show the full expressiveness of our approach, we
decide to make L, = L, = L, where L is a classical first order language, whereas
the relying system S is intuitionistic modal logic; this is predicate FSL. This
approach offers us to iterate the says modality and to have extremely complex
formulas in which free variables are shared between different levels of nesting of
the O (see Section 3.1 for examples).

Throughout the paper we will show how with predicate FSL is possible to
give answers to the following questions:

1. How to define a general semantic model in order to extend existing security
languages?

2. How to make a principal speak for another principal on all formulas without
resorting second order languages?

3. How to have groups of principals supporting a sentence expressed by a first-
order formula with free variables?

4. How to express chain of delegation by means of the says modality and how
to constrain delegation depth?

5. How to express separation of duties in a clear and compact way?

6. How to deal with roles in distributed access control?

The paper is structured as follows. First, in Section 2 we discuss which prop-
erties of the says operator are desirable in logic and which are not, highlighting
the dependencies among them in different logics. Second, in Section 3 we con-
sider how to extend the authorization logic on the side of the principals which

4 Example of principals are: Users, machines, channels, conjunction of principals,
groups . .. [6]

can assert says statements. Then, we present the basic fibred security language
FSL in Section 4 and we extend it to predicate logic in Section 4.2. In Section
5 we give a simple example to show how to employ predicate FSL and Section
6 ends the paper.

2 Properties of access control logics

In this section we first summarize how the says operator is used in access con-
trol logics, and then we discuss which properties are desired for this operator
and which are not, showing the dependencies among the different properties in
existing logics.

2.1 Access control logics

The access control logic we propose aims at distributed scenarios. Thus, to ex-
press delegation among principals, it is centered, like the access control logic of
[5,3], on formulas such as “A says s” where A represents a principal, s represents
a statement (a request, a delegation of authority, or some other utterance), and
says is a modality. Note that it is possible to derive that A says s even when A
does not directly utter s. For example, when the principal A is a user and one of
its programs includes s in a message, then we may have A says s, if the program
has been delegated by A. In this case, A says s means that A has caused s to
be said, that s has been said on A’s behalf, or that A supports s.

We assume that such assertions are used by a reference monitor in charge
of making access control decisions for resources, like 0. The reference monitor
may have the policy that a particular principal A is authorized to perform Do(0).
This policy may be represented by the formula: (A says Do(o)) — Do(0), which
expresses that A controls Do(o). Similarly, a request for the operation on o from
a principal B may be represented by the formula: B says Do(o). The goal of the
reference monitor is to prove that these two formulas imply Do(o), and grant
access if it succeeds. While proving Do(o) the reference monitor does not need
that the principal B controls s. Rather it may exploit relations between A and
B and some other facts. For example, it may knows that B has been delegated
by A, and, thus, that B speaks for A as concerns Do(0), in formulas:

(B says Do(0)) — (A says Do(o))

This simple example does not show the subtleties arising from the formal-
ization of the says operator, since expressing simple properties like controlling
a resource or speaking for another principal may imply less desirable properties,
leading to security risks, or even to inconsistent or degenerate logic systems [9)].

2.2 Modality axioms

The following are some axioms considered in the literature for the operator
says , in particular by [9]. We discuss whether they are desirable or not, and

which are the relationships among them in different logics, in particular, classical
and intuitionistic logic. We write A says X as [J4X. A might be an index U
and X ranges over formulas.

Definition 1 (Axiom list).
1. B speaks for A (notation B = A):

VX [OpX — OxX].

Note that here we are quantifying over formulas but if we take it as an
axiom schema for the relation between A and B, this will automatically be
universally quantified.
This is the fundamental relation among principals in access control logics. If
B = A from the fact that principal B says something means the reference
monitor can believe that principal A says the same thing. This relation serves
to form chains of responsibility: a program may speak for a user, much like
a key may speak for its owner, much like a channel may speak for its remote
end-point. In some logics this relation is primitive. The reference monitor’s
participation is left implicit, as in the all the other axioms.

2. Restricted speaks for

a(X)AOpX — 04X

where a(X) be any formula and X a new variable.

Restriction of “speaks for” is similar to the one [10] introduces. In particular,
if a(X) = ¢ — X, then the above formula would refer to B speaks for A on
all consequences of ¢ [8].

Other kinds of restrictions can refer to variables occurring in X. We consider

such kind of constraints in Section 3.
3. A controls X

04X — X

This axiom is used in other axioms below.
4. Hand-off axiom

OAVX[OpX — O4X] — VX[OpX — 04 X]

or more briefly:

Oa(B=A) — (B=A)

Hand-off states that whenever A says that B speaks for A, then B does indeed
speak for A. This axiom allows every principal to decide which principals
speak on its behalf, since it controls the delegation to other principals.
Sometimes this axiom follows from logic rules as in [9], sometimes it is as-
sumed as an aziom. Note that the general aziom is too powerful, and thus
risky for security: for example when A represents a group: if A controls (B =
A) then any member of A can add members to A. Thus, for instance, [6] does
not adopt this axiom.

10.

Generalised Hand-off
Since A controls X is defined as 0y X — X.
Then
VXY (A controls (X — 04Y))

or explicitly
Oa(X = 04Y) = (X = 04Y)

For X =0gY, we get hand-off:
OA(OpY — 04Y) — (OpY — 0O4Y)

Generalised Hand-off is equivalent to Bind (see item 12 below). It follows
from logic rules in [9].
Dual of Hand-off

O4(A= B)— (A= B)

This is implied by Unit in CDD [9], where it is equivalent to Unit axiom if
there is a truth telling principal.
Least privilege

(X -Y)— (04X — 0O4Y)

“Fvery program and every user of the system should operate using the least
set of privileges necessary to complete the job” [11].
Ordinary modal axioms

— Closure under consequence

DAX/\DA(X — Y) — HxY

— Necessitation
F X implies F 0Oy, X
Axiom C4
O.04X —0OxX
Escalation

OaX — X VvOul

Escalation is not considered as a desirable property. Thus we must be care-
ful that it does not follow from other properties (like from Unit or Bind in
classical logics). It amounts to “if A says s then s orA says false”: from
A says s may follow a statement “much falser” than's. As an example of its
riskiness, consider that from (A controls s) A (B controls s) it allows to
infer that if A says B says s then s follows. If the logic is not able to avoid
escalation, the only cumbersome solution is to make A avoid saying that B
says s unless he really wishes to say s.

Unit and Bind together do not imply Escalation in CDD [9], while Escalation
implies Bind. In classical logic, Unit implies Escalation while Escalation does
not imply Bind.

11. Unit
X — 04X

Unit is stronger than the necessitation rule. In classical logic, adopting Unit
implies that each principal either always says the truth or it says false: (A —
B)V (B — A). In the first case A speaks for any other principal, in the latter
any other speaks for A. The policies described by this kind of systems are too
manicheist.
12. Bind
(X — DAY) A X — OxY

Abadi [9] provides an example of discussion about the implications of the
different axioms of access control logics.

According to [9] in classical logic, Bind is equivalent to escalation and Unit
implies Escalation. Intermediate systems requiring C4 do not lead to escalation,
but they are not sufficient for modelling delegation.

To solve this problem Abadi in [9] introduces CDD, a second-order proposi-
tional intuitionistic logic; in Section 4.2 we present predicate FSL which extends
CDD expressiveness without using a second-order language.

3 Reasoning about principals

In the previous section we considered the properties of the says operator keeping
the principal indexing the modality as a propositional atom®. In this section we
make a further step towards predicate FSL taking into account how to express
the key properties of access control policies in the proposed language.

3.1 FSL: An extended logic of principals

The logic we propose uses a construct which allows to build principals using
general logic formulas: {z}p(x) says ¢. In this section we will show how we
can exploit it. Note that ¢(x) and ¢ can share variables and ¢ may include
occurrences of the says operator. Notice that & can occur in ¢ but then this
occurrence is not related to the z in {z}p(z). The formula {z}p(x) is used to
select the set of principals making the assertion says.

To select a single principal whose name is A we do:

{z}(x = A) says s
We write A says s for {a}(z = A) says s, where A is an individual principal.

The following formula means that all users together ask to delete filey:

{z}user(x) says delete(file;)

5 Up to authors knowledge, like all existing formal access control logics do.

Since ¢(z) and ¢ can share variables, we can put restrictions on the variables
occurring in ¢. E.g., the set of all users who all own file(s) y asks to delete the
file(s) y.

{z}(user(z) A own(z,y)) says delete(y)

However, the formula above is satisfactory only in the particular situation
where we are talking about the set of all users who assert says at once as a
group (committee).

We can as well express that each member of a set identified by a formula can
assert says separately. E.g., each user deletes individually the files he owns:

Vo (user(x) A own(z,y)) — {z}(z =) says delete(y)
Note that the latter formula usually implies the former but not vice versa®.
The former formula,

{z}(user(z) A own(x,y)) says delete(y)

expresses the fact that the group of users who own g, i.e. all the owners of y
decide (or say) as a group to delete y. So maybe they called a meeting, discussed
the matter and then had a secret vote. The majority voted to delete y but some
voted not to delete. The group outcome was to delete.

The second formula

Va(user(xz) A own(x,y) — {z}(z = =) says delete(y))

expresses the fact that each user who owns y says to delete it. This usually
implies that the users as a group would say to delete y but not necessarily (see
footnote 3). Concerning the majority vote example, it may be the case that it is
impossible to convene enough users to have a vote and so the set of users never
manages to “ say ” as a group to delete y.

Operations on principals We can express the fact that two principals A and
B together says s :
{z}(x = AV z = B) says s

which corresponds to
{A, B} says s

5 In fact, it could be sensible to have situations in which if all the members of a group
say something then the whole group says it but not vice versa.

Vi(p(t) — tsays i) — {z}p(z) says ¥

For instance, a committee may approve a paper that not all of its members would
have accepted.

If we want to express that the intersection of two different kind of principals
(Th,T>) says v

3z (T (2) A Ta(2)) — {y}(y =) says ¥

with this approach we can also have negation in selecting principals:
{z}(x # A) says s

Variables over principals The possibility to express principals as variables
allows first of all attribute-based (as opposed to identity-based) authorization
as in [2]. Attribute-based authorization enables collaboration between parties
whose identities are initially unknown to each other. The authority to assert that
a subject holds an attribute (such as being a student) may then be delegated
to other parties, who in turn may be characterised by attributes rather than
identity. In the example below, a shop gives a discount to students. The authority
over the student attribute is delegated to holders of the university attribute, and
authority over the university attribute is delegated to known principal, the Board
of Education.
Shop says « is entitled to discount if z is a student.

Shop says (student(z) —
{y}(z = y) controls discount)
Shop says « can say z is a student if = is a university
Shop says (university(z) —
{y}(z = y) controls student(z))

Shop says BoardOfEducation can say x is a university
Shop says (BoardO f Education controls university(z))

We may have more complicated policies involving more that two principals,
like in the following example [3].

{y}(y = A) says (({y}(y = C) says fraudulent(x))A
{y}(y = D) says expert(C)) — fraudulent(z))

Since ¢ in {x}¢(z) says ¢ can be any formula, it can contain even occur-
rences of the says operator. This allows to refer to principals who made previous
assertions of the says operator. For example, we can express the following: the
members of the board who said to write a file they own, ask to delete it.

In symbols

{z}[{u}member-board(u) says ((member-board(z)A
file-owner(y, z)) — write(y))]
says delete(y)

7 For instance, 11 could be club_member and T> adult.

Like in [2] delegation can be restricted to principals respecting some require-
ments: Fileserver is a trusted principal who delegates file reading authorizations
only to the owners of files:

)

Va own(z,y) — (Fileserver says ({z}(z =
says read(y) — Fileserver says read(y)))

Variables over principals allow width-bounded delegation. Suppose A wants
to delegate authority over is a friend fact to Bob. She does not care about the
length of the delegation chain, but she requires every delegator in the chain
to satisfy some property, e.g. to possess an email address. Principals with the
is a delegator attribute are authorized by A to assert is a friend facts, and
to transitively re-delegate this attribute, but only amongst principals with a
matching email address.

A says x can say y is a friend if x is a delegator

A says ((delegator(x) —
({y}(x = y) says friend(z))) — friend(z)
A says B is a delegator
A says delegator(B)

A says x can say y is a delegator if x is a delegator, y possesses email.

A says ((delegator(xz) A has-email(y)) —
({w} (w = x) controls delegator(y)))

As with depth-bounded delegation, this property cannot be enforced in SPKI/SDSI,
DL or XrML.

Restrictions on says Another issue concerns restrictions on speaks for on
some issues. Some authors restrict = to a set of propositions [15]

P =1 @ means that the proposition s in P says s — () says s must belong
to T

We can put some restrictions on the variables:

({z}(user(z) A owns(x,y)) says delete(y)) —
({z}(super-user(z)) says delete(y)

Moreover we can use the following to restrict the scope of speaks for:

a(X)AOpX — 04X

If a(X) = ¢ — X then B speaks for A only on consequences of ¢.

The restricted speaks for is strictly related with delegation, if for instance
B =1 A we say that B is delegated by A on T'. If we want to limit the delegation
chain to one step such that we do not permit B to delegate another principal C
on T, we add the following constraint:

(C=r B=1 A)— (C=B)

10

Separation of duties One of the main concerns in security is the separation
of duties: for example the principal(s) signing an order cannot be the same
principals who approve it:

~({z}({y}(z = y) says sign(project)) says
approving(project))

In this formula we exploit the full potentiality of FSL in that the principal
is defined in terms of the says operator.
As noticed in [2] separation of duties requires using negation.

Roles When roles are considered, it emerges the question whether we consider
roles types or instances. We distinguish here among roles instances which can
be principals by themselves or properties of other principals. So a sentence like
” A, who plays a role x of type R, says s” becomes:

Va(x = A A role-played-by(z,y) A R(y)) —
{z}(z=y) says s

As concerns hierarchies:

Va super-user(x) — user(x)
then
Vo super-user(z) — ({z}(z = z) says s) —
(Vz user(z) — ({z}(x = z) says s)

Instead

({x}super-user(z) says s) — ({x}user(z) says s)

is less useful: if all super-users say s than all users say s.
In Abadi [6] if A says something in a role, then it is true that he is playing a
role. However, he admits that there should be some requirements to play a role.
For instance, we require that a super-user is a technician:

Va super-user(x) — technician(x)

then we can say

Vo (x = A A super-user(x)) — ({z}(z = z) says s)
but there can be no super-user x if A is not a technician.

Parameterized roles can add significant expressiveness to a role-based system
and reduce the number of roles [2,13,14]. If we model roles as instances they can
have attributes. For instance the example in [2] “NHS® says x can access health
record of patient if x is a treating clinician of patient” can be modeled as:

8 National Health Service.

11

(clinician-role(z) A patient(p) A record(r, p)A
treats(z,p)) —
({w}(w = x) says access(r) — NHS says access(r)))

The operator used to represent a principal A in the role B (A4 | B) in [6] is
modeled in this way.

(A | B) says s = A says (B says s)

In order to match the predicate role-played-by with the above definition we
can add the following (where x is a role):

Va,y role-played-by(z,y) —
((x says s) —
y says ({z}(z = x) says s))

Discretionary access control Discretionary access control allows users to
pass on their access rights to other users at their own discretion. For instance
we can express: “FileServer says user can say x can access resource if user can
access resource” [2]

Vo user(z) Auser(z) — (Fileserver says
{w}{y}(w =y = x) controls access(u)) controls
{t}(t = z) controls access(u))

Groups In FSL you have to possibility to express how the set {z|¢(x) holds}
says what it says, e.g. If p(z) = (x = A1) V (z = A) V (x = A3) then if at least
one of {A;} says v is enough for the group to say ¥ we add:

{z}p(z) says ¢ < \/{az}(m = A;) says .

This represents the fact that each principal in the group can speak for the
whole group. We can as well express that every group has a spokesman (maybe
several ones dependent on issues), that one cannot be a spokesman for two
different groups and that a group controlling an issue cannot control issues in-
consistent with the definition of the group. We can define groups using what
they say as part of the definition, put restriction on what they further say or
control.

1. Every group has a spokesman.
This is an axiom schema in ¢. Let spoke(p,y) be

spoke(p,y) = (VX [{z}p(z) says X «
{z}(z = y) says X])

We then take the axiom as Jy spoke (p,y).

12

2. One cannot be a spokesman for two different groups.

Vy[spoke (¢1,y) A spoke (p2,y) —
Va[p1(x) < p2(2)]]

3. A group cannot control issues inconsistent with the definition of the group

FoAy — L
F[({z}p(z) says o) —] — L

The following additional axiom expresses that the group identified by the
extension of {z}p(x) says ¢ if at least two members says 1:

{z}(V,;z = A;) says ¢ iff
Vi;ﬁj {z}(z = A;) says Y A{z}(x = A;) says Aj]

More generally, majority voting in {z}¢(x) says 1, is just an axiom.
{z}e(x) says ¥ = \[{z}pi(x) says ¢
i

where ¢;(z) are all formulas (Vzy;(z) — ¢(x)) defining majorities in the set
{z}eo(x).

Majority vote is an example of threshold-constrained trust SPKI/SDSI [12].
The concept of k-of-n threshold subjects means that at least k& out of n given
principals must sign a request and it is used to provide a fault tolerance mech-
anism. RTT has the language construct of “threshold structures” for similar
purposes [39]. As in SecPAL [2] there is no need for a dedicated threshold con-
struct, because threshold constraints can be expressed directly.

4 The basic system FSL

This section introduces our basic system FSL step by step from a semantics point
of view. First we introduce modalities indexed by propositional atoms, then we
take into account classical and intuitionistic models for the propositional setting
and finally we give semantics to predicate FSL that we extensively employed in
previous sections.

This system can be defined with any logic IL as a Fibred Security System
based on L. We will motivate the language for the cases of I = classical logic
and L = intuitionistic logic.

Basically adding the says connective to a system is like adding many modali-
ties. So to explain and motivate FSL technically we need to begin with examining
options for adding modalities to L. Subsection 4.1 examines our options of how
to add modalities to classical and intuitionistic logics. The presentation and
discussion is geared towards subsection 4.2 which presents FSL.

13

4.1 Adding modalities

We start by adding modalities to classical propositional logic. We are going to
do it in a special way. The reader is invited to closely watch us step-by-step,

Our approach is semantic.

Let S be a nonempty set of possible worlds. For every subset U C S consider
a binary relation Ry C S x S.

This defines a multi-modal logic, containing K modalities Oy, U C S. The
models are of the form (S, Ry, o, h),U C S. In this view, if U = {t|t F ¢y} for
some g we get a modal logic with modalities indexed by formulas of itself. This
requires now a formal definition.

Definition 2 (Language). Consider (classical or intuitionistic) propositional
logic with the connectives A,V,—, = and a binary connective Uy, where ¢ and
Y are formulas.’ The usual definition of wff is adopted.

Definition 3. We define classical Kripke models for this language.
1. A model has the form
= (Sv RU7t07 h)7 U C S

where for each U C S, Ry is a binary relation on S. tg € S is the actual

world and h is an assignment, giving for each atomic q a subset h(q) C S.
2. We can extend h to all formulas by structural induction:

— h(q) is already defined, for q atomic

h(ANAB)=h(A)Nh(B)
(—A) =5 —h(4)
(
(

A— B)=(S—h(A)) Uh(B)

AV B) = h(A)Uh(B)

(Oy,10) = {t| for all s (tRpp)s — s € h(1)))}
3. mE A iffto € h(4).

h
h
h
h

There is nothing particularly new about this except possibly the way we are
looking at it.

Let us now do the same for intuitionistic logic. Here it becomes more inter-
esting. An intuitionistic Kripke model has the form

m = (Sagathh/)v

where (5, <) is a partially ordered set, to € S and h is an assignment to the
atoms such that h(q) C S. We require that h(q) is a closed set, namely

— 2 € h(q) and x < y imply y € h(q).

9 There are many such connectives, e.g. ¢ says 9, > 1 (conditional), O(¢ /1) rela-
tive obligation, etc. The semantics given to it will determine its nature.

14

Let D be a set and we can add for each U C D a binary relation Ry on S.
This semantically defines an intuitionistic modality, [lys.

In intuitionistic models we require the following condition to hold for each
formula A, i.e. we want h(A) to be closed:

—z€h(A) and x <y =y € h(A)

This condition holds for A atomic and propagates over the intuitionistic
connectives A,V,—, -, L. To ensure that it propagates over Uy as well, we need
an additional condition on Ry. To see what this condition is supposed to be,
assume t F Oy A. This means that

Vy(tRyy = y E A).

Let t < s. If s ¥ Oy A, then for some z such that sRyz we have z ¥ A. This
situation will be impossible if we require

t<sANsRyz=tRyz. ()
Put differently, if we use the notation:

Ry (x) = {ylaRuy}

then
x <z’ = Ry(z) D Ry(x). (%)

So we now talk about modalities Ry, for U C S. We ask what happens if U
is defined by a formula @y, i.e. U = h(py). This will work only if U is closed

—teUNt<s=s€eU.

So from now on, we talk about modalities associated with closed subsets of S.
We can now define our language. This is the same as defined in Definition 2.
We now define the semantics.

Definition 4. A model has the form
m = (57§7RU7t07h’)aU g S

where (S, <) is a partial order, tg € S, and each U C S is a closed set and so is
h(q) for atomic q. Ry satisfies condition (*) above. We define the notion t £ A
for a wff by induction, and then define

h(A) = {t|t E A}.
So let’s define F:

tEqiffteh(q)

—tEAANBfftEAandtE B
tEAVBIifftEAortEB

tEA— B iff for all s,t < s and sF A imply sE B

15

tE A iff for all s, t < s implies s A

—tH L

t F Oyt iff for all s such that tRy,)s we have s F . We assume by
induction that h(p) is known.

mFE A ifftg F A.

It is our intention to read [, 1 as ¢ says .

Ezample 1 (Two intuitionistic modalities). Let us examine the case of two in-
tuitionistic modalities in more detail Let us call them 04 and (g and their
accessibility relations R4 and Rp. So our Kripke model has the form (S, <
,Ra,Rp,to, h). We know for u = A or p = B that we have in the model

t<sAsR,z—tR,z. ()
What other conditions can we impose on [J,,?

1. The aziom X — 0O, X
This corresponds to the condition

tRuy —x <y (*1)

2. The axiom OpX — O X
This corresponds to the condition

rRay — zRpy (x2)

3. Note that OpX — 04X is taken in (*2) as an axiom schema. If we want to
have t EVX(OpX — 04 X) ie. we want Opp — 4 to hold at the point
t € S for all wif ¢, we need to require (*2) to hold above ¢, i.e.

Va,y(t <x ANxRay — cRpy) (*3)¢
4. Consider now an axiom called hand-off A to B.
DA(VX(DBX — DAX)) — VX(DBX — DAX)

This axiom has a second order propositional quantifier in it.
The antecedent of the axiom wants (4 (VXOpX — 04X)) to hold at .
This means in view of (3) above that (x4,) needs to hold

Vi(toRat — (%3)) (%4,)

The axiom says that if the antecedent holds at ty so does the consequent,
ie.

to F VX (OpX — OaX).

We know the condition for that to hold is (%3),. Thus the condition for
Hand-off A to B is
Vi[toRat — (3)¢] — (¥3)s, (+4)

16

The important point to note is that although the axiom is second order
(has VX in it both in the antecedent and consequence), the condition on the
model is first ordert®.

. There is another modal axiom called escalation for A

s X - X VvOuaL
The condition for that is
Jy(zRay) — zRax (%5)

To check whether we can have hand-off from A to B without escalation for
A, for some choice of R4 and Rp, we need to check whether we can have
(*4) without having (*5), for some wise choice of R4 and Rp.
. Consider a Kripke model (S, <,tg) which is nonending and dense, i.e.
- VaTy(z £ y)
~Vay(e Sy - Fa 525)
In this model let
tRaybex sy
zRpy be z < y.

We have here that (x3); holds for any ¢ because it says
Veyt<zAhzsy—x<y)

Therefore (*4) also holds. This is hand-off from A to B.
However, escalation does not hold because

is false.

.« relative hand-off
Let a(z) be any formula and X a new variable. We can write a relative speak
axiom.

a(X)AOpX — 04X (x7)

In particular, if a(x) = ¢ — x, then (*7) would refer to B speaks for A on
all consequences of .

Definition 5. Let (S, <,to,h) be a Kripke model. By a modal function E we
mean a function giving to each point t € S a set of points E(t) such that

1. t £ s for all s € E(t).
2. 11 < tg — E(t;1) < E(ta2) where E(t;) < E(t2) means Vx € E(t3)Jy €
E(t)(y <).

Definition 6. (5, <,ty,E) is E-dense iff the following holds:

10 Notice that we use first-order but we get a language more expressive than CDD[9]
which is second-order.

17

— Ifz € E(t), then for some y,y € E(t) Az € E(y).
To show the existence of dense systems, we do the following construction:

1. Start with (So, <o, Eq) where Eq(z) is dense. For example, (So, <o) may be
linear and Eq is generated by a strictly increasing function f, i.e. E(z) =
{ylf(x) <y}

2. For every pair of points x $o y, add the point (z,y).

Let x <o (,y) So y and let S1 = So U {(z,y)|x So y}, let <1 be transitive
closure of <o U{(z, (x,v)), ((z,y),y)}. Let E1 be defined from <; as follows:
First let E denote the <; closure of E.

z € B iff y € E such that y <, x.

Second, let for each x

P(z) = {(z,y)lz <oy and x # y}

Then let
By (r) = Bo(2) U P(2)
Ei((z,y)) = {zly <1 2}

3. Let (Sn+1, <n+1,to, Eny1) be obtained from Sy i1, <pi1 in the same way as
wmn step 2.
4. Let (Soo, <o, to, Boo) be the union.

n n n

Then we have density.
If y € E(x) then for some z

2 € Ex(z) ANy € Ex(2)

Remark 1. In models of Definition 6 we have Unit and C4 hold but not neces-
sarily Escalation nor Generalised Hand-off.

4.2 Predicate FSL

Intuitively, a predicate FSL fibred model is represented by a set of models linked
togheter by means of a fibring function, every model has an associated domain
D of elements together with a set of formulas that are true in it. In the FSL
meta-model, the evaluation of the generic formula {z}p(z) says is carried out
in two steps, first evaluating ¢ and then 1 in two different models. Suppose m;
is our (first order) starting model in which we identify U C D as the set of all
the elements that satisfy ¢. Once we have U we can access one or more worlds
depending on the fibring function £ : P(D) — P(M) which goes from sets of
elements in domain D to sets of models. A this point, for every model m; € f(U)
we must check that v is true, if this is the case then « is true in the meta-model.

18

The fact that in the same expression we evaluate different sub-formulas in
different models it is not completely counter intuitive, for instance, think about
a group of administrators that have to set up security policies for their company.
From a semantical point of view, if we want to check if ¢) holds in the depicted
configuration by the administrators, we must

1. Identify all the admins (all the elements that satisfy admin(x)).
2. Access the model that all the admins as a group have depicted.
3. Check in that model if v is true or false

Let L denote classical or intuitionistic predicate logic.'' We assume the usual
notions of variables, predicates, connectives A, V, —, -, quantifiers V, 3 and the
notions of free and bound variables.

Let L™ be L together with two special symbols:

— A binary (modality), x says y
— A set-binding operator {z}¢(z) meaning the set of all = such that ¢(z)

Note that semantically at the appropriate context {z}p(z) can behave like
Vzeo(x) and sometimes in other contexts, we will use it as a set.

Definition 7. The language FSL has the following expressions:

1. All formulas of L™ are level 0 formulas of FSL.

2. If o(x) and v are formulas of LT then a = {x}p(z) says ¢ are level 1
‘atomic’ formulas of FSL. If (x,x1,...,2,) are free in and y1,...,Ym are
free in 1 then {x1,...,Tn,y1,...,Ym} are free in . The variable x in ¢
gets bound by {x}. The formula of level 1 are obtained by closure under the
connectives and quantifiers of L™ .

3. Let p(x) and ¢ be formulas of FSL of levels r1 and ro resp., then o =
{z}p says ¢ is an ‘atomic’ formula of FSL of level r = max(ry,r2) + 1.

4. Formulas of level n are closed under classical logic connectives and quanti-
fiers of all ‘atoms’ of level m < n.

Definition 8 (FSL classical fibred model of level n).

1. Any classical model with domain D is an FSL model of level 0.

2. Let m be a classical model of level 0 with domain D and let for each subset
U C D,f™(U) be a family of models of level n (with domain D). Then (m, f™)
is a model of level n + 1.

Definition 9 (Classical satisfaction for FSL). We define satisfaction of for-
mulas of level n in classical models of level n' > n as follows.

First observe that any formula of level n is built up from atomic predicates
of level 0 as well as ‘atomic’ formulas of the form o = {x}p(x) says v, where
@ and ¥ are of lower level.

11 Classical predicate logic and intuitionistic predicate logic have the same language.
The difference is in the proof theory and in the semantics.

19

We therefore first have to say how we evaluate (m,{f") F .

We assume by induction that we know how to check satisfaction in m of any
o(x), which is of level < n.

We can therefore identify the set U = {d € D | m F ¢(d)}.

Let m’ € f*(U). We can now evaluate m’ E 1, since ¢ is of level <n — 1.

So we say

(m, ") F « iff for all m’ € £"(U), we have m' .

We need to add that if we encounter the need to evaluate m F {x}5(z), then
we regard {x}p(z) as VaxL(x).

Ezxample 2. Figure 1 is a model for
a(y) = {z}[{u}B(u) says (B(z) — A(z,y))] says F(y)

In Figure 1, m; is a single model in f!(Ug) and mj is a single model in f! Ugw))
as defined later.

Fig. 1.

The set Up is the extension of {z}B(x) in m;.

To calculate the set of pairs (x, y) such that E(x,y) = {u}B(u) says (B(z) —
A(z,y)) holds in m;, we need to go to my in f(Up) and check whether B(z) —
A(z,y) holds in my, z,y are free variables so we check the value under fixed
assignment.)

We now look at E(y) = {«}E(z,y) for y fixed, we collect all elements d in
D such that my F B(d) — A(d,y). Call this set Ug,).

20

To check a(y) = {x}E(z,y) says F(y) in m; we have to check whether F(y)
holds in ms.

We now define intuitionistic models for FSL. This will give semantics for the
intuitionistic language.

Definition 10. We start with intuitionistic Kripke models which we assume for
simplicity have a constant domain. The model m has the form (S, <, tg,h, D)
where D is the domain and (S, <,to) is a partial order with first point ty and h is
an assignment function giving for each t € S and each m-place atomic predicate
P a subset h(t,P) C D™ such that t; < ta = h(t1, P) C h(ta, P)

We let h(P) denote the function At h(t, P). Fort € S let

Sy={s|t<s}
h(t,P) = h(P) | S
<=<[5;

Let m; = (Sty Stv ta hta D)
Note that a formula ¢ holds at m = (S, <,to, h, D) iff to E ¢ according to
the usual Kripke model definition of satisfaction.

1. A model of level 0 is any model m: m = (S, <,tg, h, D).

2. Suppose we have defined the notion of models of level m < n, (based on the
domain D).

We now define the notion of a model of level n + 1

Let m be a model of level 0 with domain D. We need to consider not only m
but also all the models my = (Sy, <;,t,hy, D), for t € S. The definitions will be
gwen simultaneously for all of them.

By an intuitionistic ‘subset’ of D in (S, <,to,h, D), we mean a function d
giving for each t € S, a subset d(t) C D such that t1 < to = d(t1) C d(t2).

Let £ be a function associating with each dy and t € S a family £1*(d;) of
level n models, such that t; <ty = f{*(ds,) 2 fiL(ds,). Then (my, f;) is a model
of level n + 1 where dy =d [S;.

Definition 11 (Satisfaction in fibred intuitionistic models). We define
satisfaction of formulas of level n in models of level n’ > n as follows.

Let (my, £]*) be a level n model. Let o = {x}p(x) says ¢ is of level n. We
assume we know how to check satisfaction of p(x) in any of these models.

We can assume that

d;={xeD|tE p(x)in (m,)}

is defined. Then t E « iff for all models m} in f*(d;) we have mj} E .

21

5

An Example

In this section we want to give an informal example of policy written in FSL.
Suppose we have the following distributed policies and facts of a computer science
department:

The department of Computer Science (C'S_Dep) delegates the University
to say who is regularly enrolled as a student

Va(University says regularly-enrolled(x) =15 3)
CS_Dep says regularly_enrolled(z))

The delegation depth between University and C'S_Dep must be limited to
one, we have that for every principal P (P € D):

P iregularly,enrolled(w) UTLiUETSity -

(4)

P = University

The CS_Dep delegates the group of all the members of the ICT staff to
assign logins to students

Vy({z} ICT -member(x) says has_login(y) —

)
CS_Dep says has_login(y)) ®)

The group of the ICT staff members says that z has a login if and only if
one single member of the group says it

{z}ICT -member(x) says has_login(z) <

6
Jy(ICT -member(y) Ay says has_login(z)) ©)

If someone has a login and is regulary enrolled as student at the University
then he can have access to his mail:

(CS_Dep says has_login(z)A
CS_Dep says regulary_enrolled(z)A

(7)

x says can_access-mail(x)) —

can_access_mail(x)

John and Adam are members of the ICT staff of che Computer Science
Departement:

ICT member(John) A ICT _member(Adam) (8)
The University certifies that Tom is regulary enrolled:

University says regularly_enrolled(Tom) (9)

12 0'S_Dep says 9 in formal FSL must be inteded as {z}(z = CS_Dep) says 1

22

— Tom has a login which has been assigned by Adam

Adam says has_login(Tom) (10)

Suppose now we want to check if Tom can access his mail, so that from
Tom says can_access-mail(Tom) (11)
we want, on the basis of the following knowledge base, to derive
can_access_mail(Tom) (12)
In fact we can make the following reasoning:
— From (1) and (6) we get
CS_Dep says regularly_enrolled(Tom) (13)
— From (7) and (3) we derive
{z}ICT _member(zx) says has_login(Tom) (14)
— With (2) and (11) we obtain

CS_Dep says has_login(Tom) (15)

Now with (12),(10),(8) and (4) we finally conclude

can_access-mail(Tom) (16)

6 Conclusion and Future Works

In this paper we presented FSL, a language for access control in distributed
systems. Our approach is based on fibring [1] which is a methodology to compose
logics and use them within a same language. In Section 4.2 we introduced a fibred
semantics to merge intuitionistic logic with modalities indexed by first-order
formulas creating predicate FSL. Predicate FSL is a language which satisfies the
requirements listed in Section 1, in future works we plan to first extend well
known existing logics like Delegation Logic [3], SecPAL [2] and DEBAC [4] with
the FSL methodology and then to translate them into predicate FSL modal
logic. We are also working on providing a calculus for predicate FSL, in order
to maintain the calculus tractable we plan to employ first-order modal theorem
provers without resorting to second order.

23

References

1.
2.

10.

11.

12.

13.

14.

15.

D. M. Gabbay, “Fibring logics,” Ozford University Press, 1999.

M. Y. Becker, C. Fournet, and A. D. Gordon, “Design and semantics of a de-
centralized authorization language,” in CSF. IEEE Computer Society, 2007, pp.
3-15.

. N. Li, B. N. Grosof, and J. Feigenbaum, “Delegation logic: A logic-based approach

to distributed authorization,” ACM Trans. Inf. Syst. Secur., vol. 6, no. 1, pp.
128-171, 2003.

C. Bertolissi, M. Ferndndez, and S. Barker, “Dynamic event-based access control
as term rewriting,” in DBSec, ser. Lecture Notes in Computer Science, S. Barker
and G.-J. Ahn, Eds., vol. 4602. Springer, 2007, pp. 195-210.

B. W. Lampson, M. Abadi, M. Burrows, and E. Wobber, “Authentication in dis-
tributed systems: Theory and practice,” ACM Trans. Comput. Syst., vol. 10, no. 4,
pp. 265-310, 1992.

M. Abadi, M. Burrows, B. W. Lampson, and G. D. Plotkin, “A calculus for ac-
cess control in distributed systems,” in CRYPTO, ser. Lecture Notes in Computer
Science, J. Feigenbaum, Ed., vol. 576. Springer, 1991, pp. 1-23.

M. Abadi, “Logic in access control,” in LICS. IEEE Computer Society, 2003, pp.
228—.

——, “Access control in a core calculus of dependency,” Electr. Notes Theor. Com-
put. Sci., vol. 172, pp. 5-31, 2007.

——, “Variations in access control logic,” in DEON, ser. Lecture Notes in Com-
puter Science, R. van der Meyden and L. van der Torre, Eds., vol. 5076. Springer,
2008, pp. 96-109.

B. W. Lampson, “Computer security in the real world,” IEEE Computer, vol. 37,
no. 6, pp. 37-46, 2004.

M. D. Schroeder and J. H. Saltzer, “The protection of information in computer
systems,” Procs. IEEE 63, vol. 9, pp. 1278-1308, 1975.

C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen, “Spki
certificate theory,” IETF RFC 2693, 2009.

L. Giuri and P. Iglio, “Role templates for content-based access control,” in ACM
Workshop on Role-Based Access Control, 1997, pp. 153-159.

E. Lupu and M. Sloman, “Reconciling role based management and role based access
control,” in ACM Workshop on Role-Based Access Control, 1997, pp. 135-141.

T. Kosiyatrakul, S. Older, and S.-K. Chin, “A modal logic for role-based access
control,” in MMM-ACNS, ser. Lecture Notes in Computer Science, V. Gorodetsky,
I. V. Kotenko, and V. A. Skormin, Eds., vol. 3685. Springer, 2005, pp. 179-193.

A Appendix

A.1 Axiomatisation and completeness of FSL

We prove completeness for FSL with increasing domains and for FSL with con-
stant domains (F.SL and FSLcp). Well-formed formulas (wffs) are defined re-
cursively as follows:

— Atoms of the form P(t;...t,)! are wifs.

13 where t; .. .t, are classical first-order terms.

24

— 1 isa wif.
— If @ and @ are wif, then so are (—a), (« A B), (aV B), (a — B), (Vza), (za).
— If p(z) and ¢ are wff, the so is {x}p(x) says .

Axiom system for predicate FSL

1. All axioms and rules for intuitionistic logic
2. Extensionality axiom:

Va(pi(z) < pa(x)) —
({z}pr(x) says ¢ — {a}ps(x) says 1))
3. Modality axioms:

H /\z a— 3
F A {z}esays a; — {z}psays

4. Constant domains axioms!4:

(a) Vy{z}psays B(y) — {z}p says VyB(y)

(b) Yy(vV B(y)) — (v — YyB(y))
5. Additional Axioms:

(a) A— {a}psays A
(b) here we put all the axioms we need to craft our logic from Sections 2,38
like for instance:

Vi(p(t) — tsays i) — {x}p(z) says ¢

Definitions and Lemmas

Definition 12 (Consistent and Complete Theory). Suppose we have a the-

ory (4, 0) of sentences'®.

— (4, 0) is consistent, if we do not have for some a; € A, B; € ©
F /\ o — \/ ﬁj
i J

— (A, 0) is complete in the language with variables V iff for all ¥ in the lan-
guage, we have

e Aorped

Definition 13 (Saturated Theory). A theory (A, O) is saturated in a lan-
guage with variables V iff the following holds:

1. (A, 0) is consistent

14 9 not free in) or ¢.
15 intuitively, A is the set of formulas that are true in the model and © is the set of
formulas that are false in the model.

25

2. AxA(x) € A, then for somey €V, A(y) € A.
3. VzA(z) ¢ A, then for somey €V, A(y) ¢ A
4. AVBeAiffAe AorBeA.
5. If for some B; € ©
AFAVE =AcA

with A in the language with variables V

Definition 14 (Constant Domain Theory). A theory (A, O) is said to be
constant domain (CD) theory in language V iff for any Ve A(z) and any 8; € ©
such that

A¥VzA@) v/ B;
J

then for some y

A¥ Aly) V\/ﬁj

Lemma 1. Assume the CD aziom Vx(B8V A(x) — (BVVxA(x))), then if (A, O)
is a consistent CD theory and A = AU{aq,...,an}t, @ = OU{y1,...,Ym}
and (A ,0) is consistent then (A ,0) is a CD theory

Proof. Assume
AU A0k (\ BV (V 2) v Ved(a)
i J J
we can assume x not in B;,a;, v; hence

AN i = VeV, 55) V (V) V Ve A(z)
A¥Ve(N\; i = (V;8;) V (V7)) V Alz))

hence for some y

AF /\ai—>ﬁ\/A(y)\/'yj

hence A" ¥ BV A(y) V v
Lemma 2. Let (A,O) be a saturated theory. Let A" be

{dl({z}p(z) says v) € A}

Assume
({z}p(z) says) € ©
A ¥ BVVTA(z)

then for some y

OF BV Ay)

26

Proof. The proof is by contradiction, suppose it is not the case that
OF BV Ay)

then, for each y there exists a finite A;J C A" such that
¥ N4, — BV Ay)
hence, with « € A;/

¥ /\{x}go(x) says a — {z}psays SV A(y)

hence, for all y
{z}psays BV A(y) € A

Since A is saturated we get:

Vy{z}psays (BV A(y)) € A

hence
{z}psaysvVy(BV A(y)) € A
hence
Yy(BV A(y)) € A
but then

BV VyA(y) € A

which s a contradiction.

Lemma 3. Let (A, O) be a consistent CD theory, then (A, ©) can be extended
to a saturated theory (A ,©) in the same laguage with A C A and © C O

Proof. The proof is by induction on (A, O,) the theory, let A, = A and Oy =
O.

Assume (A, 6,) is defined, ©,, — O is finite and (4,,,0,,) is CD. Let Bn+1
be the (n + 1)th wff of the language. Then either (A,,, O, U B,11) is consistent
or is mot consistent, it it is consistent let

An-‘rl:An
O, +1=6,U{)

If it is inconsistent then (A, U B, 0,) must be consistent so let

An+1 :Anu{ﬂ}
0,+1=0,

In any case (Apy1,On41) is CD.
Now let (A,0) =J,,(An, Or), this theory is the saturated theory.

27

Definition 15. Let S be the set of all complete theories in the predicate language
FSL. If the logic is CD then all the theories are in the language with variables V,
if the logic is not CD, then assume that each theory leaves us an infinite number
of variables from V not in the theory. We can write (A,©0) as A because for a
saturated theory (A, 0), we have © = {B|A ¥ (}.

Define two relations on S

1. (set inclusion) A C A

2. For every {z}p(zx) let AR{I}MI)A/ iff for all v such that {z}p saysy € A
we have i € A

Lemma 4. Suppose A¥ a — (3, then for some A" D A, A"+« and A' ¥ 3

Proof. From hypothesis we have
AU{a} ¥ g
and AU {a} can be completed to be a saturated theory A’ such that
Ayp

In case of logic CD, this can be done in the same language with variables V. If
the logic is not CD, then since there is an infinite number of variables not in A,
A can use some of them, still leaving infinitely out of A

Lemma 5. Assume AV Vrp(x), if the logic is not CD, then for some u not in
the language od A, we have A ¥ ¢(x). A can be extended in a saturated A by
adding the variable u and more variables such that A ¥ o(u), and still infinitely
numbers of variables are not in A If the logic is CD, such a wu is in the logic
in A and (A, {p(u)}) can be extended to a complete and saturated theory in the
same language.

Lemma 6. Let (A, O) be complete and saturated. Assume {x} says is not
in ©. Then
Ay = {al{z}p(z) says a € A}

does not prove 1, otherwise
F /\ o — P

hence
- /\{x}gp(x) says a; — {x}o(z) says ¢

hence
{z}p(x)says € A

Since Ag does not prove ¥, and (Ao, {1}) is consistent, we can extend Ag to
a saturated theory (A ,0"). In case the logic is CD, (A ,0") will be in the same
language. Otherwise we use more variables.

28

Lemma 7. Properties of the model (S,C, Riz,):
1. Al Q AQ and A2R{x}ap6 then AIR{m}go@

Proof. AyR(;1,0 means for every {x}psays ¢ € Ay we have ¢ € ©. Since
Ay C Ay we have for every {x}psays) € A we have ¢ € O.

2. If we add the aziom Vz(p(z) — ¢ (x)) — ({z}psaysy — {x}p says)
we get the condition

AFVa(p(z) < ¢ (x))

implies for all ©
AR{:L’}LP@ — AR{I}W/Q

Definition 16 (Construction of the model). Take (S, C, Riz}p(a)) as de-
fined above. For atomic P(x1,...,2,) and A € S, let

AEPIfftPe A

The domain of A is defined by the variables of A. If the logic is CD all A will
have variables V as domain, otherwise we will have variable domains.

Lemma 8. For any ¢, A
AEyiffpe A

Proof. Proof by taking in exam "—” and "says”.

29

