
Normative Systems in Computer Science
Ten Guidelines for Normative Multiagent Systems

Guido Boella1,2, Gabriella Pigozzi2, and Leendert van der Torre2

1 Department of Computer Science, University of Torino
2 Computer Science and Communication, University of Luxembourg

Abstract. In this paper we introduce and discuss ten guidelines for the
use of normative systems in computer science. We adopt a multiagent sys-
tems perspective, because norms are used to coordinate, organize, guide,
regulate or control interaction among distributed autonomous systems.
The first six guidelines are derived from the computer science literature.
From the so-called ‘normchange’ definition of the first workshop on nor-
mative multiagent systems in 2005 we derive the guidelines to motivate
which definition of normative multiagent system is used, to make explicit
why norms are a kind of (soft) constraints deserving special analysis, and
to explain why and how norms can be changed at runtime. From the
so-called ‘mechanism design’ definition of the second workshop on nor-
mative multiagent systems in 2007 we derive the guidelines to discuss
the use and role of norms as a mechanism in a game-theoretic setting,
clarify the role of norms in the multiagent system, and to relate the no-
tion of “norm” to the legal, social, or moral literature. The remaining
four guidelines follow from the philosophical literature: use norms also to
resolve dilemmas, and in general to coordinate, organize, guide, regulate
or control interaction among agents, distinguish norms from obligations,
prohibitions and permissions, use the deontic paradoxes only to illustrate
the normative multiagent system, and consider regulative norms in rela-
tion to other kinds of norms and other social-cognitive computer science
concepts.

1 Introduction

Normative systems are “systems in the behavior of which norms play a role
and which need normative concepts in order to be described or specified” [36,
preface]. There is an increasing interest in normative systems in the computer sci-
ence community, due to the observation five years ago in the so-called AgentLink
Roadmap [33, Fig. 7.1], a consensus document on the future of multiagent sys-
tems research, that norms must be introduced in agent technology in the medium
term (i.e., now!) for infrastructure for open communities, reasoning in open en-
vironments and trust and reputation. However, there is no consensus yet in the
emerging research area of normative multiagent systems on the kind of norms to
be used, or the way to use them. Consider the following lines taken from a paper
review report. A norm like “You should empty your plate” may be criticized,
because it is not a (generic) norm but an obligation, or a sentence not presented

Dagstuhl Seminar Proceedings 09121
Normative Multi-Agent Systems
http://drops.dagstuhl.de/opus/volltexte/2009/1902

1

as a norm, such as an imperative or command like “Empty your plate!”, may be
criticized because it is a norm. Alternatively, a proposed normative multiagent
systems may be criticized by a reviewer, because, for example, norms cannot
be violated, norms cannot be changed, and so on. These criticisms suggest that
more agreement on the use of norms and normative systems in computer science
would be useful.

The research question of this paper is to give general guidelines for the use
of “norms” and “normative systems” in computer science. During the past two
decades normative systems have been studied in a research field called deontic
logic in computer science (∆EON), and normative multiagent systems may be
seen as the research field where the traditional normative systems and ∆EON
meet agent research. In these areas, the following two related challenges emerged
to a common use of “norms” and “normative systems” in computer science.

There are many distinct notions of “normative systems” in the litera-
ture due to the use of the concept “norm” in distinct disciplines, just like
there are many definitions of “agent” or “actor” due to its use across dis-
ciplines. Traditionally normative systems have been studied in philosophy,
sociology, law, and ethics, and “norms” can therefore be, for example, social
expectations, legal laws or linguistic imperatives or commands.

The role of norms in computer science is changing and solutions based
on multiagent systems are increasing. The seventh ∆EON conference [31,
32] in 2004 in Madeira, Portugal, had as special theme “deontic logic and
multiagent systems,” the eighth ∆EON conference in 2006 in Utrecht, the
Netherlands, had as special focus “artificial normative systems” [22, 21], and
the ninth ∆EON conference [22, 43] in Luxembourg in 2008 was co-located
with the third workshop on normative multiagent systems NorMAS. Grad-
ually the ∆EON research focus changes from logical relations among norms
to, for example, agent decision making, and to systems in which norms are
created and in which agents can play the role of legislators.

We approach this question of defining guidelines for normative multiagent
system research by first considering two consensus definitions in the computer
science literature of previous normative multiagent systems NorMAS workshops,
from which we derive our first six guidelines. The remaining four guidelines follow
from a short survey of the philosophical literature.

2 Normative multiagent systems

Before we consider the ‘normchange’ and ‘mechanism design’ definition of nor-
mative multiagent systems, we start with a dictionary definition of normative
systems. With ‘normative’ we mean ‘conforming to or based on norms’, as in
normative behavior or normative judgments. According to the Merriam-Webster
Online [35] Dictionary, other meanings of normative not considered here are ‘of,
relating to, or determining norms or standards’, as in normative tests, or ‘pre-
scribing norms’, as in normative rules of ethics or normative grammar. With

2

‘norm’ we mean ‘a principle of right action binding upon the members of a
group and serving to guide, control, or regulate proper and acceptable behav-
ior’. Other meanings of ‘norm’ given by the Merriam-Webster Online Dictionary
but not considered here are ‘an authoritative standard or model’, ‘an average
like a standard, typical pattern, widespread practice or rule in a group’, and
various definitions used in mathematics.

2.1 The normchange definition

The first definition of a normative multiagent system emerged after two days of
discussion at the first workshop on normative multiagent systems NorMAS held
in 2005 as a symposium of the Artificial Intelligence and Simulation of Behaviour
convention (AISB) in Hatfield, United Kingdom:

The normchange definition. “A normative multiagent system is a multia-
gent system together with normative systems in which agents on the one
hand can decide whether to follow the explicitly represented norms, and on
the other the normative systems specify how and in which extent the agents
can modify the norms” [8].

The first three guidelines are derived from this definition. The first one con-
cerns the explicit representation of norms, which has been interpreted either
that norms must be explicitly represented in the system (the ‘strong’ interpre-
tation) or that norms must be explicitly represented in the system specification
(the ‘weak’ interpretation). The first guideline is to make explicit and motivate
which interpretation is used, the strong one, the weak one, or none of them.

Guideline 1 Motivate which definition of normative multiagent system is used.

The motivation for the strong interpretation of the explicit representation is
to prevent a too general notion of norms. Any requirement can be seen as a norm
the system has to comply with; but why should we do so? Calling every require-
ment a norm makes the concept empty and useless. The weak interpretation is
used to study the following two important problems in normative multiagent
systems.

Norm compliance. How to decide whether systems or organizations comply
with relevant laws and regulations? For example, is a hospital organized
according to medical regulations? Does a bank comply with Basel 2 regula-
tions?

Norm implementation. How can we design a system such that it complies
with a given set of norms? For example, how to design an auction such that
agents cannot cooperate?

The second guideline follows from the fact that agents can decide whether
to follow the norms. This part of the definition is borrowed from the ∆EON
tradition, whose founding fathers Meyer and Wieringa observe that “until re-
cently in specifications of systems in computational environments the distinction

3

between normative behavior (as it should be) and actual behavior (as it is) has
been disregarded: mostly it is not possible to specify that some system behavior
is non-normative (illegal) but nevertheless possible. Often illegal behavior is just
ruled out by specification, although it is very important to be able to specify
what should happen if such illegal but possible behaviors occurs!” [36, preface].
However, constraints are well studied and well understood concepts, so if a norm
is a kind of constraint, the question immediately is raised what is special about
them.

Guideline 2 Make explicit why your norms are a kind of (soft) constraints that
deserve special analysis.

Examples of issues which have been analyzed for norms but to a less degree
for other kinds of constraints are ways to deal with violations, representation of
permissive norms, the evolution of norms over time (in deontic logic), the relation
between the cognitive abilities of agents and the global properties of norms, how
agents can acquire norms, how agents can violate norms, how an agent can be
autonomous [17] (in normative agent architectures and decision making), how
norms are created by a legislator, emerge spontaneously or are negotiated among
the agents, how norms are enforced, how constitutive or counts-as norms are used
to describe institutions, how norms are related to other social and legal concepts,
how norms structure organizations, how norms coordinate groups and societies,
how contracts are related to contract frames and contract law, how legal courts
are related, and how normative systems interact?

For example, the norms of global policies may be represented as soft con-
straints, which are used in detective control systems where violations can be
detected, instead of hard constraints restricted to preventative control systems
in which violations are impossible. The typical example of the former is that
you can enter a train without a ticket, but you may be checked and sanctioned,
and an example of the latter is that you cannot enter a metro station without
a ticket. However, if the norms are represented as constraints, then how to ana-
lyze that detective control is the result of actions of agents and therefore subject
to errors and influenceable by actions of other agents? For example, it may be
the case that violations are not often enough detected, that law enforcement is
lazy or can be bribed, there are conflicting obligations in the normative system,
that agents are able to block the sanction, block the prosecution, update the
normative system, etc.

The third guideline follows from the fact that norms can be changed by the
agents or the system, which distinguished this definition of normative multiagent
system from the common framework used in the ∆EON community, and led to
the identification of this definition as the “normchange” definition of normative
multiagent systems.

Guideline 3 Explain why and how norms can be changed at runtime.

For example, a norm can be made by an agent, as legislators do in a legal
system, or there can be an algorithm that observes agent behavior, and suggests

4

a norm when it observes a pattern. The agents can vote on the acceptance of
the norm. Likewise, if the system observes that a norm is often violated, then
apparently the norm does not work as desired, and it undermines the trust of
the agents in the normative system, so the system can suggest that the agents
can vote whether to retract or change the norm.

2.2 The mechanism design definition

The fourth, fifth and sixth guideline follow from the consensus definition of the
second workshop on normative multiagent systems NorMAS held as Dagstuhl
Seminar 07122 in 2007. After four days of discussion, the participants agreed to
the following consensus definition:

The mechanism design definition. “A normative multiagent system is a mul-
tiagent system organized by means of mechanisms to represent, communi-
cate, distribute, detect, create, modify, and enforce norms, and mechanisms
to deliberate about norms and detect norm violation and fulfilment.” [10]

The fourth guideline emphasizes the game-theoretic model and the notion of a
norm as a mechanism. According to Boella et al., “the emphasis has shifted from
representation issues to the mechanisms used by agents to coordinate themselves,
and in general to organize the multiagent system. Norms are communicated, for
example, since agents in open systems can join a multiagent system whose norms
are not known. Norms are distributed among agents, for example, since when new
norms emerge the agent could find a new coalition to achieve its goals. Norm
violations and norm compliance are detected, for example, since spontaneous
emergence norms of among agents implies that norm enforcement cannot be
delegated to the multiagent infrastructure.” [10]

Guideline 4 Discuss the use and role of norms always as a mechanism in a
game-theoretic setting.

Here we refer to game theory in a very liberal sense, not only to classical
game theory studied in economics, which has been criticized for its ideality as-
sumptions. Of particular interest are alternatives taking the limited or bounded
rationality of decision makers into account. For example, Newell [37] and others
develop theories in artificial intelligence and agent theory, replace probabilities
and utilities by informational (knowledge, belief) and motivational attitudes
(goal, desire), and the decision rule by a process of deliberation. Bratman [11]
further extends such theories with intentions for sequential decisions and norms
for multiagent decision making. Alternatively, Gmytrasiewitcz and Durfee [19]
replace the equilibria analysis in game theory by recursive modelling, which con-
siders the practical limitations of agents in realistic settings such as acquiring
knowledge and reasoning so that an agent can build only a finite nesting of
models about other agents’ decisions.

Games can explain that norms should satisfy various properties to be effective
as a mechanism to obtain desirable behavior. For example, the system should

5

not sanction without reason, as for example Caligula or Nero did in the ancient
Roman times, as the norms would loose their force to motivate agents. Moreover,
sanctions should not be too low, but they also should not be too high, as shown
by argument of Beccaria. Otherwise, once a norm is violated, there is no way to
prevent further norm violations.

Games can explain also the role of various kinds of norms in a system. For
example, assume that norms are added to the system one after the other and
this operation is performed by different authorities at different levels of the hier-
archy. Lewis “master and slave” game [30] shows that the notion of permission
alone is not enough to build a normative system, because only obligations divide
the possible actions into two categories or spheres: the sphere of prohibited ac-
tions and the sphere of permitted (i.e., not forbidden) actions or “the sphere of
permissibility”. More importantly, Bulygin [13] explains why permissive norms
are needed in normative systems using his “Rex, Minister and Subject” game.
“Suppose that Rex, tired of governing alone, decides one day to appoint a Min-
ister and to endow him with legislative power. [...] an action commanded by
Minister becomes as obligatory as if it would have been commanded by Rex.
But Minister has no competence to alter the commands and permissions given
by Rex.” If Rex permits hunting on Saturday and then Minister prohibits it for
the whole week, its prohibition on Saturday remains with no effect.

As another example, in our game theoretic approach to normative systems [9]
we study the following kind of normative games.

Violation games: interacting with normative systems, obligation mechanism,
with applications in trust, fraud and deception.

Institutionalized games: counts-as mechanism, with applications in distributed
systems, grid, p2p, virtual communities.

Negotiation games: MAS interaction in a normative system, norm creation
action mechanism, with applications in electronic commerce and contracting.

Norm creation games: multiagent system structure of a normative system,
permission mechanism, with applications in legal theory.

Control games: interaction among normative systems, nested norms mecha-
nism, with applications in security and secure knowledge management sys-
tems.

The fifth guideline follows from the introduction of organizational issues in
the definition of normative multiagent systems. Norms are no longer seen as
the mechanism to regulate behavior of the system, but part of a larger insti-
tution. This raises the question what precisely the role of norms is in such an
organization.

Guideline 5 Clarify the role of norms in your system.

Norms are rules used to guide, control, or regulate desired system behavior.
However, this is not unproblematic. For example, consider solving traffic prob-
lems by introducing norms, as a cheap alternative to building new roads. It does
not work, for the following two reasons. The first reason is that if you change

6

the system by building new norms or introducing new norms, then people will
adjust their behavior. For example, when roads improve, people tend to live fur-
ther away from their work. In other words, a normative multiagent system is a
self-organizing system. Moreover, the second problem with norm design is that
norms can be violated. For example, most traffic is short distance, for which we
could forbid using the car. However, it is hard to enforce such a norm, since peo-
ple will always claim to have come from long distance, even if they live around
the corner.

Norms can also be seen as one of the possible incentives to motivate agents,
which brings us again back to economics.

“Economics is, at root, the study of incentives: how people get what
they want, or need, especially when other people want or need the same
thing. Economists love incentives. They love to dream them up and enact
them, study them and tinker with them. The typical economist believes
the world has not yet invented a problem that he cannot fix if given a
free hand to design the proper incentive scheme. His solution may not
always be pretty–but the original problem, rest assured, will be fixed. An
incentive is a bullet, a lever, a key: an often tiny object with astonishing
power to change a situation.
. . .
There are three basic flavors of incentive: economic, social, and moral.
Very often a single incentive scheme will include all three varieties. Think
about the anti-smoking campaign of recent years. The addition of $3-per-
pack “sin tax” is a strong economic incentive against buying cigarettes.
The banning of cigarettes in restaurants and bars is a powerful social
incentive. And when the U.S. government asserts that terrorists raise
money by selling black-market cigarettes, that acts as a rather jarring
moral incentive.’ [29]

Here it is important to see that moral incentives are very different from
financial incentives. For example, Levitt [29, p.18-20], discussing an example of
Gneezy and Rustichini [20], explains that the number of violations may increase
when financial sanctions are imposed, because the moral incentive to comply
with the norm is destroyed. The fact that norms can be used as a mechanism to
obtain desirable system behavior, i.e. that norms can be used as incentives for
agents, implies that in some circumstances economic incentives are not sufficient
to obtain such behavior. For example, in a widely discussed example of the so-
called centipede game, there is a pile of thousand pennies, and two agents can in
turn either take one or two pennies. If an agent takes one then the other agent
takes turn, if it takes two then the game ends. A backward induction argument
implies that it is rational only to take two at the first turn. Norms and trust
have been discussed to analyze this behavior, see [28] for a discussion.

A rather different role of norms is to organize systems. To manage properly
complex systems like multiagent systems, it is necessary that they have a mod-
ular design. While in traditional software systems, modularity is addressed via
the notions of class and object, in multiagent systems the notion of organization

7

is borrowed from the ontology of social systems. Organizing a multiagent system
allows to decompose it and defining different levels of abstraction when design-
ing it. Norms are another answer to the question of how to model organizations
as first class citizens in multiagent systems. Norms are not usually addressed to
individual agents, but rather they are addressed to roles played by agents [6]. In
this way, norms from a mechanism to obtain the behavior of agents, also become
a mechanism to create the organizational structure of multiagent systems. The
aim of an organizational structure is to coordinate the behavior of agents so to
perform complex tasks which cannot be done by individual agents. In organiz-
ing a system all types of norms are necessary, in particular, constitutive norms,
which are used to assign powers to agents playing roles inside the organization.
Such powers allow to give commands to other agents, make formal communica-
tions and to restructure the organization itself, for example, by managing the
assignment of agents to roles. Moreover, normative systems allow to model also
the structure of an organization and not only the interdependencies among the
agents of an organization. Consider a simple example from organizational theory
in Economics: an enterprise which is composed by a direction area and a produc-
tion area. The direction area is composed by the CEO and the board. The board
is composed by a set of administrators. The production area is composed by two
production units; each production unit by a set of workers. The direction area,
the board, the production area and the production units are functional areas. In
particular, the direction area and the production areas belong to the organiza-
tion, the board to the direction area, etc. The CEO, the administrators and the
members of the production units are roles, each one belonging to a functional
area, e.g., the CEO is part of the direction area. This recursive decomposition
terminates with roles: roles, unlike organizations and functional areas, are not
composed by further social entities. Rather, roles are played by other agents, real
agents (human or software) who have to act as expected by their role. Each of
these elements can be seen as an institution in a normative system, where legal
institutions are defined by Ruiter [39] as “systems of [regulative and constitu-
tive] rules that provide frameworks for social action within larger rule-governed
settings”. They are “relatively independent institutional legal orders within the
comprehensive legal orders”.

The sixth guideline follows from the trend towards a more dynamic interac-
tionist view identified at the second NorMAS workshop. “This shift of interest
marks the passage of focus from the more static legalistic view of norms (where
power structures are fixed) to the more dynamic interactionist view of norms
(where agent interaction is the base for norm related regulation).” This ties in
to what Strauss [42] called “negotiated order”, Goffman’s [23] view on institu-
tions, and Giddens’ [18] structuration theory. The two views are summarized in
Table 1. For example, if in a normative system the norms are created by agents
it is more a legalistic view, but if there is an algorithm that observes behavior
and proposes norms, it is more an interactionist view. The latter procedure can
still be put up to vote for the agents, and being accepted or rejected. As another
example, suppose a monitoring system observes that some norms are violated

8

frequently, then it can propose to delete the norms, for example because the
violations decrease the trust of the agents in the system.

Legalistic view Interactionist view

top-down view bottom-up view

normative
system

autonomous individually
oriented view

regulatory instrument regularities of behavior

to regulate emerging
behavior of open systems

emerge without any
enforcement system

compliance sanctions

sharing of the norms

their goals happen to
coincide

they feel themselves as
part of the group

they share the same
values

sanctions are not always
necessary

social blame and
spontaneous exclusion

freedom to
create norms

restricted to contracts
emergence of norms

Table 1. Two views on normative multiagent systems

Guideline 6 Relate the notion of “norm” to the legal, social, or moral litera-
ture.

Boella et al. put the legalistic and interactionist view in the context of five
levels in the development of normative multiagent systems, summarized in Table
2. They observe that “for each level the development of the normative multiagent
system will take a much larger effort than the development of similar systems
at lower levels.” For example, if norms are explicitly represented (level 2) rather
than built into the system (level 1), then the system has to be much more flexible
to deal with the variety of normative systems that may emerge. However, it may
be expected that normative multiagent systems realized at higher levels will have
a huge effect on social interaction, in particular on the web” [10]. We illustrate the
more dynamic interactionist viewpoint on normative multiagent systems using

9

virtual communities in virtual reality settings like Second Life. In these virtual
communities, human agents interact with artificial agents in a virtual world.
This interactionist view, which has been promoted in the multiagent systems
community by Cristiano Castelfranchi [14], becomes essential in applications
related to virtual communities. In Second Life, for example, communities emerge
in which the behavior of its members show increasing homogeneity.

level

1 off-line norm
design [41]

norms are imposed by the designer and
automatically enforced, agents cannot organize

themselves by means of norms

2
norm representation

norms are explicitly represented

they can be used in agent communication and
negotiation

a simple kind of organizations and institutions can
be created

3 norm manipulation

a legal reality is created

agents can add and remove norms following the
rules of the normative system

4 social reality the ten challenges discussed Table 3

5 moral reality This goes beyond present studies in machine ethics [4]

Table 2. Five levels in the development of normative multiagent systems. [10]

Boella et al. also mention ten challenges posed by the interactionist view-
point: They “take the perspective from an agent programmer, and consider which
kinds of tools like programming primitives, infrastructures, protocols, and mech-
anisms she needs to deal with norms in the example scenario. Similar needs exist
at the requirements analysis level, or the design level, but we have chosen for the
programming level since it makes the discussion more concrete, and this level is
often ignored when norms are discussed. The list is not exhaustive, and there is
some overlap between the challenges. Our aim is to illustrate the range of topics
which have to be studied, and we therefore do not attempt to be complete” [10].

10

Challenge Tool

1
Tools for agents supporting communities in their task of recognizing, creating,

and communicating norms to agents

2
Tools for agents to simplify normative systems, recognize when norms have

become redundant, and to remove norms

3 Tools for agents to enforce norms

4 Tools for agents to preserve their autonomy

5 Tools for agents to construct organizations

6

Tools for agents to create intermediate concepts and normative ontology, for
example to decide about normative gaps

7 Tools for agents to decide about norm conflicts

8

Tools for agents to voluntarily give up some norm autonomy by allowing
automated norm processing in agent acting and decision making

9 Tools for conviviality

10 Tools for legal responsibility of the agents and their principals

Table 3. Ten challenges posed by the interactionist viewpoint. [10]

3 Philosophical foundations

We consider only four guidelines from the rich history of deontic logic in philo-
sophical logic. The first two guidelines follow from the history of deontic logic,
the third guideline from the methodology in deontic logic based on deontic para-
doxes, and the fourth guideline from the deontic logic in computer science to
study norms in the way they interact with other concepts. We believe philo-
sophical logic has much more to offer for computer scientists, but we restrict
ourselves to the most important issues.

3.1 Deontic logic

In 1951, the philosopher and logician Von Wright wrote a paper called “deontic
logic” [45], which subsequently became the name of the research area concerned
with normative concepts such as obligation, prohibition and permission. The
term deontic is derived from the ancient Greek déon, meaning that which is
binding or proper. The basis of his formal system was an observed relation
between obligation and permission. For example, he defined the obligation to
tell the truth by interpreting that it is good to tell the truth, and therefore it
is bad to lie. If it is bad to lie then it is forbidden to lie, and therefore it is not

11

permitted to lie. Summarizing, something is obligatory when its absence is not
permitted. This logical relation is based on the binary distinction between good
and bad, as illustrated by its possible worlds semantics distinguishing between
good and bad worlds.

The relation between obligation and violation was given by Anderson seven
years later in 1958, in a paper called “A Reduction of Deontic Logic to Alethic
Modal Logic” [3]. In this paper, he proposed a reduction of obligation to viola-
tion. For example, the obligation to tell the truth means that a lie necessarily
implies a violation. In general, and in its simplest form, something is obliged if
and only if its absence necessarily leads to a violation.

The problems of these early approaches were illustrated in 1963 in a paper by
Chisholm called “Contrary-to-duty imperatives and deontic logic” [16]. Consider
a pregnant woman going to the hospital. The shortest way to go to the hospital
is turning left, which obviously is what the driver is doing. However, there is
a norm that it is forbidden to go to the left, so she is violating the obligation
to go to the right. Now, the problem is due to two additional norms. One says
that if she goes to the left she has to signal that she is going to the left, and
one says that if she goes to the right she has to signal that she is going to the
right. The problem here is how to explain that given that she is going to the
left, she is obliged to signal that she is going to the left. This obligation cannot
be explained by the basic distinction between good and bad, because the good
thing here is to go to the right and signaling that she is going to the right at
least from the perspective of traffic law.

Modern deontic logic started with a paper by Bengt Hansson in 1969, called
“An Analysis of some Deontic Logics” [27]. In this paper he introduced a se-
mantics based on a betterness relation for conditional obligations (it was ax-
iomatized only six years later). With his paper he started modern deontic logic.
The pregnant woman example can be represented by an ideal situation from the
perspective of traffic law – in which the car goes to the right and signals that
it will go to the right, but the situation in which the car goes to the left and
signals that it will go to the left is better to the one in which the car goes to
the left but signals that it will go to the right. As mentioned in the previous
section, it is precisely the possibility of violation, that led Meyer and Wieringa
to introduce the use of norms and deontic logic in computer science. Moreover,
the formalism has become popular also in other areas of computer science too,
such as non-monotonic logic and qualitative decision theory.

The seventh guideline says not to use the prehistory of deontic logic in the
fifties and sixties of the previous century, but adapt to modern deontic logic
as studied since the seventies. To say it crudely, Von Wright’s and Anderson’s
systems have not been in the philosophical literature for forty years, so there
seems little reason for computer scientists to return to these forgotten theories.

Guideline 7 Use norms not only to distinguish right from wrong, but also to
resolve dilemmas, and use norms not only describe violations, but in general to
coordinate, organize, guide, regulate or control interaction among agents.

12

Von Wright’s system became known as the ‘Old System’, since he developed
many modern systems too. Whereas the old system was based on monadic modal
logic, the new systems were based on dyadic modal logics, just like Hansson’s
peference-based deontic logic. However, some people started to call the old sys-
tem ‘Standard Deontic Logic’ or SDL, and this led to a lot of confusion. Some
people in computer science, maybe due to the important role of standards in this
research field, believed that a system called Standard Deontic Logic has to be
a common reference for future explorations. To emphasize this misconception,
let us consider some more examples. Remember that SDL sees norms just as
being good and bad, or right and wrong. For example, it is right to obey your
parents, it is wrong to hijack a plane, it is good to finish in time, and it is bad to
write a computer virus. Though this is one way to look at norms, it is often not
sufficient. Consider the following example. Suppose there is a plane hijacked by
terrorists heading towards some high towers. There is a moral dilemma whether
we may or should shoot down this plane. It is a dilemma, because if we shoot
down the plane there will be a lot of innocent people killed, but if we don’t shoot
down the plane, then the plane will crash into these buildings. So it is a moral
dilemma, and just thinking about right and wrong is not sufficient to solve it.
People have been thinking about this kind of problems in ethics, and there are
different theories. For example, a utilitarian theory says that you should mini-
mize the damage. So what you should do is shoot down this plane, you may do it,
you are obliged to do it, because if you don’t do it, then the number of casualties
will be higher than if you don’t shoot it down. However, another ethical theory
says that we may not shoot down the plane, because it is active involvement
of ourselves, and if we do this, then we are responsible for killing the people
in the plane. So it is forbidden to shoot down the plane. If we represent norms
in computer systems, as we are now starting to do, then we can expect to find
conflicts, and we therefore need to have a way to resolve these conflicts.

Anderson’s reduction suggests that a norm is in the end just a description of
violations. In the previous example of hijacking a plane, a norm says what counts
as hijacking a plane, we call it a legal ontology, there is a norm telling us that
it is a violation to hijack a plane, and there is a sanction associated when you
do this. This is also very popular in computer science, but it is also insufficient.
One indication of the problems related to this kind of reduction, is that people
have not been able to give a reduction from Hansson’s dyadic deontic logic to
violations. Another conceptual problem is that violation is associated with norms
and imperatives instead of obligations and prohibitions studied in deontic logic,
an issue we discuss further below. But there are also practical problems. Consider
for example the much discussed European Constitution. The question is, can we
look at this text only as a set of descriptions of norm violations? There is an
organizational structure, distribution of powers, there are several norms, there
are several sanctions, and it seems, at least at first sight, that we can try to
represent it as a set of norm violations. The problem with this constitution is
that it has been rejected, we will never know what it really means. What we can
do is look at the rules that are in force in the European Union, of which one says

13

that the national deficit of a country should be below 3% of the national gross
product. However, there were various countries who broke this norm, France
and Germany in particular. However, the violation was not recognized, and the
countries were not sanctioned.

The latter point is a little more subtle, because there are systems with vi-
olation predicates which are useful to reason about normative systems, namely
diagnostic theories. Such theories have been developed in the eighties in artificial
intelligence and computer science, and have been applied to a wide variety of
domains, such as fault diagnosis of systems, or medical diagnosis. They can also
be used to diagnose a court case, and determine whether someone is guilty or
not (well, in principle, there are some more issues in legal reasoning which we
will not consider here). However, as is well-known in ∆EON community, such
a system is neither a deontic logic, nor a normative system. The main problem
of such a formal system is that it does not deal easily with consequences of vi-
olations, so-called contrary-to-duty reasoning. For example, agent A should do
α, and if he does not do so, then police agent B should punish him (a standard
example in which norms regulate interaction between two agents). For a further
discussion on this approach and its limitations, see [44].

The seventh guideline follows from the more recent literature on deontic logic,
of which we have given a very sketchy overview in Table 4. In the beginning de-
ontic logic was syntax based, and semantics came later. Modal semantics became
very popular for some time, but during the past twenty years approaches based
on non-monotonic logic and imperatives have become more and more popular.
Nowadays, we can no longer say that deontic logic is a branch of modal logic.
The use of possible worlds (Kripke) semantics is useful to distinguish good from
bad, but less useful to represent dilemmas, or imperatives.

period tradition main issue

50s monadic modal logic relation O and P
60s dyadic modal logic relation O and facts, violations,

sub-ideality and optimality, CTD
70s temporal deontic logic relation O and time
80s action deontic logic relation O and actions
90s defeasible deontic logic dilemmas, CTD
00s imperatives, normative systems Jorgensen’s dilemma

Table 4. A schematic reconstruction of deontic logic

In particular, the seventh guideline follows from attempts during the past
decade to base the semantics of deontic logic on imperatives. Deontic logic de-
scribes logical relations between obligations, prohibitions and permissions, but
it is conditional on a normative system, which is typically left implicit. More
precisely, there are two distinct philosophical traditions, the one of deontic logic
discussed thus far, and another one of normative systems. The main challenge
during the past ten years in deontic logic is how these two traditions can be

14

merged. This story is explained in [25], which at this moment is the best in-
troduction to current research in deontic logic. The most famous proponents of
normative systems are Alchourrón and Bulygin [1], who argue in 1971 that a
normative system should not be defined as a set of norms, as is commonly done,
but in terms of consequences:

“When a deductive correlation is such that the first sentence of the or-
dered pair is a case and the second is a solution, it will be called norma-
tive. If among the deductive correlations of the set α there is at least one
normative correlation, we shall say that the set α has normative conse-
quences. A system of sentences which has some normative consequences
will be called a normative system.” [1, p.55].

All the famous deontic logicians have discussed this subtle issue, often introduc-
ing new terminology. For example, Von Wright distinguished norms and nor-
mative propositions, and Alchourrón distinguished prescriptive and descriptive
obligations.

Guideline 8 Distinguish norms from obligations, prohibitions and permissions.

As an example, consider the input/output logic framework introduced by
Makinson and van der Torre [34]. The first input/output logic principle is that
norms are not represented by propositional sentences, as in AGM framework
for theory change [2], or as modal formulas, as in deontic logic, but as pairs of
formulas of an arbitrary logic. The pair of propositional formulas represents a
rule, and the two propositional formulas are called the antecedent and consequent
of the rule. The second principle of the input/output logic framework is that the
primary role of norms in a normative system is the derivation of obligations
and prohibitions. Which obligations and prohibitions can be derived from a
normative system depends on the factual situation, which we call the context
or input and represent by a propositional formula. The function that associates
with each context the set of obligations describes the meaning of the normative
system, because it is a kind of ‘operational semantics’ of the normative system.
An input/output operation out : (2L×L) × L → 2L is a function from the set
of normative systems and contexts, to a set of sentences of L. We say that x is
obligatory in normative system N and context a if x ∈ out(N, a). The simplest
input/output logic defined by Makinson and van der Torre is so-called simple-
minded output. x is in the simple-minded output of N in context a, written as
x ∈ out1(N, a), if there is a set of norms (a1, x1), . . . , (an, xn) ∈ N such that
ai ∈ Cn(a) and x ∈ Cn(x1 ∧ . . . ∧ xn), where Cn(S) is the consequence set of
S in L. Such an operational semantics can be axiomatized as follows. out1(N)
is the minimal set that contains N ∪ {(>,>)}, is closed under replacement of
logical equivalents in antecedent and consequent, and the following proof rules
strengthening of the input SI, weakening of the output WO, and conjunction
rule AND.

(a, x)
(a ∧ b, x)

SI
(a, x ∧ y)

(a, x)
WO

(a, x), (a, y)
(a, x ∧ y)

AND

15

Ten philosophical problems on deontic logic are given by Hansen et al. [26]
and listed in Table 5. Of this list, we observe that constitutive norms and inter-
mediate concepts are often seen as the same problem (though constitutive norms
can be used also for other problems than intermediate concepts), and that there
are other problems not listed in this paper, such as the equivalence of normative
systems, or redundancy of a norm in a normative system [12, 5].

1. How can deontic logic be reconstructed in accord with the philosophical position
that norms are neither true nor false?

2. When is a set of norms to be termed ‘coherent’?
3. How can deontic logic accommodate possible conflicts of norms? How can the

resolution of apparent conflicts be semantically modeled?
4. How do we reason with contrary-to-duty obligations which are in force only in case

of norm violations?
5. How to define dyadic deontic operators with regard to given sets of norms and

facts?
6. How to distinguish various kinds of permissions and relate them to obligations?
7. How can meaning postulates and intermediate terms be modeled in semantics for

deontic logic reasoning?
8. How to define counts-as conditionals and relate them to obligations and permis-

sions?
9. How to revise a set of regulations or obligations? Does belief revision offer a satis-

factory framework for norm revision? Can the belief merging framework deal with
the problem of merging sets of norms?

Table 5. Ten philosophical problems. “We argue that norms, not ideality, should take
the central position in deontic semantics, and that a semantics that represents norms,
as input/output logic does, provides helpful tools for analyzing, clarifying and solving
the problems of deontic logic.” [26]

3.2 Methodology

Not surprisingly for such a highly simplified theory like Von Wright’s Old System,
also know as SDL, there are many features of actual normative reasoning that
SDL does not capture. Notorious are the so-called ‘paradoxes of deontic logic’,
which are usually dismissed as consequences of the simplifications of SDL. For
example, Ross’s paradox [38], the counterintuitive derivation of “you ought to
mail or burn the letter” from “you ought to mail the letter”, is typically viewed
as a side effect of the interpretation of ‘or’ in natural language.

Guideline 9 Don’t motivate your new theory by toy “paradoxical” examples,
but use the deontic paradoxes to illustrate basic properties of your system.

Computer scientists are usually surprised when they read the philosophical
literature, because the posed problems seem to have a trivial solution. For ex-
ample, the most famous deontic paradox of all, is often posed as the problem to

16

give a consistent representation such that none of the sentences can be derived
from the others:

1. A certain man should go to the assistance of his neighbors,
2. If he goes, he should tell them he is coming
3. If he does not go, he should not tell them that he is coming
4. He does not go.

In SDL the set {Oa, O(a → t),¬a → O(¬t),¬a} is inconsistent, and in {Oa, a →
O(t),¬a → O(¬t),¬a} the sentences are not logically independent. However,
this problem is trivially solved by replacing the material implication by a strict
implication, or a relevant implication, or a defeasible implication. This has been
known since the early days of deontic logic, as may be expected since both deontic
logic and conditional logic were major branches of philosophical logic. In general,
any paradoxical consequence can be solved by simply weakening the logic (e.g.,
solve Ross’ paradox by replacing standard deontic logic by a non-normal modal
logic). The misconception is simply due to the fact that the deontic paradoxes
do not work the same way as experiments in engineering or the sciences. They
are just used to illustrate the formal system, not to guide research in the area. A
similar phenomena and misconception has been present in the field of defeasible
reasoning and deontic logic, where the use of the infamous Tweety example has
been criticized for similar reasons. The reason why contrary-to-duty paradoxes
have been discussed for fifty years in deontic logic is that a lot of normative
reasoning is directly or indirectly related to violations, just like in defeasible
reasoning a lot of reasoning is directly or indirectly related to exceptions.

3.3 From philosophy to computer science

Most of the confusions in deontic logic are due to the abstract nature of the
formal systems. In areas of computer science like multiagent systems or knowl-
edge representation we need to be more detailed, and most of the problems then
disappear.

Guideline 10 Regulative norms should not be considered by themselves, but
in relation to permissive norms, constitutive norms, procedural norms, agents,
roles, groups, societies, rights, duties, obligations, time, beliefs, desires, inten-
tions, goals, roles, and other kinds of norms and other social-cognitive computer
science concepts.

Regulative norms specify the ideal and varying degrees of sub-ideal behavior
of a system by means of obligations, prohibitions and permissions. Constitutive
norms are based on the notion that “X counts-as Y in context C” and are used
to support regulative norms by introducing institutional facts in the representa-
tion of legal reality. The notion of counts-as introduced by Searle [40] has been
interpreted in deontic logic in different ways and it seems to refer to different
albeit related phenomena [24]. Substantive norms define the legal relationships
of people with other people and the state in terms of regulative and constitutive

17

norms, where regulative norms are obligations, prohibitions and permissions,
and constitutive norms state what counts as institutional facts in a normative
system. Procedural norms are instrumental norms, addressed to agents playing
roles in the normative system, which aim at achieving the social order specified
in terms of substantive norms [7].

4 Summary

Next generation normative multiagent systems contain general and domain inde-
pendent norms by combining three existing representations of normative multia-
gent systems. First, theories of normative systems and deontic logic, the logic of
obligations and permissions, for the explicit representation of norms as rules, the
application of such rules, contrary-to-duty reasoning and the relation to permis-
sions. Second, agent architecture for software engineering of agents and a model
of normative decision making. Third, a game-theoretic approach for model of
interaction explaining the relation among social norms and obligations, relat-
ing regulative norms to constitutive norms, the evolution of normative systems,
and much more. In this paper, we introduce and discuss ten guidelines for the
development of normative multiagent systems.

1. Motivate which definition of normative multiagent system is used.
2. Make explicit why norms are a kind of (soft) constraints deserving special analysis.
3. Explain why and how norms can be changed at runtime.
4. Discuss the use and role of norms as a mechanism in a game-theoretic setting.
5. Clarify the role of norms in the multiagent system.
6. Relate the notion of “norm” to the legal, social, or moral literature.
7. Use norms not only to distinguish right from wrong, but also to resolve dilemmas,

and use norms not only describe violations, but in general to coordinate, organize,
guide, regulate or control interaction among agents.

8. Distinguish norms from obligations, prohibitions and permissions.
9. Use the deontic paradoxes only to illustrate the normative multiagent system.

10. Consider regulative norms in relation to other kinds of norms and concepts.

Table 6. Ten guidelines for the development of normative multiagent systems

The use of norms and normative systems in computer science are examples of
the use of social concepts in computer science, which is now so well-established
that the original meaning of some of these concepts in the social sciences is some-
times forgotten. For example, the original meaning of a “service” in business
economics is rarely considered by computer scientists working on service ori-
ented architectures or web services, and likewise for service level agreements and
contracts, or quality of service. some social concepts have various new meanings.
For example, before its use in service level agreements, the notion of “contract”
was introduced in software engineering in Meyer’s design by contract, a well

18

known software design methodology that views software construction as based
on contracts between clients (callers) and suppliers (routines), assertions, that
has been developed in the context of object oriented and the basis of the pro-
gramming language Eiffel. “Coordination” is emerging as an interdisciplinary
concept to deal with the complexity of compositionality and interaction, and
has been used from coordination languages in software engineering to a general
interaction concept in multiagent systems. In the context of information secu-
rity and access control “roles” became popular, with the popularity of eBay, the
social concepts of “trust” and “reputation” have become popular, and with the
emergence of social interaction sites like FaceBook or Second Life, new social
concepts like societies, coalitions, organizations, institutions, norms, power, and
trust are emerging [15]. In multiagent systems, social ability as the interaction
with other agents and co-operation is one of the three meanings of flexibility in
flexible autonomous action in Wooldridge and Jennings’ weak notion of agency
[46]; the other two are reactivity as interaction with the environment, and pro-
activeness as taking the initiative.

The main open question is whether “norms” could (or should) play a similar
role in computer science like “service”, “contract” or “trust”? One suggestion
comes from human computer interaction. Since the use of norms is a key element
of human social intelligence, norms may be essential too for artificial agents that
collaborate with humans, or that are to display behavior comparable to human
intelligent behavior. By integrating norms and individual intelligence normative
multiagent systems provide a promising model for human and artificial agent
cooperation and co-ordination, group decision making, multiagent organizations,
regulated societies, electronic institutions, secure multiagent systems, and so on.
Another suggestion comes from the shared interest of multiagent system research
and sociology in the relation between micro-level agent behaviour and macro-
level system effects. Norms are thought to ensure efficiency at the level of the
multiagent system whilst respecting individual autonomy. However, all these and
other suggestions bring circumstantial evidence at best. We have to build more
flexible normative multiagent systems, and test them in practice, before we know
where they can be used best.

For further reading on the use of normative systems in computer science,
we recommend the proceedings of the ∆EON conferences and the normative
multiagent systems workshops. The abstracts of all papers that appeared at
DLCS conferences can be searched on the deontic logic website:

http:\\deonticlogic.org

References

1. C. Alchourrón and E. Bulygin. Normative Systems. Springer, Wien, 1971.

2. C. Alchourrón, P. Gärdenfors, and D. Makinson. On the logic of theory change.
Journal of Symbolic Logic, 50(2):510–530, 1985.

19

3. A. Anderson. A reduction of deontic logic to alethic modal logic. Mind, 67:100–103,
1958.

4. M. Anderson and S. Leigh Anderson. Machine ethics: Creating an ethical intelligent
agent. AI Magazine, 28(4):15–26, 2007.

5. G. Boella, J. Broersen, and L. van der Torre. Reasoning about constitutive norms,
counts-as conditionals, institutions, deadlines and violations. In Intelligent Agents
and Multi-Agent Systems, 11th Pacific Rim International Conference on Multi-
Agents, PRIMA 2008, Hanoi, Vietnam, December 15-16, 2008. Proceedings, vol-
ume 5357 of Lecture Notes in Computer Science, pages 86–97. Springer, 2008.

6. G. Boella and L. van der Torre. The ontological properties of social roles in multi-
agent systems: Definitional dependence, powers and roles playing roles. Artificial
Intelligence and Law Journal (AILaw), 2007.

7. G. Boella and L. van der Torre. Substantive and procedural norms in normative
multiagent systems. Journal of Applied Logic, 6(2):152–171, 2008.

8. G. Boella, L. van der Torre, and H. Verhagen. Introduction to normative multiagent
systems. Computation and Mathematical Organizational Theory, special issue on
normative multiagent systems, 12(2-3):71–79, 2006.

9. G. Boella, L. van der Torre, and H. Verhagen. Normative multi-agent systems. In
Internationales Begegnungs und Porschungszentrum fur Informatik (IBFI), 2007.

10. G. Boella, H. Verhagen, and L. van der Torre. Introduction to the special issue on
normative multiagent systems. Journal of Autonomous Agents and Multi Agent
Systems, 17(1):1–10, 2008.

11. M.E. Bratman. Intentions, plans, and practical reason. Harvard University Press,
Harvard (Massachusetts), 1987.

12. J. Broersen and L. van der Torre. Reasoning about norms, obligations, time and
agents. In Intelligent Agents and Multi-Agent Systems, 10th Pacific Rim Interna-
tional Conference on Multi-Agents, PRIMA 2007, Proceedings, Lecture Notes in
Computer Science. Springer, 2007.

13. E. Bulygin. Permissive norms and normative systems. In A. Martino and F. Socci
Natali, editors, Automated Analysis of Legal Texts, pages 211–218. Publishing Com-
pany, Amsterdam, 1986.

14. C. Castelfranchi. Modeling social action for AI agents. Artificial Intelligence,
103(1-2):157–182, 1998.

15. C. Castelfranchi. The micro-macro constitution of power. Protosociology, 18:208–
269, 2003.

16. R.M. Chisholm. Contrary-to-duty imperatives and deontic logic. Analysis, 24:33–
36, 1963.

17. R. Conte, C. Castelfranchi, and F. Dignum. Autonomous norm-acceptance. In
Intelligent Agents V (ATAL98), LNAI 1555, pages 319–333. Springer, 1999.

18. A. Giddens. The Constitution of Society. University of California Press, 1984.
19. P. J. Gmytrasiewicz and E. H. Durfee. Formalization of recursive modeling. In

Procs. of ICMAS’95, pages 125–132, Cambridge (MA), 1995. AAAI/MIT Press.
20. U. Gneezy and A. Rustichini. A fine is a price. The Journal of Legal Studies,

29(1):1–18, 2000.
21. L. Goble and J.J. Ch. Meyer, editors. Deontic Logic and Artificial Normative Sys-

tems, 8th International Workshop on Deontic Logic in Computer Science, DEON
2006, Utrecht, The Netherlands, July 12-14, 2006, Proceedings, volume 4048 of
Lecture Notes in Computer Science. Springer, 2006.

22. L. Goble and J.J. Ch. Meyer. Revised versions of papers presented in the pro-
ceeding of the eighth international workshop on deontic logic in computer science
(DEON06). Journal of Applied Logic, 6(2), 2008.

20

23. E. Goffman. The Presentation of Self in Everyday Life. Doubleday, 1959.
24. D. Grossi, J.-J.Ch. Meyer, and F. Dignum. Counts-as: Classification or constitu-

tion? an answer using modal logic. In Procs. of Deontic Logic and Artificial Norma-
tive Systems, 8th International Workshop on Deontic Logic in Computer Science,
(∆EON’06), volume 4048 of LNCS, pages 115–130, Berlin, 2006. Springer.

25. J. Hansen. Imperatives and Deontic Logic. PhD thesis, University of Leipzig, 2008.
26. J. Hansen, G. Pigozzi, and L. van der Torre. Ten philosophical problems in deontic

logic. In G. Boella, L. van der Torre, and H. Verhagen, editors, Normative Multi-
agent Systems, volume 07122 of Dagstuhl Seminar Proceedings. Internationales
Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Ger-
many, 2007.

27. B. Hansson. An analysis of some deontic logics. Nôus, 3:373–398, 1969.
28. M. Hollis. Trust within reason. Cambridge University Press, Cambridge, 1998.
29. Steven D. Levitt and Stephen J. Dubner. Freakonomics : A Rogue Economist

Explores the Hidden Side of Everything. William Morrow, New York, May 2005.
30. D. Lewis. A problem about permission. In E. Saarinen, editor, Essays in Honour

of Jaakko Hintikka, pages 163–175. D. Reidel, Dordrecht, 1979.
31. A. Lomuscio and D. Nute, editors. Deontic Logic in Computer Science, 7th Inter-

national Workshop on Deontic Logic in Computer Science, DEON 2004, Madeira,
Portugal, May 26-28, 2004. Proceedings, volume 3065 of Lecture Notes in Computer
Science. Springer, 2004.

32. A. Lomuscio and D. Nute. Revised versions of papers presented in the proceed-
ing of the seventh international workshop on deontic logic in computer science
(DEON04). Journal of Applied Logic, 3(3-4), 2005.

33. M. Luck, P. McBurney, and C. Preist. Agent Technology: Enabling Next Generation
Computing (A Roadmap for Agent Based Computing). AgentLink, 2003.

34. D. Makinson and L. van der Torre. Input-output logics. Journal of Philosophical
Logic, 29(4):383–408, 2000.

35. Merriam-Webster. Online dictionary http://www.merriam-webster.com/.
Merriam-Webster.

36. J.-J. Meyer and R. Wieringa. Deontic Logic in Computer Science: Normative
System Specification. John Wiley & Sons, Chichester, England, 1993.

37. A. Newell. The knowledge level. Artificial Intelligence, 18:87–127, 1982.
38. A. Ross. Imperatives and logic. Theoria, 7:53–71, 1941. Reprinted in Philosophy

of Science 11:30–46, 1944.
39. D.W.P. Ruiter. A basic classification of legal institutions. Ratio Juris, 10(4):357–

371, 1997.
40. J.R. Searle. The Construction of Social Reality. The Free Press, New York, 1995.
41. Y. Shoham and M. Tennenholtz. On social laws for artificial agent societies: Off-

line design. Artificial Intelligence, 73(1-2):231–252, 1995.
42. A. Strauss. Negotiations: Varieties, Contexts, Processes and Social Order. San

Francisco, Jossey-Bass, 1978.
43. R. van der Meyden and L. van der Torre, editors. Deontic Logic in Computer Sci-

ence, 9th International Conference on Deontic Logic in Computer Science, DEON
2008, Luxembourg, July 16-18, 2008, Proceedings, LNCS, Berlin, in press. Springer.

44. L. van der Torre and Y. Tan. Diagnosis and decision making in normative reason-
ing. Artificial Intelligence and Law, 7(1):51–67, 1999.

45. G. H. von Wright. Deontic logic. Mind, 60:1–15, 1951.
46. M. J. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice.

Knowledge Engineering Review, 10(2):115–152, 1995.

21

