
Normative Multi-Agent Programs
and Their Logics

Mehdi Dastani1, Davide Grossi2, John-Jules Ch. Meyer1, and Nick Tinnemeier1

1 Universiteit Utrecht
The Netherlands

2 Computer Science and Communication
University of Luxembourg, Luxembourg

Abstract. Multi-agent systems are viewed as consisting of individual
agents whose behaviors are regulated by an organization artefact. This
paper presents a simplified version of a programming language that is
designed to implement norm-based artefacts. Such artefacts are specified
in terms of norms being enforced by monitoring, regimenting and sanc-
tioning mechanisms. The syntax and operational semantics of the pro-
gramming language are introduced and discussed. A logic is presented
that can be used to specify and verify properties of programs developed
in this language.

1 Introduction

In this paper, multi-agent systems are considered as consisting of individual
agents that are autonomous and heterogenous. Autonomy implies that each in-
dividual agent pursues its own objectives and heterogeneity implies that the
internal states and operations of individual agents may not be known to exter-
nal entities [14, 7]. In order to achieve the overall objectives of such multi-agent
systems, the observable/external behavior of individual agents and their inter-
actions should be regulated/coordinated.

There are two main approaches to regulate the external behavior of individual
agents. The first approach is based on coordination artefacts that are specified in
terms of low-level coordination concepts such as synchronization of processes[12].
The second approach is motivated by organizational models, normative systems,
and electronic institutions[13, 10, 7, 8]. In such an approach, norm-based arte-
facts are used to regulate the behavior of individual agents in terms of norms
being enforced by monitoring, regimenting and sanctioning mechanisms. Gen-
erally speaking, the social and normative perspective is conceived as a way to
make the development and maintenance of multi-agent systems easier to man-
age. A plethora of social concepts (e.g., roles, social structures, organizations,
institutions, norms) has been introduced in multi-agent system methodologies
(e.g. Gaia [14]), models (e.g. OperA [6], Moise+ [9], electronic institutions and
frameworks (e.g. AMELI [7], S-Moise+ [9]).

The main contribution of this paper is twofold. On the one hand, a simplified
version of a programming language is presented that is designed to implement

Dagstuhl Seminar Proceedings 09121
Normative Multi-Agent Systems
http://drops.dagstuhl.de/opus/volltexte/2009/1907

1

multi-agent systems in which the observable (external) behavior of individual
agents is regulated by means of norm-based artefacts. Such artefacts are imple-
mented in terms of social concepts such as norms and sanctions, monitor the
actions performed by individual agents, evaluate their effects, and impose sanc-
tions if necessary. On the other hand, we devise a logic to specify and verify
properties of programs that implement norm-based artefacts.

In order to illustrate the idea of norm-based artefacts, consider the following
simple example of a simulated train station where agents ought to buy a ticket
before entering the platform or trains. To avoid the queue formation, agents are
not checked individually before allowing them to enter the platform or trains.
In this simulation, being on the platform without a ticket is considered as a
violation and getting on the train without having a ticket is considered as a
more severe violation. A norm-based artefact detects (all or some) violations by
(all or some) agents and reacts on them by issuing a fine if the first violation
occurs, for instance by charging the credit card of the defecting user, and a
higher fine if the second violation occurs.

In this paper, we first briefly explain our idea of normative multi-agent sys-
tems and discuss two norm-based approaches to multi-agent systems, that is,
ISLANDER/AMELI [7] and S-MOISE+ [9]. In section 3, we present the syn-
tax and operational semantics of a programming language designed to imple-
ment normative multi-agent systems. This programming language allows the
implementation of norm-based artefacts by providing programming constructs
to represent norms and mechanisms to enforce them. In section 4, a logic is pre-
sented that can be used to specify and verify properties of norm-based artefacts
implemented in the presented programming language. Finally, in section 5, we
conclude the paper and discuss some future directions in this research area.

2 Norms and Multi-Agent Systems

Norms in multi-agent systems can be used to specify the standards of behavior
that agents ought to follow to meet the overall objectives of the system. How-
ever, to develop a multi-agent system does not boil down to state a number of
standards of behavior in the form of a set of norms, but rather to organize the
system in such a way that those standards of behavior are actually followed by
the agents. This can be achieved by regimentation [10] or enforcement mecha-
nisms, e.g., [8].

When regimenting norms all agents’ external actions leading to a violation
of those norms are made impossible. Via regimentation (e.g., gates in train sta-
tions) the system prevents an agent from performing a forbidden action (e.g.,
entering a train platform without a ticket). However, regimentation drastically
decreases agent autonomy. Instead, enforcement is based on the idea of respond-
ing after a violation of the norms has occurred. Such a response, which includes
sanctions, aims to return the system to an acceptable/optimal state. Crucial for
enforcement is that the actions that violate norms are observable by the system
(e.g., fines can be issued only if the system can detect travelers entering the

2

platform or trains without a ticket). Another advantage of having enforcement
over regimentation is that allowing for violations contributes to the flexibility
and autonomy of the agent’s behavior [3]. These norms are often specified by
means of concepts like permissions, obligations, and prohibitions.

In the literature of multi-agent systems related work can be found on elec-
tronic institutions. In particular, ISLANDER[7] is a formal framework for spec-
ifying norms in institutions, which is used in the AMELI platform [7] for exe-
cuting electronic institutions based on norms provided in it. However, the key
aspect of ISLANDER/AMELI is that norms can never be violated by agents.
In other words, systems programmed via ISLANDER/AMELI make only use of
regimentation in order to guarantee the norms to be actually followed. This is
an aspect which our approach intends to relax guaranteeing higher autonomy to
the agents, and higher flexibility to the system.

A work that is concerned with programming multiagent systems using (among
others) normative concepts is also S-MOISE+, which is an organizational mid-
dleware that follows the Moise+ model[9]. This approach, like ours, builds on
programming constructs investigated in social and organizational sciences. How-
ever, S-MOISE+ lacks formal operational semantics, which is instead the main
contribution of the present paper to the development of programming languages
form multi-agent systems. Besides, norms in S-MOISE+ typically lack monitor-
ing and sanctioning mechanisms for their implementation which are, instead, the
focus of our proposal. It should be noted that [11] advocates the use of artifacts
to implement norm enforcement mechanisms. However, it is not explained how
this can be done using those artifacts.

To summarize, ISLANDER/AMELI implements norm via full regimenta-
tion, while in S-MOISE+ violations are possible, although no specific system’s
response to violations is built in the framework. We deem these shortcomings
to have a common root, namely the absence of a computational model of norms
endowed with a suitable operational semantics. The present paper fills this gap
along the same lines that have been followed for the operationalization of BDI
notions in the APL-like agent programming languages [5, 4]. Finally, it should be
noted that besides normative concepts MOISE+ and ISLANDER/AMELI also
provide a variety of other social and organizational concepts. Since the focus of
this paper is on the normative aspect, the above discussion is limited hereto.
Future research will focus on other social and organizational concepts.

3 Programming Multi-Agent Systems with Norms

In this section, we present a programming language to facilitate the implemen-
tation of multi-agent systems with norms, i.e., to facilitate the implementation
of norm-based artefacts that coordinate/regulate the behavior of participating
individual agents. A normative multi-agent system (i.e., a norm-based artefact)
is considered to contain two modules: an organization module that specifies
norms and sanctions, and an environment module in which individual agents
can perform actions. The individual agents are assumed to be implemented in

3

a programming language, not necessarily known to the multi-agent system pro-
grammer, though the programmer is required to have the reference to the (ex-
ecutable) programs of each individual agent. It is also assumed that all actions
that are performed by individual agents are observable to the multi-agent system
(i.e., norm-based artefact). Note that the reference to the (executable) programs
of individual agents are required such that multi-agent systems (i.e., normative
artefact) can observe the actions generated by the agent programs. Finally, we
assume that the effect of an individual agent’s action in the external environment
is determined by the program that implements the norm-based artefact (i.e., by
the multi-agent system program). Most noticeably it is not assumed that the
agents are able to reason about the norms of the system.

The programming language for normative multi-agent systems provides pro-
gramming constructs to specify the effect of an agent’s actions in the environ-
ment, norms, sanctions, and the initial state of the environment. Moreover, the
programming language is based on a monitoring and a sanctioning mechanism
that observes the actions performed by the agents, determines their effects in the
shared environment, determines the violations caused by performing the actions,
and possibly, imposes sanctions. A program in this language is the implemen-
tation of a norm-based artefact. As we assume that the norm-based artefacts
determine the effects of external actions in the shared environment, the pro-
gramming language should provide constructs to implement these effects. The
effect of an agent’s (external) actions is specified by a set of literals that should
hold in the shared environment after the external action is performed by the
agent. As external actions can have different effects when they are executed in
different states of the shared environment, we add a set of literals that function
as the pre-condition of those effect.

We consider norms as being represented by counts-as rules [13], which ascribe
“institutional facts” (e.g. “a violation has occurred”), to “brute facts” (e.g. “an
agent is on the train without ticket”). For example, a counts-as rule may express
the norm ”an agent on the train without ticket counts-as a violation”. In our
framework, brute facts constitute the environment shared by the agents, while
institutional facts constitute the normative/institutional state of the multi-agent
system. Institutional facts are used with the explicit aim of triggering system’s
reactions (e.g., sanctions). As showed in [8] counts-as rules can enjoy a rather
classical logical behavior, and are here implemented as simple rules that relate
brute and normative facts. In the presented programming language, we distin-
guish brute facts from normative (institutional) facts and assume two disjoint
sets of propositions to denote these facts.

Brute and institutional facts constitute the (initial) state of the multi-agent
system (i.e., the state of the norm-based artefact). Brute facts are initially set by
the programmer by means of the initial state of the shared environment. These
facts can change as individual agents perform actions in the shared environment.
Normative facts are determined by applying counts-as rules in multi-agent states.
The application of counts-as rules in subsequent states of a multi-agent system

4

realizes a monitoring mechanism as it determines and detects norm violations
during the execution of the multi-agent system.

Sanctions are also implemented as rules, but follow the opposite direction of
counts-as rules. A sanction rule determines which brute facts will be brought
about by the system as a consequence of the normative facts. Typically, such
brute facts are sanctions, such as fines. Notice that in human systems sanctions
are usually issued by specific agents (e.g. police agents). This is not the case
in our computational setting, where sanctions necessarily follow the occurrence
of a violation if the relevant sanction rule is in place (comparable to automatic
traffic control and issuing tickets). It is important to stress, however, that this is
not an intrinsic limitation of our approach. We do not aim at mimicking human
institutions but rather providing the specification of computational systems.

3.1 Syntax.

In order to represent brute and institutional facts in our normative multi-agent
systems programming language, we introduce two disjoint sets of propositions to
denote these facts. The syntax of the normative multi-agent system programming
language is presented below using the EBNF notation. In the following, we use
<b-prop> and <i-prop> to be propositional formulae taken from two different
disjoint sets of propositions. Moreover, we use <ident> to denote a string and
<int> to denote an integer.

N-MAS Prog := "Agents: " (<agentName> <agentProg> [<nr>])+ ;
"Facts: " <bruteFacts>
"Effects: " <effects>
"Counts-as rules: " <counts-as>
"Sanction rules: " <sanctions>;

<agentName> := <ident>;
<agentProg> := <ident>;
<nr> := <int>;
<bruteFacts> := <b-literals>;
<effects> := ({<b-literals>} <actionName> {<b-literals>})+;
<counts-as> := (<literals> ⇒ <i-literals>)+;
<sanctions> := (<i-literals> ⇒ <b-literals>)+;
<actionName> := <ident>;
<b-literals> := <b-literal> {"," <b-literal>};
<i-literals> := <i-literal> {"," <i-literal>};
<literals> := <literal> {"," <literal>};
<literal> := <b-literal> | <i-literal>;
<b-literal> := <b-prop> | "not" <b-prop>;
<i-literal> := <i-prop> | "not" <i-prop>;

In order to illustrate the use of this programming language, consider the fol-
lowing underground station example.

5

Agents: passenger PassProg 1
Facts: {-at platform, -in train, -ticket}
Effects: {-at platform} enter {at platform},

{-ticket} buy ticket {ticket},
{at platform, -in train} embark {-at platform, in train}

Counts as rules: {at platform , -ticket} ⇒ {viol1},
{in train , -ticket} ⇒ {viol⊥}

Sanction rules: {viol1} ⇒ {fined10}
This program creates one agent called passenger whose (executable) specifi-

cation is included in a file with the name PassProg. The Facts, which implement
brute facts, determine the initial state of the shared environment. In this case,
the agent is not at the platform (-at platform) nor in the train (-in train)
and has no ticket (-ticket). The Effects indicate how the environment can
advance in its computation. Each effect is of the form {pre-condition} action
{post-condition}. The first effect, for instance, means that if the agent per-
forms an enter action when not at the platform, the result is that the agent
is on the platform (either with or without a ticket). Only those effects that are
changed are thus listed in the post-condition. The Counts as rules determine
the normative effects for a given (brute and normative) state of the multi-agent
system. The first rule, for example, states that being on the platform with-
out having a ticket is a specific violation (marked by viol1). The second rule
marks states where agents are on a train without a ticket with the specifically
designated literal viol⊥. This literal is used to implement regimentation. The op-
erational semantics of the language ensures that the designated literal viol⊥ can
never hold during any run of the system (see Definition 3). Intuitively, rules with
viol⊥ as consequence could be thought of as placing gates blocking an agent’s
action. Finally, the aim of Sanction rules is to determine the punishments
that are imposed as a consequence of violations. In the example the violation of
type viol1 causes the sanction fined10 (e.g., a 10 EUR fine).

Counts-as rules obey syntactic constraints. Let l = (Φ ⇒ Ψ) be a rule, we
use condl and consl to indicate the condition Φ and consequent Ψ of the rule l,
respectively. We consider only sets of rules such that 1) they are finite; 2) they
are such that each condition has exactly one associated consequence (i.e., all the
consequences of a given conditions are packed in one single set cons); and 3)
they are such that for counts-as rule k, l, if consk ∪ consl is inconsistent (i.e.,
contains p and−p), then condk ∪ condl is also inconsistent. That is to say, rules
trigger inconsistent conclusions only in different states. In the rest of this paper,
sets of rules enjoying these three properties are denoted by R.

3.2 Operational Semantics.

One way to define the semantics of this programming language is by means of
operational semantics. Using such semantics, one needs to define the configu-
ration (i.e., state) of normative multi-agent systems and the transitions that
such configurations can undergo through transition rules. The state of a multi-

6

agent system with norms consists of the state of the external environment, the
normative state, and the states of individual agents.

Definition 1. (Normative Multi-Agent System Configuration) Let Pb and Pn be
two disjoint sets of literals denoting atomic brute and normative facts (includ-
ing viol⊥), respectively. Let Ai be the configuration of individual agent i. The
configuration of a normative multi-agent system is defined as 〈A, σb, σn〉 where
A = {A1, . . . , An}, σb is a consistent set of literals from Pb denoting the brute
state of multi-agent system and σn is a consistent set of literals from Pn denoting
the normative state of multi-agent system.

The configuration of such a multi-agent system can change for various rea-
sons, e.g., because individual agents perform actions in the external environ-
ment or because the external environment can have its own internal dynamics
(the state of a clock changes independent of an individual agent’s action). In
operational semantics, transition rules specify how and when configurations can
change, i.e., they specify which transition between configurations are allowed
and when they can be derived. In this paper, we consider only the transition
rules that specify the transition of multi-agent system configurations as a result
of performing external actions by individual agents. Of course, individual agents
can perform (internal) actions that modify only their own configurations and
have no influence on the multi-agent system configuration. The transition rules
to derive such transitions are out of the scope of this paper.

Definition 2. (Transitions of Individual Agent’s Actions) Let Ai and A′i be
configurations of individual agent i, and α(i) be an (observable) external action
performed by agent i. Then, the following transition captures the execution of an
external action by an agent.

Ai
α(i)−→ A′i : agent i can perform external action α

This transition indicates that an agent configuration can change by perform-
ing an external action. The performance of the external action is broadcasted
to the multi-agent system level. Note that no assumption is made about the
internals of individual agents as we do not present transition rules for deriving
internal agent transitions (denoted as A −→ A′). The only assumption is that
the action of the agent is observable. This is done by labeling the transition with
the external action name.

Before presenting the transition rule specifying the possible transitions of the
normative MAS configurations, the closure of a set of conditions under a set of
(counts-as and sanction) rules needs to be defined. Given a set R of rules and
a set X of literals, we define the set of applicable rules in X as ApplR(X) =
{Φ ⇒ Ψ | X |= Φ}. The closure of X under R, denoted as ClR(X), is inductively
defined as follows:

B: ClR
0 (X) = X ∪ (

⋃
l∈ApplR(X) consl)

S: ClR
n+1(X) = ClR

n (X) ∪ (
⋃

l∈ApplR(ClRn (X)) consl)

7

Because of the properties of finiteness, consequence uniqueness and consistency
of R one and only one finite number m + 1 can always be found such that
ClR

m+1(X) = ClR
m(X) and ClR

m(X) 6= ClR
m−1(X). Let such m + 1 define the

closure X under R: ClR(X) = ClR
m+1(X). Note that the closure may become

inconsistent due to the ill-defined set of counts-as rules. For example, the counts-
as rule p ⇒ −p (or the set of counts as rules {p ⇒ q , q ⇒ −p}), where p and q
are normative facts, may cause the normative state of a multi-agent system to
become inconsistent.

We can now define a transition rule to derive transitions between normative
multi-agent system configurations. In this transition rule, the function up deter-
mines the effect of action α(i) on the environment σb based on its specification
(Φ α(i) Φ′) as follows:

up(α(i), σb) = (σb ∪ Φ′) \ ({p | −p ∈ Φ′} ∪ {−p | p ∈ Φ′})
Definition 3. (Transition Rule for Normative Multi-Agent Systems) Let Rc be
the set of counts-as rules, Rs be the set of sanction rules, and (Φ α(i) Φ′) be the
specification of action α(i). The multi-agent transition rule for the derivation of
normative multi-agent system transitions is defined as follows:

Ai ∈ A & Ai
α(i)→ A′i & σb |= Φ & σ′b = up(α(i), σb)

σ′n = ClRc(σ′b) \ σ′b & σ′n 6|= viol⊥ & S = ClRs(σ′n) \ σ′n & σ′b ∪ S 6|= ⊥
〈A, σb, σn〉 −→ 〈A′, σ′b ∪ S, σ′n〉

where A′ = (A\{Ai})∪{A′i} and viol⊥ is the designated literal for regimentation.

This transition rule captures the effects of performing an external action by an
individual agent on both external environments and the normative state of the
MAS. First, the effect of α on σb is computed. Then, the updated environment
is used to determine the new normative state of the system by applying all
counts-as rules to the new state of the external environments. Finally, possible
sanctions are added to the new environment state by applying sanction rules
to the new normative state of the system. In should be emphasized that other
multi-agent transition rules, such as transition rules for communication actions,
are not presented in this paper because the focus here is on how norms determine
the effects of external actions.

Note that the external action of an agent can be executed only if it would
not result in a state containing viol⊥. This captures exactly the regimentation
of norms. Hence, once assumed that the initial normative state does not include
viol⊥, it is easy to see that the system will never be in a viol⊥-state. It is
important to note that when a normative state σ′n becomes inconsistent, the
proposed transition rule cannot be applied because an inconsistent σ′n entails
viol⊥. Also, note that the condition σ′b∪S 6|= ⊥ guarantees that the environment
state never can become inconsistent. Finally, it should be emphasized that the
normative state σ′b is not defined on σn and is always computed anew.

8

4 Logic

In this section, we propose a logic to specify and verify liveness and safety prop-
erties of multi-agent system programs with norms. This logic, which is a variant
of Propositional Dynamic Logic (PDL, see [2]), is in the spirit of [1] and rely on
that work. It is important to note that the logic developed in [1] aims at spec-
ifying and verifying properties of single agents programmed in terms of beliefs,
goals, and plans. Here we modify the logic and apply it to multi-agent system
programs. We first introduce some preliminaries before presenting the logic.

4.1 Preliminaries

We show how the programming constructs can be used for grounding a logical
semantics. Let P denote the set of propositional variables used to describe brute
and normative states of the system. It is assumed that each propositional vari-
able in P denotes either an institutional/normative or a brute state-of-affairs:
P = Pn ∪ Pb and Pn ∩ Pb = ∅. A state s is represented as a pair 〈σb, σn〉 where
σb = {(−)p1, . . . , (−)pn : pi ∈ Pb} is a consistent set of literals (i.e., for no p ∈ Pb

it is the case that p ∈ σb and −p ∈ σb), and σn is like σb for Pn.
Rules are pairs of conditions and consequences ({(−)p1, . . . , (−)pn | (−)pi ∈

X}, {(−)q1, . . . , (−)qk | (−)qi ∈ Y }) with X and Y being either σb or σn when
applied in state 〈σb, σn〉. Following [8], if X = σb and Y = σn then the rule
is called bridge counts-as rule; if X = Y = σn then the rule is an institutional
counts-as rule; if X = σn and Y = σb then the rule is a sanction rule. Literals
p’s and q’s are taken to be disjoint. Leaving technicalities aside, bridge counts-as
rules connect brute states to normative/institutional ones, institutional counts-as
rules connect institutional facts to institutional facts, and sanction rules connect
normative states to brute ones.

Given a set R of rules, we say a state s = 〈σb, σn〉 to be R-aligned if for all
pairs (condk, consk) in R: if condk is satisfied either by σb (in the case of a bridge
counts-as rule) or by σn (in the case of an institutional counts-as or a sanction
rule), then consk is satisfied by σn (in the case of a bridge or institutional counts-
as rule) or by σb (in the case of a sanction rule), respectively. States that are
R-aligned are states which instantiate the normative system specified by R.

Let the set of agents’ external actions Ac be the union
⋃

i∈I Aci of the finite
sets Aci of external actions of each agent i in the set I. We denote external actions
as α(i) where α ∈ Aci and i ∈ I. We associate now with each α(i) ∈ Aci a set of
pre- and post-conditions {(−)p1 ∈ σb, . . . , (−)pn ∈ σb}, {(−)q1 ∈ σ′b, . . . , (−)qk ∈
σ′b} (where p’s and q’s are not necessarily disjoint) when α(i) is executed in a
state with brute facts set σb which satisfies the pre-condition then the resulting
state s′ has the brute facts set σ′b which satisfies the post-condition (including
replacing p with−p if necessary to preserve consistency) and it is such that the
rest of σ′b is the same as σb. Executing an action α(i) in different configurations
may give different results. For each α(i), we denote the set of pre- and post-
condition pairs {(prec1, post1), . . . , (precm, postm)} by Cb(α(i)). We assume
that Cb(α(i)) is finite, that pre-conditions preck, precl are mutually exclusive

9

if k 6= l, and that each pre-condition has exactly one associated post-condition.
We denote the set of all such pre- and post-conditions of all agents’ external
actions by C.

Now everything is put into place to show how the execution of α(i) in a
state with brute facts set σb also univocally changes the normative facts set
σn by means of the applicable counts-as rules, and adds the resulting sanctions
by means of the applicable sanction rules. If α(i) is executed in a state 〈σb, σn〉
with brute facts set σb, which satisfies the pre-conditions, then the resulting state
〈σ′b ∪ S, σ′n〉 is such that σ′b satisfies the brute post-condition of α(i) (including
replacing p with −p if necessary) and the rest of σ′b is the same of σb; σ′n is
determined by the closure of σ′b with counts-as rules Rc; sanctions S are obtained
via closure of σ′n with sanction rules Rs.

4.2 Language

The language L for talking about normative multi-agent system programs is just
the language of PDL built out of a finite set of propositional variables P ∪−P
(i.e., the literals built from P), used to describe the system’s normative and
brute states, and a finite set Ac of agents’ actions. Program expressions ρ are
built out of external actions α(i) as usual, and formulae φ of L are closed under
boolean connectives and modal operators:

ρ ::= α(i) | ρ1 ∪ ρ2 | ρ1; ρ2 | ?φ | ρ∗

φ ::= (−)p | ¬φ | φ1 ∧ φ2 | 〈ρ〉φ

with α(i) ∈ Ac and (−)p ∈ P ∪−P . Connectives ∨ and →, and the modal operator
[ρ] are defined as usual.

4.3 Semantics.

The language introduced above is interpreted on transition systems that gener-
alize the operational semantics presented in the earlier section, in that they do
not describe a particular program, but all possible programs —according to C—
generating transitions between all the Rc and Rs-aligned states of the system.
As a consequence, the class of transition systems we are about to define will
need to be parameterized by the sets C, Rc and Rs.

A model is a structure M = 〈S, {Rα(i)}α(i)∈Ac, V 〉 where:

– S is a set of Rc and Rs-aligned states.
– V = (Vb, Vn) is the evaluation function consisting of brute and normative

valuation functions Vb and Vn such that for s = 〈σb, σn〉, Vb(s) = σb and
Vn(s) = σn.

– Rα(i), for each α(i) ∈ Ac, is a relation on S such that (s, s′) ∈ Rα(i) iff for
some (preck, postk) ∈ C(α(i)), preck(s) and postk(s′), i.e., for some pair
of pre- and post-conditions of α(i), the pre-condition holds for s and the
corresponding post-condition holds for s′. Note that this implies two things.

10

First, an α(i) transition can only originate in a state s which satisfies one of
the pre-conditions for α(i). Second, since pre-conditions are mutually exclu-
sive, every such s satisfies exactly one pre-condition, and all α(i)-successors
of s satisfy the matching post-condition.

Given the relations corresponding to agents’ external actions in M , we can define
sets of paths in the model corresponding to any PDL program expression ρ in
M . A set of paths τ(ρ) ⊆ (S × S)∗ is defined inductively:

– τ(α(i)) = {(s, s′) : Rα(i)(s, s′)}
– τ(φ?) = {(s, s) : M, s |= φ}
– τ(ρ1 ∪ ρ2) = {z : z ∈ τ(ρ1) ∪ τ(ρ2)}
– τ(ρ1; ρ2) = {z1 ◦ z2 : z1 ∈ τ(ρ1), z2 ∈ τ(ρ2)}, where ◦ is concatenation of

paths , such that z1 ◦z2 is only defined if z1 ends in the state where z2 starts
– τ(ρ∗) is the set of all paths consisting of zero or finitely many concatenations

of paths in τ(ρ) (same condition on concatenation as above)

Constructs such as If φ then ρ1 else ρ2 and while φ do ρ are defined as
(φ?; ρ1) ∪ (¬φ?; ρ2) and (φ?; ρ)∗;¬φ, respectively. The satisfaction relation |= is
inductively defined as follows:

– M, s |= (−)p iff (−)p ∈ Vb(s) for p ∈ Pb

– M, s |= (−)p iff (−)p ∈ Vn(s) for p ∈ Pn

– M, s |= ¬φ iff M, s 6|= φ
– M, s |= φ ∧ ψ iff M, s |= φ and M, s |= ψ
– M, s |= 〈ρ〉φ iff there is a path in τ(ρ) starting in s which ends in a state s′

such that M, s′ |= φ.
– M, s |= [ρ]φ iff for all paths τ(ρ) starting in s, the end state s′ of the path

satisfies M, s′ |= φ.

Let the class of transition systems defined above be denoted MC,Rc,Rs where
C is the set of pre- and post-conditions of external actions, Rc is the set of
counts-as rules and Rs the set of sanction rules.

4.4 Axiomatics.

The axiomatics shows in what the logic presented differs w.r.t. standard PDL. In
fact, it is a conservative extension of PDL with domain-specific axioms needed
to axiomatize the behavior of normative multi-agent system programs.

For every pre- and post-condition pair (preci, posti) we describe states sat-
isfying preci and states satisfying posti by formulas of L. More formally, we
define a formula tr(X) corresponding to a pre- or post-condition X as follows:
tr((−)p) = (−)p and tr({φ1, . . . , φn}) = tr(φ1) ∧ . . . ∧ tr(φn). This allows us
to axiomatize pre- and post-conditions of actions. The conditions and conse-
quences of counts-as rules and sanction rules can be defined in similar way as
pre- and post-conditions of actions, respectively. The set of models MC,Rc,Rs is
axiomatized as follows:

11

PDL Axioms and rules of PDL
Ax Consistency Consistency of literals: ¬(p ∧−p)
Ax Counts-as For every rule (condk, consk) in Rc: tr(condk) → tr(consk)
Ax Sanction For every rule (violk, sanck) in Rs: tr(violk) → tr(sanck)
Ax Regiment viol⊥ → ⊥
Ax Frame For every action α(i) and every pair of pre- and post-conditions

(precj , postj) in C(α(i)) and formula Φ built out of Pb not containing any
propositional variables occurring in postj :

tr(precj) ∧ Φ → [α(i)](tr(postj) ∧ Φ)
This is a frame axiom for actions.

Ax Non-Executability For every action α(i), where all possible pre-conditions
in C(α(i)) are prec1, . . . , preck: ¬tr(prec1)∧ . . .∧¬tr(preck) → ¬〈α(i)〉>
where > is a tautology.

Ax Executability For every action α(i) and every pre-condition precj in C(α(i)):
tr(precj) → 〈α(i)〉>
Let us call the axiom system above AxC,Rc,Rs , where C is the set of brute

pre- and post-conditions of atomic actions, Rc is the set of counts-as rules, and
Rs is the set of sanction rules.

Theorem 1. Axiomatics AxC,Rc,Rs is sound and weakly complete for the class
of models MC,Rc,Rs .

Proof. Soundness is proven as usual by induction on the length of derivations.
We sketch the proof of completeness. It builds on the usual completeness proof
of PDL via finite canonical models. Given a consistent formula φ to be proven
satisfiable, such models are obtained via the Fischer-Ladner closure of the set
of subformulae of the formula φ extended with all pre- and post-conditions of
any action α(i) occurring in φ. Let FLC(φ) denote such closure. The canonical
model consists of all the maximal AxC,Rc,Rs-consistent subsets of FLC(φ). The
accessibility relation and the valuation of the canonical model are defined like in
PDL and the truth lemma follows in the standard way. It remains to be proven
that the model satisfies the axioms. First, since the states in the model are
maximal and consistent w.r.t. Ax Counts-as, Ax Sanction, Ax Consistency, and
AxRegiment, they are Rc- and Rs-aligned, σb and σn are consistent, and no state
is such that σn |= viol⊥. Second, it should be shown that the canonical model
satisfies the pre- and post-conditions of the actions occurring in φ in that: a) no
action α(i) is executable in a state s if none of its preconditions are satisfied by s,
and b) if they hold in s then the corresponding post-conditions hold in s′ which
is accessible byRα(i) from s. As to a), if a state s in the canonical model does
not satisfy any of the preconditions of α(i) then, by Ax Non-Executability and
the definition of the canonical accessibility relation, there is no s′ in the model
such that sRα(i)s

′. As to b), if a state s in the canonical model satisfies one of
the preconditions precj of α(i) thentr(precj) belongs to s and, by Ax Frame,
[α(i)]tr(postj) also do. Now, Ax Executability guarantees that there exists at
least one s′ such that sRα(i)s

′, and, for any s′ such that sRα(i)s
′, by the definition

of such canonical accessibility relation, s′ contains tr(postj) (otherwise it would

12

not be the case that sRα(i)s
′). On the other hand, for any literal (−)p in s not

occurring intr(postj), its value cannot change from s to s′ since, if it would,
then for Ax Frame it would not be the case that sRα(i)s

′, which is impossible.
This concludes the proof.

4.5 Verification

To verify a normative multi-agent system program means, in our perspective,
to check whether the program implementing the normative artefact is soundly
designed w.r.t. the regimentation and sanctioning mechanisms it is supposed to
realize or, to put it in more general terms, to check whether certain property
holds in all (or some) states reachable by the execution traces of the multi-agent
system program. In order to do this, we need to translate a multi-agent system
program into a PDL program expression.

As explained in earlier sections, a multi-agent system program assumes a
set of behaviors A1, . . . , An of agents 1, . . . , n, each of which is a sequence of
external actions (the agents actions observed from the multi-agent level), i.e.,
Ai = α1

i ; α
2
i , . . . where αj

i ∈ Ac. 1 Moreover, a multi-agent system program with
norms consists of an initial set of brute facts, a set of counts-as rules and a set
of sanction rules which together determine the initial state of the program. In
this paper, we consider the execution of a multi-agent program as interleaved
executions of the involved agents’ behaviors started at the initial state.

Given I as the set of agents’ names and Ai as the behavior of agent i ∈ I,
the execution of a multi-agent program can be described as PDL expression⋃

interleaved({Ai|i ∈ I}), where interleaved({Ai|i ∈ I}) yields all possible
interleavings of agents’ behaviors, i.e., all possible interleavings of actions from
sequences Ai. It is important to notice that

⋃
interleaved({Ai|i ∈ I}) corre-

sponds to the set of computations sequences (execution traces) generated by the
operational semantics.

The general verification problem can now be formulated as follows. Given a
multi-agent system program with norms in a given initial state satisfying φ ∈ L,
the state reached after the execution of the program satisfies ψ, i.e.:

φ → 〈[
⋃

interleaved({Ai|i ∈ I})]〉ψ

In the above formulation, the modality 〈[. . .]〉 is used to present both safety [. . .]
and liveness 〈. . .〉 properties. We briefly sketch a sample of such properties using
again the multi-agent system program with norms which implements the train
station example with one passenger agent (see Section 3).

Sanction follows violation. Entering without a ticket results in a fine, i.e.,

−at platform ∧−train ∧−ticket→ [enter](viol1 ∧ pay10).

1 Note an agent’s behavior can always be written as a (set of) sequence(s) of actions,
which in turn can be written as a PDL expressions.

13

Norm obedience avoids sanction. Buying a ticket if you have none and
entering the platform does not result in a fine, i.e.:

−at platform∧−train→ 〈 If−ticket then buy ticket; enter 〉 (at platform∧−pay10).

Regimentation. It is not possible for an agent to enter the platform and em-
bark the train without a ticket, i.e.:

−at platform ∧−train ∧−ticket→ [enter; embark]⊥

Note that there is only one passenger agent involved in the example program.
For this property, we assume that the passenger’s behavior is enter; embark.
Note also that:

⋃
interleaved({enter; embark}) = enter; embark.

Below is the proof of the regimentation property above with respect to the
multi-agent system program with norms that implements the train station with
one passenger.

Proof. First, axiom Ax Frame using the specification of the enter action (with
pre-condition {-at platform} and post-condition {at platform}) gives us
(1) −at platform ∧ −in train ∧ −ticket →

[enter] at platform ∧ −in train ∧ −ticket
Moreover, axiom Ax Frame using the specification of the embark action (with
pre-condition {at platform, -in train} and post-condition {-at platform,
in train}) gives us
(2) at platform ∧ −in train ∧ −ticket →

[embark] −at platform ∧ in train ∧ −ticket
Also, axiom Ax Counts-as and the specification of the second counts-as rule of
the program give us
(3) in train ∧ −ticket→ viol⊥
And axiom Ax Regiment together with formula (3) gives us
(4) in train ∧ −ticket→ ⊥
Now, using PDL axioms together with formula (1), (2), and (4) we get first
(5) −at platform ∧ −in train ∧ −ticket → [enter][embark] ⊥
and thus
(6) −at platform∧−in train∧−ticket → [enter; embark] ⊥. This completes
the derivation.

5 Conclusions and Future Work

The paper has proposed a programming language for implementing multi-agent
systems with norms. The programming language has been endowed with formal
operational semantics, therefore formally grounding the use of certain social
notions —eminently the notion of norm, regimentation and enforcement— as

14

explicit programming constructs. A sound and complete logic has then been
proposed which can be used for verifying properties of the multi-agent systems
with norms implemented in the proposed programming language.

We have already implemented an interpreter for the programming language
that facilitates the implementation of multi-agent systems without norms (see
http://www.cs.uu.nl/2apl/). Currently, we are working to build an inter-
preter for the modified programming language. This interpreter can be used
to execute programs that implement multi-agent systems with norms. Also, we
are working on using the presented logic to devise a semi-automatic proof checker
for verification properties of normative multi-agent programs.

We are aware that for a comprehensive treatment of normative multi-agent
systems we need to extend our framework in many different ways. Future work
aims at extending the programming language with constructs to support the im-
plementation of a broader set of social concepts and structures (e.g., roles, power
structure, task delegation, and information flow), and more complex forms of en-
forcement (e.g., policing agents) and norm types (e.g., norms with deadlines).
Another extension of the work is the incorporation of the norm-awareness of
agents in the design of the multi-agent system. We also aim at extending the
framework to capture the role of norms and sanctions concerning the interaction
between individual agents.

The approach in its present form concerns only closed multi-agent systems.
Future work will also aim at relaxing this assumption providing similar formal
semantics for open multi-agent systems. Finally, we have focused on the so-
called ’ought-to-be’ norms which pertain to socially preferable states. We intend
to extend our programming framework with ’ought-to-do’ norms pertaining to
socially preferable actions.

References

1. N. Alechina, M. Dastani, B. Logan, and J.-J.Ch Meyer. A logic of agent programs.
In Proc. AAAI 2007, 2007.

2. P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University
Press, Cambridge, 2001.

3. C. Castelfranchi. Formalizing the informal?: Dynamic social order, bottom-up
social control, and spontaneous normative relations. JAL, 1(1-2):47–92, 2004.

4. M. Dastani. 2apl: a practical agent programming language. International Journal
of Autonomous Agents and Multi-Agent Systems, 16(3):214–248, 2008.

5. M. Dastani and J.-J. Meyer. A practical agent programming language. In In Proc.
of ProMAS’07, 2008.

6. V. Dignum. A Model for Organizational Interaction. PhD thesis, Utrecht Univer-
sity, SIKS, 2003.

7. M. Esteva, J.A. Rodŕıguez-Aguilar, B. Rosell, and J.L. Arcos. Ameli: An agent-
based middleware for electronic institutions. In Proc. of AAMAS 2004, New York,
US, July 2004.

8. D. Grossi. Designing Invisible Handcuffs. PhD thesis, Utrecht University, SIKS,
2007.

15

9. J. F. Hübner, J. S. Sichman, and O. Boissier. Moise+: Towards a structural func-
tional and deontic model for mas organization. In Proc. of AAMAS 2002. ACM,
July 2002.

10. A. J. I. Jones and M. Sergot. On the characterization of law and computer systems.
In Deontic Logic in Computer Science. 1993.

11. Rosine Kitio, Olivier Boissier, Jomi Fred Hbner, and Alessandro Ricci. Organi-
sational artifacts and agents for open multi-agent organisations: giving the power
back to the agents. In Coordination, Organizations, Institutions, and Norms in
Agent Systems III, volume 4870, pages 171–186. Springer, 2007.

12. A. Ricci, M. Viroli, and A. Omicini. “Give agents their artifacts”: The A&A
approach for engineering working environments in MAS. In In proc. of AAMAS
2007, Honolulu, Hawai’i, USA, 2007.

13. J. Searle. The Construction of Social Reality. Free, 1995.
14. F. Zambonelli, N. Jennings, and M. Wooldridge. Developing multiagent systems:

the GAIA methodology. ACM Transactions on Software Engineering and Method-
ology, 12(3):317–370, 2003.

16

