
Modeling and Validating Norms*

Viviane Torres da Silva Christiano Braga

Computer Science Department, Universidade Federal Fluminense (UFF)

Rua Passos da Pátria 156, Bloco E, 24210-240, Niterói, Brazil

{viviane.silva, cbraga}@ic.uff.br

Abstract. Norms describe the permissions, prohibitions and obligations of

agents in multi-agent systems in order to regulate their behavior. In this paper

we propose a normative modeling language that makes possible the modeling

of norms motivating the modeling of such norms together with the non-

normative part of the system. In addition, we also propose a mechanism to

validate the norms at design time, i.e., to check if the norms respect the

constraints defined by the language and also their possible conflicts.

Keywords: norm, modeling, validation, conflict, metamodel.

1 Introduction

Norms are used to regulate the behavior of the agents in open multi-agent systems

(MAS) by describing their permissions, prohibitions and obligations. The definition

of norms is an important part of the specification of a system and should be treated as

an important task of MAS design. Methodologies such as Gaia [29][29], MaSE [5],

SODA [20] and PASSI [3] [10] propose the specification of organization rules (or

norms) during the analysis phase and recognize the need to associate these rules with

design elements. However, there are still few modeling languages that support the

modeling of norms together with the modeling of the entities that compose a MAS.

It is important to consider norms while designing a MAS since:

(i) Norms refer to actions, agents and roles that compose a system. They specify

the actions that agents playing roles in the system are obliged, permitted or prohibited

to execute. Therefore, redesigning the system, for instance, by excluding a role, may

affect the norms. On the other hand, the definition of a new norm will only be

possible if the actions, agents and roles being mentioned in the norm are being

considered in the system design.

(ii) Norms’ conflicts can cause the redesign of a system. Two norms are in conflict,

for instance, if one gives a permission and another a prohibition to an agent to execute

the same action in the same time frame. When it occurs, it is necessary to rewrite one

of the norms in order to eliminate the conflict. While rewriting the norm, it may be

desired, or even necessary, to redesign the system.

* The present work has been partially funded by the Spanish project “Agreement Technologies”

(CONSOLIDER CSD2007-0022) and by the Brazilian research council CNPq under project

no 550865/2007-1.

Dagstuhl Seminar Proceedings 09121
Normative Multi-Agent Systems
http://drops.dagstuhl.de/opus/volltexte/2009/1918

1

The two main goals of this paper are: (i) to support norm modeling during the

design phase of a MAS and (ii) to define a technique to check possible conflicts

between two defined norms at design time. We propose a normative modeling

language, called NormML, that can be used during the design phase of a MAS to

model the corresponding norms and an invariant-based technique to check for well-

formedness of the norms and conflicts between two norms. Such invariants are

defined over the metamodel of NormML.

The novelty of our approach is twofold: first, the modeling language itself, to

model norms and second a validation technique that, when supported by a tool

(Section 3.3), can automatically check conflicts between norms at design-time. None

of the proposed methodologies or modeling languages for MAS is able to represent

the three norm kinds (permission, obligation and prohibition) and to check their

conflicts.

This paper is organized as follows. Section 2 provides some background material

and Section 3 introduces our normative modeling language and tool used to

automatically check for conflicts and query the norms model. In Section 4 we present

related work. Section 5 concludes the paper with final remarks and discusses future

work.

2 Background

NormML is a modeling language to specify norms that constraint the behavior of

agents in MAS. Our modeling language was designed with the perception that norm

specification in MAS design and security policy specification in role-based access

control (RBAC) [10] design are closely coupled issues. RBAC security policies

specify the permissions that a user has under a given role, while trying to access

system resources. In MAS we specify the norms that regulate the behavior (or

actions) of an agent playing a given role.

In this section we briefly provide background material for the rest of this paper. In

Section 2.1 we introduce the necessary norm-related terminology that will be used

throughout the paper. Section 2.2 introduces basic notions of models and metamodels,

necessary to understand the design of NormML. In Section 2.3 we introduce Secure

UML [1], a UML-based [18] modeling language for RBAC, which we extend with

normative-related concepts. Such an extension gives rise to NormML.

2.1 Norms

A norm can be used to regulate the interaction between two agents—those norms are

called dialogical norms [10]—and to regulate the access to resources, the entering and

leaving of agents in organizations and environments, and the permissions to play

roles.

A norm describes an action that is being permitted, obligated or prohibited, the

entity whose behavior is being regulated (an agent, a role or an agent playing a given

role) and a set of conditions to activate and deactivate the norm.

2

2.2 Models and metamodels

A modeling language provides a vocabulary (concepts and relations) for creating

models. Such vocabulary is described by the metamodel of the modeling language

which elements formalize the language concepts and their relationships. A metamodel

may include invariants that specify additional properties that the models must fulfill

as instances of the metamodel. Such invariants may specify the well-formedness

conditions of a model with respect to its metamodel and the consistency conditions

between metamodel concepts.

When UML is chosen as metalanguage, a metamodel is represented by a class

diagram and its invariants are written in OCL (Object Constraint Language) [17]. This

is the choice followed in this paper.

2.3 Secure UML

Secure UML provides a language for modelling Roles, Permissions, Actions,

Resources, and Authorization Constraints, along with the relationships between

permissions and roles, actions and permissions, resources and actions, and constraints

and permissions. The actions described in the language can be either Atomic or

Composite. The atomic actions are intended to map directly onto actual operations of

the modeled system (delete, update, read, create and execute). The composite actions

are used to hierarchically group atomic ones.

SecureUML leaves open what the protected resources are and which actions they

offer to clients. ComponentUML [1] is a simple language for modeling component-

based systems that provides provides a subset of UML class models: entities can be

related by associations and may have attributes and methods. Therefore, Entity,

Attribute, Method, Association and AssociationEnd are the possible protected

resources. Figure 1 illustrates the metamodel of SecureUML+ComponentUML†. By

using such SecureUML+ComponentUML‡ it is possible, for instance, to specify the

permissions a user playing a given role must have to execute a method (or to update

an attribute) of a resource. In order to do so, it is necessary to instantiate the

metaclasses User, Role, Permission, ActionExecute, Method (or ActionUpdate) and

Attribute.

3 NormML: A Normative Modeling Language

NormML is a UML-based modeling language for the specification of norms in MAS.

The choice for UML as metalanguage allows for an easy integration of NormML with

UML-based MAS modeling languages such as AUML[19], AML[4] and MAS-

† The metamodel of SecureUML+ComponentUML (from now referred as SecureUML

metamodel) is available at http://www.ic.uff.br/~viviane.silva/normML/secureUML.pdf
‡ The metamodel of SecureUML+ComponentUML (from now referred as SecureUML

metamodel) is available at http://www.ic.uff.br/~viviane.silva/normML/secureUML.pdf

3

ML[25]. Moreover, metamodel-based validation techniques may be applied to norms

specified in NormML.

Figure 1. SecureUML+ComponenteUML metamodel

4

As mentioned in Section 2, NormML extends SecureUML modeling language. The

NormML metamodel extends the SecureUML metamodel with the following basic

elements: Norm, Agent and AgentAction. The NormML metamodel also includes a set

of invariants that guarantees the well-formedness of a norm and several operations

that are used to identify conflicts between two given norms.

3.1 The NormML Metamodel

The NormML metamodel extends the Secure UML metamodel in order to view norms

as security policies, as mentioned in Section 2. While in Secure UML it is possible to

define permissions a user has, i.e., the constraints that a user, in a given role, must

fulfill to perform actions over the system resources, in NormML is possible to define

the norms (obligations, permissions or prohibitions) an entity must obey, i.e., it is

possible to describe the set of actions an agent, a role or an agent playing a role is

obliged, permitted or prohibited to execute, conditioned by the execution of other

actions. Figure 2 presents the NormML metamodel. (Some of SecureUML metaclasses

are not presented for readability purposes.) A norm corresponds to an instance of the

NormML metamodel, i.e., it is defined by instantiating several metaclasses and their

relationships from the NormML metamodel. A norm may be either a permission (by

instantiating the metaclass NormPermission), a prohibition (by instantiating the

metaclass NormProhibition) or an obligation (by instantiating the metaclass

NormObligation).

A norm may constraint the behavior of Agents by restricting the behavior of any

given agent playing a given Role, or by restricting the behavior of a specific agent

while playing a role. This is captured by the Agent<->Role relationship.

NormML inherits four resource kinds from SecureUML: Attribute, Method, Entity

and AssociationEnd. It extends the set of resources with agent’s actions and roles’

actions represented by the metaclass AgentAction. Thus, it is possible to describe

norms to control the access to attributes, methods, objects and association ends, and

also to control the execution of the actions of agents and roles.

Each resource kind has a set of actions that can be used to control access to a

resource. For instance, attributes are associated with the actions read, update and full

access (read+update). In the case of actions of agents and roles (AgentAction

metaclass), the behavior that applies to it is the execution of the action.

Furthermore, NormML allows for the specification of the time period that a norm is

active, which is represented by the metaclass NormConstraint. If a norm is

conditioned by a Before clause, it means that the norm is active before the execution

of the action(s) described in the Before clause. If a norm is conditioned by an After

clause, it means that the norm is active only after the execution of the action(s)

described in the After clause. In the case of a Between clause, the norm is only active

during the period delimited by two groups of actions.

In order to illustrate the use of NormML to model the norms of a MAS, consider

norms N1, N2 and N3 in Table 1. Figure 3, Figure 4 and Figure 5 illustrates the norm

diagrams of N1, N2 and N3, respectively.

N1: Seller is obliged to give the good to the buyer after the given buyer paid for it.

5

N2: Seller is permitted to update the price of a good before a buyer pays for it.

N3: Buyer is prohibited to return a good he/she has bought.

Table 1 - Norm example

Figure 2. NormML metamodel

6

Figure 3. Norm N1 described by using NormML

Figure 4. Norm N2 described by using NormML

7

Figure 5. Norm N3 described by using NormML

3.2 Validating the Norms

The process of validating a norm encompasses two steps. First, the norm, as an

instance of the NormML metamodel, is checked according to the invariants of the

metamodel. The invariants check if the norm is well-formed according to the

metamodel specification. The second step checks if any given two norms are in

conflict.

Well-formed norms

Not all the norms that can be instantiated from the metamodel are well-formed.

Examples of well-formed rules of the NormML metamodel are§:

WFR1: The resource AgentAction can only be linked with the atomic action called

AtomicExecute. Any other atomic action does not apply to AgentAction.
context AgentAction

inv: AgentAction.allInstances-> forAll(aa|aa.action->

 select(a|not(a.oclIsTypeOf(AtomicExecution)))->isEmpty())

WFR2: The resource AgentAction cannot be constrained by Permission. Although

the metaclass Permission is defined in the Secure UML metamodel to define the

permissions a user has over resources, the resource AgentAction can only be used by

Norms to restrict the actions of an agent.
context Permission

inv: Permission.allInstances->forAll(p|p.accesses->

 select(a|a.resource.oclIsTypeOf(AgentAction))–>isEmpty())

WFR3: A norm that regulates the execution of a given action cannot be

conditioned by the execution of the same action by the same agent. An agent cannot

be obliged, permitted or prohibited to execute an action conditioned to the execution

of such action. This rule uses four operations in order to guarantee that the action

being regulated by the norm is not in the set of actions of the Before, After or Between

constraints.

§ Some of the well-formed rules of the NormML metamodel are available in

http://www.ic.uff.br/~viviane.silva/normML/normML.pdf. We are using OCL [17] to

describe the well-formed rules and also the operations to check conflicts.

8

context Norm

inv: self.GetAgentExecutedActionInBeforeConstraint->
 union(self.GetAgentExecutedActionInAfterConstraint)->

 union(self.GetAgentExecutedActionInBetweenConstraint)->
 excludes(self.GetAgentExecutedActionRestrictedByNorm)

Checking for Conflicts

After verifying the well-formedness of the norms, it is important to check if there are

conflicts between the norms. Two norms are in conflict, or are incompatible, if:

1. One states a permission and another one a prohibition to execute the same action

and such norms are active during the same period of time or during periods of time

that intersects. The conflict occurs because the agent is permitted and prohibited to

execute an action at the same time. Example:

N3a: Buyer is prohibited to return a good it has bought.

N3b: Buyer is permitted to return a good it has bought before using it.

The activation time of N3a and N3b intersects since N3a states an unlimited

prohibition. Thus, these norms are in conflict.

2. One norm states an obligation and another one a prohibition over the same

action and such norms are active during the same period of time or during periods of

time that intersect. The conflict occurs because the agent is obliged and prohibited to

execute an action at the same time. Example:

N1a: Seller is obliged to give the good to buyer after the given buyer paid for it.

N1b: Seller is prohibited to give the good to buyer before the latter pays for it.

The activation time of N1a and N1b do not intersect. These norms are not in

conflict since the seller is not being obliged and prohibited to execute the same

action during the same period of time.

3. One norm states a permission and another one an obligation over the same

action and such norms are not active during the same period of time. A conflict may

occur if an agent is obliged to execute an action that it is not permitted to. Example:

N2a: Seller is permitted to update the price of a good before a buyer pays for it.

N2b: Seller is obliged to update the price of a good after a buyer pays for it.

The activation time of N2a and N2b do not intersect, thus these norms are in

conflict.

In addition, we also consider that a conflict can be caused due to the relationship

between an agent and the roles it is playing.

o A norm applied to a role and another one applied to an agent may be in

conflict: A norm applied to a role restricts the behavior of all agents playing such

role. Therefore, when searching for conflicts, it is important to check the

incompatible norms that are applied to roles and also the ones applied to agents that

are able to play such roles. Note that agents can play several roles.

o A norm applied to a role and another one applied to an agent playing the role

may be in conflict: Since the norm applied to a role regulates the behavior of all

agents applying such role, when searching for conflicts, it is important to check the

incompatible norms that are applied to roles and to agents playing roles.

o A norm applied to an agent and another one applied to the agent playing a

role may be in conflict: Since both norms will regulate the behavior of the same

9

agent, when searching for conflicts it is important to check the incompatible norms

that are applied to agents and to agents playing roles.

Note that two norms applied to different roles are never in conflict even though the

same agent can play both roles. Although an agent can play more than one role at the

same time, an action is always executed in the context of one role. We understand that

an agent must be able to obey each norm separately while playing the roles.

The operation CheckConflict illustrated below should be used to check conflicts

between two norms. First, it checks if the norms are the same and, it they are not, if

they apply to the same or related entities (as described above). Then, three important

auxiliary operations** are used to check conflicts between an obligation and a

prohibition, between an obligation and a permission and between a permission and an

obligation.
context :: CheckConflict(norm1,norm2) : String

body if ((norm1<>norm2)

then(

 if (CheckSameOrRelatedEntities(norm1,norm2)

 then(

 if (CheckConflictObligationProhibition(norm1, norm2) =“conflict” OR

 CheckConflictObligationPermission (norm1, norm2) =“conflict” OR

 CheckConflictPermissionObligation (norm1, norm2) = “conflict”)

 then (“conflict”)

 else(

 if (CheckConflictObligationProhibition(norm1,norm2) = “conflictFree” AND

 CheckConflictObligationPermission(norm1,norm2) = “conflictFree” AND

 CheckConflictPermissionObligation (norm1, norm2) = “conflictFree”)

 then(“conflictFree”)

 else (“cannotBeVerified”)

))

 else (“conflictFree”))

else (“sameNorm”)

In order to exemplify one of the three auxiliary operations, let’s focus on the

CheckConflictObligationPermission operation, since it is frequently forgotten by

other authors. First, this operation checks if it is dealing with a permission and an

obligation and if both norms regulate the same actions (case 0 in operation

CheckConflictObligationPermission). Second, it checks if the permission is not

conditioned to any situation (case 1). In such case, there is not a conflict because the

entity is always permitted to execute the action it is being obliged.

Then, it checks if the norms are constrained to the same set of constraints, i.e., if

the actions that activate and deactivate the norms are the same (case 2). If it is the

case that both norms are constrained by a Before clause, then there is not a conflict

since the entity is being obligated to execute an action while it is permitted to. Cases

2.2, 2.3 and 2.4 in operation CheckConflictObligationPermission are similar.

However, if the obligation is conditioned by a Between clause and the permission to a

Before or an After (cases 2.5 and 2.6) it is not possible to conclude during design time

if these norms are in conflict. It will depend on the sequence of the executions of the

actions that will activate the norms. On the other hand, if the permission is being

constrained to a Between condition and the obligation by a Before or an After (cases

** The implementation of such operations can be found in

http://maude.sip.ucm.es/~viviane/normML.txt

10

2.7 and 2.8), both norms are in conflicts since the entity is being obliged to execute an

action without permission.

If the norms are not conditioned by the same set of conditions, then it is only

possible to affirm that they are in conflict (i) in the case one of the norms is

conditioned to an After†† and the other to a Before‡‡ (cases 3.1 and 3.2) and (ii) in the

case the permission is conditioned to a Between and the obligation to a Before (case

3,3). In both cases the agent is being obliged to execute a norm that it is not permitted

to.
context :: CheckConflictObligationPermission(norm1,norm2) : String

body

if ((norm1.oclIsTypeOf(NormObligation) and norm2.oclIsTypeOf(NormPermission))

 or (norm1.oclIsTypeOf(NormPermission) and norm2.oclIsTypeOf(NormObligation)))

then (**case 0,check if norms applies to same action**

 if (norm1.accesses=norm2.accesses

 then (**case 1**

 if ((norm1.oclIsTypeOf(NormPermission) and

 norm1.ActionsInConstraintOfNorm()->isEmpty()()) or

 (norm2.oclIsTypeOf(NormPermission) and

 norm2.ActionsInConstraintOfNorm()->isEmpty()()))

 then (“conflictFree”)

 else (**case 2**

 if (CheckSameSetOfConstraint(norm1,norm2)

 then (**case 2.1**

 if (CheckBeforeBeforeNorms(norm1,norm2))

 then (“conflicFree”)

 else (**case 2.2**

 if (CheckAfterAftertNorms(norm1,norm2))

 then (“conflictFree”)

 else (**case 2.3**

 if (CheckBetweenBetweentNorms(norm1,norm2))

 then (“conflictFree”)

 else (**case 2.4**

 if (CheckAfterBeforeAfterBeforeNorms(norm1,norm2))

 then (“conflictFree”)

 else (**case 2.5**
 if(CheckBetweenObligationBeforePermissionNorms(norm1,norm2))

 then (“cannotBeVerified”)

 else (**case 2.6**

 if (CheckBetweenObligationAfterPermissionNorms(norm1,norm2))

 then (“cannotBeVerified”)

 else (**case 2.7**

 if (CheckBetweenPermissionBeforeObligation(norm1,norm2))

 then (“conflict”)

 else (**case 2.8**

 if (CheckBetweenPermissionAfterObligationNorms
 (norm1,norm2))

 then (“conflict”)

 else (“cannoBeVerified”)

))))))))

 else (**case 3**

 case 3.1

 if (CheckBeforePermissionAfterObligationNorms(norm1,norm2))

 then (“conflict”)

†† Note that we are considering that the After condition specifies that the norm is only valid

when all the actions identified in the condition are executed.
‡‡ Note that we are considering that the Before condition specifies that the norm is only valid

while none of the actions described in such condition is executed.

11

 else (**case 3.2**

 if (CheckAfterPermissionBeforeObligationNorms(norm1,norm2))

 then (“conflict”)

 else (**case 3.3**

 if (CheckBetweenPermissionBeforeObligationNorms(norm1,norm2))

 then (“conflict”)

 else (“cannotBeVerified”)

)))))

 else (“conflictFree”))

else (“conflictFree”)

3.3 The Use of MOVA to Model, Validate and Query the Norms

MOVA (Modeling and Validation group) tool [6] was used as a modeling tool (i) to

describe the NormML metamodel, (ii) to create the normative models, (iii) to check the

well-formedness of the norms and their conflicts, and also (iv) to inspect the

normative models. MOVA allows for the creation of class diagrams, the definition of

a set of invariants and operations over such diagrams and checking if object diagrams

respect the invariants defined in class diagrams. We used MOVA to define the

NormML metamodel as a class diagram and to describe the well-formed rules of the

metamodel as invariants of the class diagram. The normative models were then

described as object diagrams and checked if they comply with these invariants.

By using MOVA it is also possible to query the object diagram (i.e., to define

queries over such models) that can use operations defined in the class diagram. Such

mechanism was used not only to check the conflicts between the modeled norms by

using the operations that investigate the possible conflicts but also to explore the

normative models themselves. Such investigation is fundamental when dealing with

large-scale MAS that typically define a large number of norms. After describing

hundreds norms it is almost impossible to find out, without the helping of a tool, all

the norms applied to a role, for instance.

4 RELATED WORK

In this section we briefly describe how some methodologies and modeling languages

deal with the modeling of the system norms. In addition we also present and compare

works that have also proposed approaches to deal with norm conflicts.

4.1 Methodologies

Methodologies such as MESSAGE [3], Tropos [2] and Prometheus [22] do not

address the problem of identifying and explicitly modeling norms or organizational

rules. However, others such as Gaia, SODA, MaSE and PASSI state the importance

of modeling organization rules during the analysis and design phases.

Gaia affirms that the explicit identification of such rules in the analysis phase is

very important for the correct understanding of the characteristics that the

organization-to-be must express and for the subsequent definition of the system

12

structure by the designer. Although they have proposed a formal language to model

the norms, they have not described any mechanism to validate the norms in order to

find out conflicts and to verify if the elements being referred to by the norms are

elements being modeled.

In [7] the authors propose the integration of organizational rules into the MaSE

methodology by extending its analysis and design phases. The rules are modeled in

the analysis phase, while in the design phase, the organization tasks related to the

implementation and enforcement of those rules are described. Like Gaia, MaSE

defines a formal language for describing norms but have not proposed how to find out

norms’ conflicts or how to check consistency between the elements described in the

norms and the elements being modeled.

SODA states the need for modeling social rules as agents’ interactions in the

analysis phase and defines social models expressive enough to model the society

interaction rules in the design phase. However, as opposed to Gaia and MaSE, this

methodology neither presents a guideline to define such rules nor describes in details

the characteristics of the proposed social models.

In the role description phase of the PASSI methodology, it is possible to introduce

social rules (or organization rules) in the UML class diagrams used to model the

agents, their roles and actions. The rules may be expressed in OCL or other formal, or

semi-formal manner depending on one’s needs. The two main drawbacks of this

approach to model norms are: (i) there is not a method to verify if the elements being

described in the norms are modeled in the system diagrams; and (ii) they do not

propose any mechanism to check if the norms have conflicts.

4.2 Modeling Languages

Both AUML and AML recognize the need for modeling norms but have not defined

any modeling technique to describe them. AML states that roles are used to define a

normative behavioral repertoire of entities but has not proposed the modeling of

norms. Thus, it is not possible to point out the permissions, obligations and

prohibitions of an agent playing a role.

In AOR [28] the use of deontic logic to describe norms is still under investigation.

Although it is possible to describe rights (or permissions) and prohibitions, it is still

not possible to describe obligation. In addition, there is not any mechanism to detect

norms conflicts, even though it is possible to describe them.

MAS-ML originally proposed the modeling of duties (or obligations) and rights as

actions associated with roles. However, it is not possible to model more complex

norms such as the ones conditioned to an event or to check their conflicts.

4.3 Other Approaches that deal with Norm Conflicts

There are several works that introduce approaches to check conflicts between norms

and to solve such conflicts [9][13][21][23][26]. Since we have not presented any

suggestion to the resolution of conflicts, we compare our approach with the ones that

can find out the conflicts.

13

In [23] the authors identify three forms of conflict/inconsistency called total-total,

total-partial and intersection. The approach we propose to validate the set of norms

and detect conflicts can capture these three forms of conflict/inconsistency. In [9]

several aspects of some types of conflicts and the problems they arise are discussed.

In particular, the authors discuss the difference between deontic inconsistencies,

which occur when actions are simultaneously prohibited and permitted, and deontic

conflicts, which occur when actions are simultaneously prohibited and obliged. In our

approach we present solutions to deal with these two types of conflicts.

The model presented in [14], called NoA, is able to detect conflicts between norms

at runtime and propose resolutions to those conflicts. They state that by allowing

conflicts it has partial benefits in the engineering of multi-agent systems. Thus, the

main difference between their approach and ours is that our mechanism must be used

to check norms at design time. In our point of view, at least the norms defined by the

design must be conflict-free before the execution of the system.

Differently from us, in [12] the authors present an approach to detect conflict based

on the time a norm is activated. In our approach we have not associated a norm with

an activation time but with the execution of a set of actions that activates the norm. In

[26] the authors present an approach to detect conflicts between related norms, i.e.,

norms applied to the same agent/role, restricting the same actions and whose

activation periods overlap. The mechanism used to detect conflicts proposed in our

paper is based on the approach presented in [26]. We extend such approach to

consider conflicts between norms that state permissions and obligations—the authors

in [26] only consider permissions and prohibitions or obligations and prohibitions—

and to deal with activation time that is related to the execution of actions—the

activation time proposed in [26] is related to values associated with attributes.

5 CONCLUSIONS AND FUTURE WORK

We have presented NormML, a normative modeling language that builds on role-based

access control concepts. By using NormML it is possible to identify roles, agents and

actions of a system while modeling its norms. Since NormML is based on UML, the

integration of such language with any multi-agent system modeling language also

based in UML, such as AUML, AML and MAS-ML, is facilitated. The roles, agents

and actions identified while modeling the norms must be modeled in the agent-

oriented models provided by such modeling languages.

We have defined a set of invariants and operations that makes possible the

validation of the norms by verifying their well-formedness and by checking the

possible conflicts between norms. We have defined three main operations to detect

conflicts between an obligation and a permission, an obligation and a prohibition, and

a permission and a prohibition.

We are in the process of extending the language to describe temporal restrictions

and also sanctions. In order to be able to define the NormML metamodel, we have

based such definition in the normative grammar proposed in [24]. This grammar

extends the normative language proposed by Garcia-Camino et al. [10] with the

notion of non-dialogical actions proposed by Vazquez-Salceda et al. [27] and with the

14

definition of sanctions and relationships between norms stated by Lopez y Lopez et

al. in [11][16]. However, the current version of NormML does not contemplate the

definition of sanctions or temporal conditions.

It is also our intension to define a sequence diagram for NormML to describe the

sequence of the executed actions. By using such diagram it will be possible to check

conflicts that depend on the sequence of the executed actions (as mentioned in Section

3.2) and it will also be possible to identify the norms that are active and the ones that

were violated.

REFERENCES

[1] Basin, D. A., Doser, J. and Lodderstedt, T. 2006. Model driven security: From UML

models to access control infrastructures. ACMTrans. on Soft. Eng. and Met.15(1)pp.39-91

[2] Bresciani, P, Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J. 2004. Tropos: An

Agent-Oriented Software Development Methodology. In JAAMAS, 8, pp. 203-236.

[3] Caire, G., Coulier, W., Garijo, F., Gomez, J., Pavon, J., Leal, F., Chainho, P., Kearney, P.,

Stark, J., Evans, R., Massonet, P. 2002. Agent Oriented Analysis Using Message/UML. In

Agent-Oriented Software Engineering II, LNCS 2222, pp. 119-135.

[4] Caronervenka, R., Trenccaronansky, I., Calisti M. and Greenwood, D. 2005. AML: Agent

Modeling Language Toward Industry-Grade Agent-Based Modeling. InAgent-Oriented

Software Engineering V, LNCS 3382, pp. 31-46.

[5] Ciancarini, P., Omicini, A., and Zambonelli, F. 2000. Multiagent System Engineering: the

Coordination Viewpoint. In Intelligent Agents VI., LNAI 1767, pp. 250-259.

[6] Clavel, M., Egea, M., Silva, V. 2007. The MOVA Tool: A Rewriting-Based UML

Modeling, Measuring, and Validation Tool. In Proc. Workshop de Demonstraciones de

Herramientas de las Jornadas de Ingeniería del Software y Bases de Datos, pp. 393-394.

[7] Cossentino, M. 2005. From requirements to code with the PASSI methodology. In Agent-

oriented Methods, Idea group, pp. 79-106.

[8] DeLoach, S. 2002. Modeling Organizational Rules in the Multiagent System Engineering

Methodology”, in Proc. Canadian Conf.on Artificial Intelligence, LNAI 2338, pp. 1-15.

[9] Elhag, A; Breuker, J.; Brouwer P. 2000. On the formal analysis of normative conflicts.

Information and Communication Technology Law, 9(3), pp. 2007-217.

[10] Ferraiolo, D. F., Kuhn, D. R., and Chandramouli, R. 2007. Role-Based Access Control.

Artech House Publishers, 2nd Edition.

[11] García-Camino, A., Noriega, P. and Rodríguez-Aguilar, J. 2005. Implementing Norms in

Electronic Institutions. In Proc. of Autonomous Agents and MAS, ACMPress,pp.667-673.

[12] García-Camino, A., Noriega, P. and Rodríguez-Aguilar, J. 2007. An algorithm for conflict

resolution in regulated compound activities. In Engineering Societies in the Agents World

VII, LNCS 4457, Spriger-Verlag, pp.193-208.

[13] Kagal, L; Finin, T. (2007). Modeling conversation policies using permissions and

obligations. Journal of Autonomous Agents and Multagent Systems, 14(2), pp. 187-206.

[14] Kollingbaum, M; Norman, T.; Preece, A; Sleeman, D. 2007. Norm Conflicts and

Inconsistencies in Virtual Organisations. In Coordination, Organizations, Institutions, and

Norms in Agent Systems II, LNCS, 4386.

15

[15] López, F. 2003. Social Power and Norms: Impact on agent behavior. PhD thesis, Univ. of

Southampton, Faculty of Eng. and Applied Science, Depart. Electronics and Computer

Science.

[16] López, F. Luck, M. and d'Inverno, M. 2002. Constraining autonomy through norms. In

Proceedings of Autonomous Agents and Multi-Agent Systems, ACM Press, pp. 674-681

[17] Object Management group, OCL Specification, OMG. Available in

http://www.omg.org/docs/ptc/03-10-14.pdf.

[18] Object Management group, UML 2.0, OMG. Available in http://www.uml.org/.

[19] Odell, J., Parunak, H., and Bauer, B. 2000. Extending UML for Agents. In Proc. Agent-

Oriented Information Systems Workshop at National Conf. of AI, pp. 3-17.

[20] Omicini, A. 2002. SODA: Societies and Infrastructures in the Analysis and Design of

Agent-Based Systems. In Agent-Oriented Software Engineering, LNCS1957, pp. 311-326.

[21] Oren, N.; Luck, M; Miles, S., Norman, T. 2008. An argumentation-inspired heuristic for

resolving normative conflict. In Proceedings of the 5th Workshop on Coordination,

Organizations, Institutions and Norms in Agent Systems.

[22] Padgham, L. and Winikoff, M. 2002. Prometheus: A Methodology for Developing

Intelligent Agents. In Proc.Agent-Oriented Software Engineering Workshop, pp. 174-185.

[23] Ross, A. 1958. On Law and Justice. Stevens & Sons.

[24] Silva, V. 2008. From the Specification to the Implementation of Norms: An Automatic

Approach to Generate Rules from Norms to Govern the Behaviour of Agents. JAAMAS,

Special Issue on Norms in Muli-Agent Systems, volume 17, number1, pp. 113-155.

[25] Silva, V.; Lucena, C. 2004. From a Conceptual Framework for Agents and Objects to a

Multi-Agent System Modeling Language. JAAMAS, 9(1-2), Kluwer, pp. 145-189.

[26] Vasconcelos, W., Kollingbaum, M., Norman, T. 2007. Resolving Conflict and

Inconsistency in Norm-Regulated Virtual Organizations. In Proc. AAMAS.

[27] Vázquez-Salceda, J., Aldewereld, H., Dignum, F. 2004. Implementing Norms in

Multiagent Systems. In LNAI 3187, pp. 313-327.

[28] Wagner, G. 2003. The Agent-Object-Relationship Metamodel: Towards a Unified View of

State and Behaviour. In Information Systems, vol. 28(5).

[29] Zambonelli, F., Jennings, N., Wooldridge, M. 2003. Developing Multiagent Systems: The

Gaia Methodology. ACM Trans. on Soft. Eng. and Methodology, Vol., no 3, pp. 317-370.

16

