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Thomas Ågotnes1, Wiebe van der Hoek2, and Michael Wooldridge2

1 Dept. of Computer Engineering, Bergen University College, Norway
2 Dept. of Computer Science, University of Liverpool, UK

Abstract. Although normative systems, or social laws, have proved to be a highly
influential approach to coordination in multi-agent systems, the issue of compli-
ance to such normative systems remains problematic. In all real systems, it is
possible that some members of an agent population will not comply with the
rules of a normative system, even if it is in their interests to do so. It is there-
fore important to consider the extent to which a normative system is robust, i.e.,
the extent to which it remains effective even if some agents do not comply with
it. We formalise and investigate three different notions of robustness and related
decision problems. We begin by considering sets of agents whose compliance is
necessary and/or sufficient to guarantee the effectiveness of a normative system;
we then consider quantitative approaches to robustness, where we try to identify
the proportion of an agent population that must comply in order to ensure suc-
cess, and finally, we consider a more general approach, where we characterise the
compliance conditions required for success as a logical formula.

1 Introduction

Normative systems, or social laws, have been widely promoted as an approach to co-
ordinating multi-agent systems [11, 12, 6, 8, 1, 2]. The basic idea is that a normative
system is a set of constraints on the behaviour of agents in the system; after imposing
these constraints, it is intended that some desirable overall property will hold. One of
the most important issues associated with such normative systems – and one of the most
ignored – is that of compliance. Put simply, what happens if some system participants
do not comply with the regulations of the normative system? Non-compliance may be
accidental (e.g., a message fails and so some participants are not informed about the
regulations). Alternatively, it may be deliberate but rational (e.g., a participant chooses
to ignore the norms because it does not see them as being in its own best interests), or
deliberately irrational (e.g., a computer virus). Whatever the cause, it seems inevitable
that, in real, large-scale systems, non-compliance will occur, and it is therefore impor-
tant to consider the consequences of non-compliance. Existing research has addressed
the issue of non-compliance in at least two ways.

First, one can design the normative system taking the goals and aspirations of sys-
tem participants into account, so that compliance is the rational choice for partici-
pants [2]. Using the terminology of mechanism design [10, p.179], we try to make
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compliance incentive compatible. Where this approach is available, it seems highly at-
tractive. However, given some desired objective for a normative system, it is not always
possible to construct an incentive compatible normative system that achieves some out-
come, and even where it is possible, it is still likely that large, open systems will fall
prey to irrational behaviour.

Second, one can combine the normative system with some penalty mechanism, to
punish non-compliance [4]. The advantage of this approach is that it can be applied
to most scenarios, and that it is familiar (this is, after all, how normative systems often
work in the real world). There are many disadvantages, however. For example, it may be
hard to detect when non-compliance has occurred, and in large, Internet-like systems,
it may be hard to impose penalties (e.g., across national borders).

For these reasons, in this paper we introduce the notion of robustness for norma-
tive systems. Intuitively, a normative system is robust to the extent to which it remains
effective in the event of non-compliance by some agents. Following an introduction to
the technical framework of normative systems, we introduce and investigate three ways
of characterising robustness. First, we consider trying to identify coalitions whose com-
pliance is necessary and/or sufficient to ensure that the normative system is effective.
We characterise the complexity of checking these notions of robustness, and consider
cases where verifying these notions of robustness is easier. In addition to verification
we consider the complexity of robust feasibility of a normative system: given a reli-
able coalition, does there exist a normative system which is effective whenever that
coalition complies? We then consider a more quantitative notion of robustness, called
k -robustness, where we try to identify the number of agents that could deviate and still
leave the normative system effective. Finally, we consider a more general, logical ap-
proach of characterising robustness, whereby we define a predicate over sets of agents,
such that this predicate characterises exactly those sets of agents whose compliance
will ensure the success of the normative system. We conclude with a brief discussion,
including some pointers to related and future work.

2 Formal Preliminaries

In this section, we present the formal framework for normative systems that we use
throughout the remainder of the paper. This framework is based on that of [8, 1, 2],
which is in turn descended from [11]. Although our presentation is complete, it is suc-
cinct, and readers are referred to [8, 1, 2] for details and discussion.

Kripke Structures: We use Kripke structures as our basic semantic model for multi-
agent systems [5]. A Kripke structure is essentially a directed graph, with the vertex
set S corresponding to possible states of the system being modelled, and the relation
R ⊆ S × S capturing the possible transitions of the system; S 0 ⊆ S denotes the
initial states of the system. Intuitively, transitions are caused by agents in the system
performing actions, although we do not include such actions in our semantic model (see,
e.g., [11, 8] for models which include actions as first class citizens). An arc (s , s ′) ∈ R
corresponds to the execution of an atomic action by one of the agents in the system.
Note that we are therefore here not modelling synchronous action. This assumption



is not essential, but it simplifies the presentation. However, we find it convenient to
include within our model the agents that cause transitions. We therefore assume a set
A of agents, and we label each transition in R with the agent that causes the transition
via a function α : R → A. Finally, we use a vocabulary Φ = {p, q, . . .} of Boolean
variables to express the properties of individual states S : we use a function V : S → 2Φ

to label each state with the Boolean variables true (or satisfied) in that state.
Formally, an agent-labelled Kripke structure (over Φ) is a 6-tuple:

K = 〈S ,S 0,R,A,α, V 〉,

where: S is a finite, non-empty set of states; S 0 ⊆ S (S 0 '= ∅) is the set of initial states;
R ⊆ S × S is a total binary relation on S , which we refer to as the transition relation;
A = {1, . . . ,n} is a set of agents; α : R → A labels each transition in R with an agent;
and V : S → 2Φ labels each state with the set of propositional variables true in that
state.

We hereafter refer to an agent-labelled Kripke structure simply as a Kripke struc-
ture. A path over a transition relation R is an infinite sequence of states π = s0, s1, . . .
such that ∀u ∈ N: (su , su+1) ∈ R. If u ∈ N, then we denote by π[u] the component in-
dexed by u in π (thus π[0] denotes the first element, π[1] the second, and so on). A path
π such that π[0] = s is an s-path. Let ΠR(s) denote the set of s-paths over R; since
it will usually be clear from context, we often omit reference to R, and simply write
Π(s). We will sometimes refer to and think of an s-path as a possible computation, or
system evolution, from s .

CTL: We use Computation Tree Logic (CTL), a well-known and widely used branching
time temporal logic, to express the objectives of normative systems [5]. Given a set
Φ = {p, q, . . .} of atomic propositions, the syntax of CTL is defined by the following
grammar, where p ∈ Φ:

ϕ ::= * | p | ¬ϕ | ϕ ∨ ϕ | E !ϕ | E(ϕU ϕ) | A !ϕ | A(ϕU ϕ)

The semantics of CTL are given with respect to the satisfaction relation “|=”, which
holds between pointed structures K , s , (where K is a Kripke structure and s is a state
in K ), and formulae of the language. The satisfaction relation is defined as follows:

K , s |= !;
K , s |= p iff p ∈ V (s) (where p ∈ Φ);
K , s |= ¬ϕ iff not K , s |= ϕ;
K , s |= ϕ ∨ ψ iff K , s |= ϕ or K , s |= ψ;
K , s |= A "ϕ iff ∀π ∈ Π(s) : K , π[1] |= ϕ;
K , s |= E "ϕ iff ∃π ∈ Π(s) : K , π[1] |= ϕ;
K , s |= A(ϕU ψ) iff ∀π ∈ Π(s),∃u ∈ N, s.t. K , π[u] |= ψ and ∀v , (0 ≤ v < u) :
K , π[v ] |= ϕ
K , s |= E(ϕU ψ) iff ∃π ∈ Π(s),∃u ∈ N, s.t. K , π[u] |= ψ and ∀v , (0 ≤ v < u) :
K , π[v ] |= ϕ

The remaining classical logic connectives (“∧”, “→”, “↔”) are defined as abbreviations
in terms of ¬,∨ in the conventional way. The remaining CTL temporal operators are



defined:
A♦ϕ ≡ A(*U ϕ) E♦ϕ ≡ E(*U ϕ)
A ϕ ≡ ¬E♦¬ϕ E ϕ ≡ ¬A♦¬ϕ

We say ϕ is satisfiable if K , s |= ϕ for some Kripke structure K and state s in K ; ϕ is
valid if K , s |= ϕ for all Kripke structures K and states s in K . The problem of check-
ing whether K , s |= ϕ for given K , s , ϕ (model checking) can be done in deterministic
polynomial time, while checking whether a given ϕ is satisfiable or whether ϕ is valid
is EXPTIME-complete [5]. We write K |= ϕ if K , s0 |= ϕ for all s0 ∈ S 0, and |= ϕ if
K |= ϕ for all K .

Later, we will make use of two fragments of CTL: the universal language L u (with
typical element µ), and the existential fragment Le (typical element ε):

µ ::= * | ⊥| p | ¬p | µ ∨ µ | µ ∧ µ | A !µ | A µ | A(µU µ)
ε ::= * | ⊥| p | ¬p | ε ∨ ε | ε ∧ ε | E !ε | E ε | E(εU ε)

The key point about these fragments is as follows. Let us say, for two Kripke structures
K1 = 〈S ,S 0,R1,A,α, V 〉 and K2 = 〈S ,S 0,R2,A,α, V 〉 that K1 is a subsystem of
K2 and K2 is a supersystem of K1, (denoted K1 1 K2), iff R1 ⊆ R2. Then we have
(cf. [8]).

Theorem 1 ([8]). Suppose K1 1 K2, and s ∈ S . Then:

∀ε ∈ Le : K1, s |= ε ⇒ K2, s |= ε; and
∀µ ∈ Lu : K2, s |= µ ⇒ K1, s |= µ.

Normative Systems: For our purposes, a normative system (or “norm”) is simply a set
of constraints on the behaviour of agents in a system [1]. More precisely, a normative
system defines, for every possible system transition, whether or not that transition is
considered to be legal or not. Different normative systems may differ on whether or
not a transition is legal. Formally, a normative system η (w.r.t. a Kripke structure K =
〈S ,S 0,R,A,α, V 〉) is simply a subset of R, such that R \ η is a total relation. The
requirement that R \ η is total is a reasonableness constraint: it prevents normative
systems which lead to states with no successor. Let N (R) = {η : (η ⊆ R) & (R \
η is total)} be the set of normative systems over R. The intended interpretation of a
normative system η is that (s , s ′) ∈ η means transition (s , s ′) is forbidden in the context
of η. We denote the empty normative system by η∅, i.e., η∅ = ∅. Let A(η) = {α(s , s ′) |
(s , s ′) ∈ η} denote the set of agents involved in η.

The effect of implementing a normative system on a Kripke structure is to eliminate
from it all transitions that are forbidden according to this normative system (see [8, 1]).
If K is a Kripke structure, and η is a normative system over K , then K † η denotes the
Kripke structure obtained from K by deleting transitions forbidden in η. Formally, if
K = 〈S ,S 0,R,A,α, V 〉, and η ∈ N (R), then let K † η = K ′ be the Kripke structure
K ′ = 〈S ′,S 0′,R′,A′, α′,V ′〉 where:

– S = S ′, S 0 = S 0′, A = A′, and V = V ′;
– R′ = R \ η; and



– α′ is the restriction of α to R ′:

α′(s , s ′) =
{

α(s , s ′) if (s , s ′) ∈ R′

undefined otherwise.

The next most basic question we can ask in the context of normative systems is
as follows. We are given a Kripke structure K , representing the state transition graph
of our system, and we are given a CTL formula ϕ, representing the objective of a nor-
mative system designer (that is, the objective characterises what a designer wishes to
accomplish with a normative system). The feasibility problem is then whether or not
there exists a normative system η such that implementing η in K will achieve ϕ, i.e.,
whether K † η |= ϕ. We say that η is effective for ϕ in K if K † η |= ϕ.

We make use of operators on normative systems which correspond to groups of
agents “defecting” from the normative system. Formally, let K = 〈S ,S 0,R,A,α, V 〉
be a Kripke structure, let C ⊆ A be a set of agents over K , and let η be a normative
system over K . Then η ! C denotes the normative system that is the same as η except
that it only contains the arcs of η that correspond to the actions of agents in C , i.e., η !
C = {(s , s ′) : (s , s ′) ∈ η & α(s , s ′) ∈ C}. Also, η " C denotes the normative system
that is the same as η except that it only contains the arcs of η that do not correspond to
actions of agents in C : η " C = {(s , s ′) : (s , s ′) ∈ η & α(s , s ′) '∈ C}.

3 Necessity and Sufficiency

As we noted in the introduction, the basic intuition behind robust normative systems
is that they remain effective in the presence of deviation, or non-compliance, by some
members of the agent population. As we shall see, there are several different ways of
formulating robustness. Our first approach is to try to characterise “lynchpin” agents
– those agents whose compliance with the normative system is somehow crucial for
the successful operation of the system. This seems appropriate when there are “key
players” in the normative system – for example, where there is a single point of failure.
In this section, we therefore consider coalitions whose compliance is necessary and/or
sufficient to ensure that the normative system is effective.

We say that C ⊆ A are sufficient for η in the context of K and ϕ if the compliance
of C with η is effective, i.e., iff:

∀C ′ ⊆ A : (C ⊆ C ′) ⇒ [K † (η ! C ′) |= ϕ].

The following example illustrates this notion of sufficiency.

Example 1. Consider four agents who are attending a conference with an on-site com-
puter facility. This service centre has currently one printer, two scanners and three PCs
available. Agent a has tasks that require access to a printer and PC, agent b needs a
printer and scanner, agent c is in need of a scanner and PC and agent d will need a
scanner only. The set of agents is A = {a, b, c, d}. They are interested in using re-
sources of type R1,R2,R3, of each resource type Rj there are j instances of each:
R1 = {printer1}, R2 = {scanner1, scanner2}, R3 = {pc1, pc2, pc3}. At a given
point in time, a resource can be owned by an agent. The actions available to the agents



are making available a resource they currently own, or taking possession of a resource
which is available. We assume that the agents never act at exactly the same time; in
particular we assume that actions are turn-based – first a can perform some action, then
b, and so on. A state s is a tuple

s = 〈Oa ,Ob ,Oc,Od , i〉

where, for each i ∈ A, Oi is the set of resources currently owned by i .
The number of agents that own a resource of type j cannot be greater than j . Let,

for each resource Rj and state s , avail(j , s) be the number of resources of type j that
are not owned by an agent. The component i ∈ A of s denotes whose turn it is: we
write turn(s) = i . If Rj ∩ Oi '= ∅, we say that i owns a resource of type j and write
Rj ≺ Oi .

Our agents are not equal. In order to fullfil his task, agent a would every now and
then like to use resources of type R1 and R3 simultaneously. We write Useful(a) =
{R1,R3}. Simililary, Useful(b) = {R1,R2}, Useful(c) = {R2,R3} while Useful(d)
= {R2}.

Let s = 〈Oa ,Ob,Oc ,Od , i〉 and s ′ = 〈O ′
a ,O ′

b ,O
′
c,O ′

d , i ′〉 be two states. Then
(s , s ′) ∈ R iff

1. a ′ = b, b′ = c, c′ = d and d ′ = a;
2. for all k '= i and all j : Rj ≺ Ok ⇔ Rj ≺ O ′

k ;
3. if Rj ≺ O ′

i and Rj '≺ Oi then avail(j , s) > 0.

Furthermore, α(s , s ′) = i when turn(s) = i .
Let the starting state of the system be such that it is agent a’s turn, and nobody

owns any resource. If we call this system K0, then a first norm η0 we impose on K
is that no agent (i) owns two resources of the same type at the same time, (ii) takes
posession of a resource that he does not need, (iii) takes possession of two new resources
simultaneously, and (iv) fails to take possession of some useful resource if it is available
when it is his turn:

η0 =






(s , s ′) |

turn(s) = i , and
(∃j : |O ′

i ∩ Rj | ≥ 2, or
∃j : |O ′

i ∩ Rj | ≥ 1 and Rj '∈ Useful(i), or
∃x , y : x '= y, x , y ∈ O ′

i and x , y '∈ Oi , or
∀j : (Rj ∈ Useful(i), |Oi ∩ Rj | = 0,
avail(j , s) > 0) ⇒ |O ′

i ∩ Rj | = 0).






Let K1 = K0 † η0. Now, in order to formulate some objectives of the system, let a o
j

denote that agent a owns a resource of type j and similarly for the other agents. Let

happy(i) =
∧

Rj∈Useful(i)

ioj

Thus happy(i) means that i is in possession of all his useful resources, simultane-
ously. Our first objective is:

ϕ1 = A
∧

i∈A

A♦happy(i).



The normative system that we will use for it is

η1 = {(s , s ′) | turn(s) = i & Oi = Useful(i)& O ′
i '= ∅}

In words: if at some point an agent simultaneously owns all the resources that are useful
for him, then he will make them available if it is his turn. Which coalitions are sufficient
for this norm in the context of K1 and ϕ1? First of all, consider a coalition without
agent a. If a does not comply with norm η1, then he can grab the printer and hold on
to it forever. Thus, agent b will not be happy, because there is only one printer. The
same argument holds for a coalition without agent b. Thus, it seems that any sufficient
coalition must include both agents a and b. But {a, b} alone is not a sufficient coalition,
as the following scenario illustrates: (1) a grabs a PC; (2) b grabs the printer; (3) c grabs
a scanner; (4) d grabs the other scanner. Now, if c and d do not comply with η 1, it might
be that they never give up their scanners, in which case b never will be happy. However,
if a and b are joined by c in complying with η1, the objective is obtained:

K1 † (η1 ! {a, b, c}) |= ϕ1

– it is easy to see that in fact {a, b, c} is sufficient for η1 in the context of K1 and ϕ1.
But {a, b, c} and its extension {a, b, c, d} are not the only sufficient coalitions in this
context: {a, b, d} is also sufficient.

Now, associated with this notion is a decision problem: we are given K , η, ϕ, and
C , and asked whether C are sufficient for η in the context of K and ϕ. It may appear
at first sight that this is an easy decision problem: don’t we just need to check that
K †(η ! C ) |= ϕ? The answer is no. For suppose the objective is an existential property
η ∈ Le . Then the fact that K † (η ! C ) |= η and C ⊆ C ′ does not guarantee that
K † (η ! C ′) |= η. Intuitively, this is because, if more agents than C comply, then this
might eliminate transitions from K , causing the existential property η to be falsified.

Example 2. We continue Example 1. To demonstrate that sufficiency for a norm in the
context of a system and an objective is not monotonic in the coalition C , consider the
following existential objective:

ϕ2 = E ¬happy(b)

That is, it is possible that b is forever unhappy (we will not discuss why the designer of
the normative system might have such an objective). We have that:

K1 † (η1 ! {b}) |= ϕ2.

That is, if b complies with the norm η1, the objective is true. This is because, for ex-
ample, agent a can block b’s access to the printer. However, as we saw in Example 1,
K1 † (η1 ! {a, b, c}) |= ¬ϕ2, so {b} is not sufficient for the objective ϕ2.

We can prove that, in general, checking sufficiency is computationally hard.

Theorem 2. Deciding C -sufficiency is co-NP-complete.
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Fig. 1. Illustrating the reduction used in Theorem 2: (a) the Kripke structure produced in the
reduction; (b) how the construction corresponds to a valuation: if only agent 1 defects, then the
Kripke structure we obtain corresponds to a valuation in which x1 is true (a state in which x1 is
true is reachable in the resulting structure – E♦x1 in the objective we construct) and all other
variables are false (i.e., are true in unreachable states).

Proof. Membership of co-NP is straightforward from the definitions of the problems.
We prove hardness by reducing TAUT, the problem of showing that a formula Ψ of
propositional logic is a tautology, i.e., is true under all interpretations. Let x 1, . . . , xk

be the Boolean variables of Ψ . The reduction is as follows. For each Boolean vari-
able xi we create an agent ai , and in addition create one further agent, d . We create
3k + 3 states, and create the transition relation R and associated agent labelling α
and valuation V as illustrated in Figure 1(a): inside states are the propositions true
in that state, while arcs between states are labelled with the agent associated with
the transition. Let S 0 = {s0} be the singleton initial state set. We have thus de-
fined the Kripke structure K . For the remaining components, define C = ∅, η =
{(s0, s2), (s2, s3), (s3, s5), (s5, s6), . . . , (s3k+2, s3k+3)} (i.e., all the lower arcs in the
figure), and finally, define ϕ to be the formula obtained from Ψ by systematically re-
placing each Boolean variable xi by (E♦xi). Now, we claim that η is C -sufficient for
ϕ in K iff Ψ is a tautology. First, notice that since C = ∅, then for all C ′ ⊆ A, we have
C ⊆ C ′, and so the problem reduces to the following:

∀C ′ ⊆ A : [K † (η ! C ′) |= ϕ].

The correctness of the reduction is illustrated in Figure 1(b), where we show the Kripke
structure obtained when only agent 1 defects from the normative system; in this case,
the Kripke structure we obtain corresponds to a valuation of Ψ which makes variable x 1

true and all others false.

However, the news is not all bad: for universal objectives, checking sufficiency is
easy.

Corollary 1. Deciding C -sufficiency for objectives µ ∈ Lu is polynomial time decid-
able.



Proof. Simply check that K †(η ! C ) |= µ; since µ ∈ Lu , the fact that K †(η ! C ′) |= µ
for all C ⊆ C ′ ⊆ A follows from Theorem 1.

Next, we consider the obvious counterpart notion to sufficiency; that of necessity.
We say that C are necessary for η in the context of K and ϕ iff C must comply with η
in order for it to be effective, i.e., iff:

∀C ′ ⊆ A : [K † (η ! C ′) |= ϕ] ⇒ (C ⊆ C ′).

The following example illustrates necessity.

Example 3. We continue Example 1. We observed that {a, b, c} and {a, b, d} are suf-
ficient for η1 in the context of K1 and ϕ1. Indeed, {a, b} is necessary for η1 in the
context of K1 and ϕ1. Both a and b must comply with the norm for the objective to be
satisfied.

Theorem 3. Deciding C -necessity is co-NP-complete.

Proof. Membership of co-NP is obvious from the statement of the problem, so consider
hardness. Note that proof of Theorem 2 does not go through for this case: since we
set C = ∅ in the reduction, C are trivially necessary. However, we can use the same
basic construction as Theorem 2 to prove NP-hardness of the complement problem to
C -necessity, i.e., the problem of showing that

∃C ′ ⊆ A : [K † (η ! C ) |= ϕ] ∧ ¬(C ⊆ C ′).

We reduce SAT. Given a SAT instance Ψ , we follow the construction of Theorem 2,
except that set the input coalition C to be C = {d}. It is now easy to see, using a
similar argument to Theorem 2, that Ψ is satisfiable iff ∃C ⊆ A : [K † (η ! C ) |=
ϕ] ∧ ¬(C ⊆ C ′).

The following sums up some general properties of the concepts we have discussed
so far. Here, “sufficient” (“necessary”) means “sufficient (necessary) for η in the context
of K and ϕ”.

Proposition 1.

1. There might be no sufficient coalitions.
2. There is always a necessary coalition: the empty coalition.
3. There might be two disjoint sufficient coalitions.
4. There might be no non-empty necessary coalitions.
5. If C is necessary and C ′ sufficient, then C ⊆ C ′.
6. If there are two disjoint sufficient coalitions, then there is no non-empty necessary

coalition.

Proof.

1. Trivial. Take, e.g., a system consisting of a single state with a self-loop and where
p is true, and let ϕ = E !¬p. η must be empty, and ϕ can never be true.

2. Immediate.



3. Take again the system from the first point, and let ϕ = E !p. Both {a} and {b}
are sufficient, for any a '= b.

4. Take the system and formula in the previous point.
5. Let C be necessary and C ′ sufficient. From sufficiency of C ′ we have that K † (η !

C ′) |= ϕ, and from necessity of C it follows that C ⊆ C ′.
6. Immediate from the above point.

Note that point 5 above implies that every necessary coalition is contained in the
intersection of all sufficient coalitions. Does the other direction hold, i.e., is the inter-
section of all sufficient coalitions necessary? In the general case the answer is “no” , as
the following example illustrates.

Example 4. Take the system in Figure 2, and let ϕ = E !A !p. It is easy to see that:

– {a} is sufficient;
– K † (η ! {b}) |= ϕ;
– None of {b}, {c} or {b, c} are sufficient.

From the first and last point it follows that {a} is the intersection of all sufficent coali-
tions; from the second point it follows that {a} is not necessary.
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Fig. 2. A normative system. The dashed lines indicate “illegal” transitions. The uppermost state
is the single inital state.

However, for universal objectives the greatest necessary coalition is exactly the in-
tersection of the sufficient coalitions:

Lemma 1. When the objective is a formula in Lu , the intersection of all sufficient coali-
tions is a necessary coalition.

Proof. Let ϕ ∈ Lu and let C =
⋂

C ′ sufficient C
′. Assume that K † (η ! C2) |= ϕ; we

must show that C ⊆ C2. From Theorem 1 we have K † (η ! C3) |= ϕ for any C3 such
that C2 ⊆ C3. It follows that C2 is sufficient. But then C ⊆ C2.

Thus, for the case of universal objectives the necessary coalitions are exactly the subsets
of the intersection of the sufficient coalitions. Indeed, in Examples 1 we saw that the
intersection of the sufficient coalitions, consisting of agents a and b, is a necessary
coalition.



3.1 Feasibility of Robust Normative Systems

So far, our technical results have focussed on verifying robustness properties of norma-
tive systems. However, an equally important question is that of feasibility. As we noted
earlier, feasibility basically asks whether there exists some normative system such that,
if this law was imposed (and, implicitly, everybody complies), then the desired effect of
the normative system would be achieved. In the context of robustness, we ask whether
a normative system is robustly feasible. In more detail, we can think about robust feasi-
bility as follows. Suppose we know that some subset C of the overall agent population
is “reliable”, in that we are confident that C can be relied upon to comply with a norma-
tive system. Then instead of asking whether there exists an arbitrary normative system
η that is effective for our desired objective ϕ, we can ask whether there exists a norma-
tive system η such that C is sufficient for η in the context of ϕ. We call this property
C -sufficient feasibility3. Formally, this question is as follows:

∃η ∈ N (R) : (K † η |= ϕ) ∧
∀C ′ ⊆ A : (C ⊆ C ′) ⇒ [K † (η ! C ′) |= ϕ].

It turns out that, under standard complexity theoretic assumptions, checking this prop-
erty is harder than the (co-NP-complete) verification problem.

Theorem 4. Deciding C -sufficient feasibility is Σp
2 -complete.

Proof. We deal with the complement of the problem, which we show to be Π p
2 -complete.

The complement problem is that of deciding:

∀η ∈ N (R) : (K † η |= ϕ) ⇒
∃C ′ ⊆ A : (C ⊆ C ′) ∧ (K † (η ! C ′) '|= ϕ).

Membership is immediate from the definition of the problem. For hardness, we reduce
the problem of determining whether QBF 2,∀ formulae are true [9, p.96]. An instance of
QBF2,∀ is given by a quantified Boolean formula with the following structure:

∀x̄1 ∃x̄2 χ(x̄1, x̄2) (1)

in which x̄1 and x̄2 are disjoint sets of Boolean variables, and χ(x̄1, x̄2) is a propositional
logic formula (the matrix) over these variables. Such a formula is true if for all assign-
ments to Boolean variables x̄1, there exists an assignment to x̄2, such that χ(x̄1, x̄2) is
true under the overall assignment. An example of a QBF 2,∀ formula is:

∀x1∃x2[(x1 ∨ x2) ∧ (x1 ∨ ¬x2)] (2)

The reduction is related to that of Theorem 2, although slightly more involved. Let
x̄ = {x1, . . . , xg} be the universally quantified variables in the input formula, let ȳ =

3 It may at first sight seem strange that we consider this problem: why not simply look for a
normative system η such that A(η) = C ? Our rationale is that the worst case corresponds to
only C complying with the normative system; it may well be that we get better results if more
agents comply.
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Fig. 3. Illustrating the reduction used in Theorem 4.

{y1, . . . , yh} be the existentially quantified variables, and let χ(x̄ , ȳ) be the matrix. We
create a Kripke structure with 3(3(g + h) + 3) states and g + h agents. We create
variables corresponding to x̄ and ȳ , and in addition to these, we create a variable end .
The overall structure is defined to be as shown in Figure 3; note that end is true only in
the final state of the structure. We set C = {1, . . . , g}, and create the objective ϕ to be

ϕ=̂(¬E♦end) ∨ (¬χ∗(x̄ , ȳ))

where χ∗(x̄ , ȳ) is the CTL formula obtained from the propositional formula χ(x̄ , ȳ) by
systematically substituting (E♦v) for each variable v ∈ x̄∪ȳ . Correctness follows from
construction. Since the complement problem is Π p

2 -complete, C -sufficient feasibility
is Σp

2 -complete.

4 k-Robustness

The notions of robustness described above are based on identifying some “critical”
coalition, whose compliance is either necessary and/or sufficient for the correct func-
tioning of the overall normative system. In this section, we explore a slightly different
notion, whereby we instead quantify the extent to which a normative system is resistant
to non-compliance. We introduce the notion of k -robustness, where k ∈ N: intuitively,
saying that a normative system is k -robust will mean that it remains effective as long as
k arbitrary agents comply.

As with C -compliance, we can consider k -compliance from the point of view of
both sufficiency and necessity. Where k ≥ 1, we say a normative system η is k -sufficient
(w.r.t. some K , ϕ) if the compliance of any arbitrary k agents is sufficient to ensure
that the normative system is effective with respect to ϕ. Formally, this involves checking
that:

∀C ⊆ A : (|C | ≥ k) ⇒ (K † (η ! C )) |= ϕ.

As with checking C -sufficiency, checking k -sufficiency is hard.

Theorem 5. Deciding k -sufficiency is co-NP-complete.

Proof. Membership of co-NP is obvious from the problem definition; for hardness, we
reduce TAUT, constructing the Kripke structure, normative system, and objective as in



the proof of Theorem 2; and finally, we set k = 0. The correctness argument is then as
in Theorem 2.

We define the resilience of a normative system η (w.r.t. K , ϕ) as the largest number
of non-compliant agents the system can tolerate. Formally, the resilience is the largest
number k , k < n , such that

∀C ⊆ A : (|C | ≤ k) ⇒ (K † (η " C )) |= ϕ.

where n is the number of agents. It is easy to see that the resilience of η is the largest
number k such that η is (n − k)-sufficient. Observe that the resilience is undefined iff
the objective does not hold even if all agents comply to the norm (K † η '|= ϕ). It is
immediate that computing the resilience of a normative system is co-NP-complete with
respect to Turing reductions.

Example 5. We continue Example 3. While both {a, b, c} and {a, b, d} are sufficient
coalitions, η1 is not 3-sufficient wrt. K1, ϕ1 because not every three-agent coalition is
sufficient. It is 4-sufficient (the objective is satisfied if the grand coalition complies).
Thus, the resilience is equal to 0.

Now consider the situation where a has left the computer facility; b, c, d remains.
Let K ′

1, η
′
1, ϕ

′
1 be the corresponding variants of K1, η1 and ϕ1. Now, each of {b, c},

{b, d} and {c, d} are sufficient. Thus, η ′
1 is 2-sufficient wrt. K ′

1, ϕ
′
1, and the resilience

is 1.

We then define k -necessity in the obvious way – η is k -necessary (w.r.t. K , ϕ) iff:

∀C ⊆ A : (K † (η ! C )) |= ϕ ⇒ (|C | ≥ k).

Theorem 6. Deciding k -necessity is co-NP-complete.

Proof. Membership of co-NP is again obvious from the problem definition; for hard-
ness, we reduce SAT to the complement problem, proceeding as in Theorem 3; where l
is the number of Boolean variables in the SAT instance, we set k = l + 1. Correctness
of the reduction is then straightforward.

We say that η is k -robust, k ≥ 1, if it is both k -sufficient and k -necessary. In other
words, η is k -robust if it is effective exactly in the event of non-compliance of any
arbitrary coalition of up to n − k agents: η is k -robust iff

∀C ⊆ A : (|C | ≤ n − k) ⇔ (K † (η " C )) |= ϕ.

where n is the number of agents. From the results above, it is immediate that checking
k -robustness is co-NP-complete.

Example 6. We continue Example 5. While {a, b} is the largest necessary coalition,
η1 is 3-necessary wrt. K1, ϕ1 because at least three agents must comply (in this case,
either {a, b, c} or {a, b, d}). It is not k -robust for any k , because it is 4-sufficient but
not 3-sufficient, and 3-necessary but not 4-necessary.

η′
1 is both 2-sufficient and 2-necessary wrt. K ′

1, ϕ
′
1. It is thus 2-robust. Thus, the

objective will be maintained if and only if at least 2 agents comply.



Example 7. We continue Example 6. Consider yet another variant: the agents are again
all four a, b, c, d , but their needs have changed. Now each agent only needs a PC, i.e.,
Useful(a) = Useful(b) = Useful(c) = Useful(d) = {R3}. Now we have that no
singleton coalition is sufficient and every two-agent coalition is sufficient. The system
is 2-sufficient, 2-necessary, 2-robust and its resilience is 4 − 2 = 2.

The following sums up some general properties of the concepts of k -robustness.
Here, “k -sufficient” (“k -necessary”) means “k -sufficient (k -necessary) in the context
of K and ϕ”.

Proposition 2.

1. Any system is 0-necessary.
2. If the system is k -sufficient, then C is sufficient for any C such that |C | ≥ k .
3. If C is necessary, then the system is |C |-necessary.
4. If the system is k -sufficient for k < n , then no non-empty coalition is necessary.
5. k -robustness is unique: if the system is k -robust and k ′-robust, then k = k ′.

Proof.

1.-3. Immediate.
4. Let k < n and assume that the system is k -sufficient and that C '= ∅ is necessary.

Let C ′ be a coalition such that |C ′| ≥ k . By k -sufficiency, K † (η ! C ′) |= ϕ, and
by necessity of C , C ⊆ C ′. Since C ′ was arbitrary, we have that C ⊆

⋂
|C ′|≥j C ′.

Assume that a ∈ C . Let |C1| = k . a ∈ C1. Now let b ∈ A \ C1 (b exists because
k < n = |A|), and let C2 = C1 \ {a} ∪{ b}. |C2| = k , but a '∈ C2 which
contradicts the assumption that a ∈ C . Thus, C must be empty.

5. If the system is k -robust and k ′-robust for k > k ′ and C ′ is a coalition of size
k ’, then by k ′-sufficiency (K † (η ! C )) |= ϕ and by k -necessity it follows that
|C | ≥ k which is not the case.

5 A Logical Characterisation of Robustness

We have thus far seen two different ways in which we might want to consider robust-
ness: try to identify some “lynchpin” coalition, or try to “quantify” the robustness of
the normative system in terms of the number of agents whose compliance is required
to make the normative system effective. Often, however, robustness properties will not
take either of these forms. For example, here is an argument about robustness that one
might typically see: “the system will not overheat as long as at least one sensor works
and either one of the relief valves is working or the automatic shutdown is working”.
Clearly, such an argument does not fit any of the types of robustness property that we
have seen so far. So, how are we to characterise such properties? The idea we adopt is
to characterise the robustness by means of a coalition predicate. Coalition predicates
were originally introduced in [3] as a way of quantifying over coalitions. A coalition
predicate, as the name suggests, is simply a predicate over coalitions: if P is a coalition
predicate, then it denotes a set of coalitions – those that satisfy P .



eq(C ) =̂ subseteq(C ) ∧ supseteq(C )
subset(C ) =̂ subseteq(C ) ∧ ¬eq(C )
supset(C ) =̂ supseteq(C ) ∧ ¬eq(C )

incl(i) =̂ supseteq({i})
excl(i) =̂ ¬incl(i)

any =̂ supseteq(∅)
nei(C ) =̂

W
i∈C incl(i)

ei(C ) =̂ ¬nei(C )
gt(n) =̂ geq(n + 1)
lt(n) =̂ ¬geq(n)

leq(n) =̂ lt(n + 1)
maj (n) =̂ geq()(n + 1)/2*)
ceq(n) =̂ (geq(n) ∧ leq(n))

Table 1. Derived coalition predicates.

We first introduce the language of coalition predicates (from [3]), and then show
how this language can be used to characterise robustness properties. Syntactically,
the language of coalition predicates is built from three atomic predicates subseteq ,
supseteq , and geq , and we derive a stock of other predicate forms from these 4. For-
mally, the syntax of coalition predicates is given by the following grammar:

P ::= subseteq(C ) | supseteq(C ) | geq(n) | ¬P | P ∨ P

where C ⊆ A is a set of agents and n ∈ N is a natural number.
The circumstances under which a coalition C0 ⊆ A satisfies a coalition predicate P

are specified by the satisfaction relation “|=cp”, defined by the following rules:

C0 |=cp subseteq(C ) iff C0 ⊆ C
C0 |=cp supseteq(C ) iff C0 ⊇ C
C0 |=cp geq(n) iff |C0| ≥ n
C0 |=cp ¬P iff not C0 |=cp P
C0 |=cp P1 ∨ P2 iff C0 |=cp P1 or C0 |=cp P2

We assume the conventional definitions of implication (→), biconditional (↔), and
conjunction (∧) in terms of ¬ and ∨. We also find it convenient to make use of the
derived predicates defined in Table 1.

Now, given a Kripke structure K , normative system η, objective ϕ, and coalition
predicate P , we say that P characterises the robustness of η iff the compliance of
any coalition satisfying P is sufficient to ensure that η is effective (w.r.t. K , ϕ). More
formally, P characterises the robustness of η w.r.t. K and ϕ iff:

∀C ⊆ A : (C |=cp P) ⇔ ((K † (η ! C )) |= ϕ).

Now, consider the following simple coalition predicate.

supseteq(C ) (3)
4 In fact, we could choose a smaller base of predicates to work with, deriving the remaining

predicates from these, but the definitions would not be succinct; see the discussion in [3].



Expanding out the semantics, we have that (3) characterises the robustness of a norma-
tive system η w.r.t. K , ϕ iff:

∀C ′ ⊆ A : (C ⊆ C ′) ⇔ ((K † (η ! C )) |= ϕ).

In other words, (3) expresses that C are necessary and sufficient. As another simple
example, the predicate geq(k) characterises the robustness of η iff η is k -robust. The
decision problem of P -characterisation is that of checking whether a given coalition
predicate P characterises robustness in the way described above. Since we can use P -
characterisation to express necessary and sufficient coalitions, we have the following.

Corollary 2. Deciding P -characterisation is co-NP-complete.

Notice that P -characterisation is fully expressive with respect to robustness properties,
in that any robustness property can be characterised with a coalition predicate of the
form:

eq(C1) ∨ eq(C2) ∨ · · ·∨ eq(Cu ).

for some u ∈ N. In the worst case, of course, we may need a coalition predicate where
u may be exponential in the number of agents.

Let us consider some example coalition predicates, and what they say about robust-
ness. Recall the informal example we used in the introduction to this section. Let S be a
set of sensors, let R be the set of relief valves, and let a be the automatic shutdown sys-
tem. Then the following coalition predicate expresses the robustness property expressed
in this argument.

nei(S ) ∧ (nei(R) ∨ incl(a))

The coalition predicate any expresses the fact that the normative system is trivial, in
the sense that it is robust against any deviation (in which case it is unnecessary, since the
objective will hold of the original system). The coalition predicate ¬any expresses the
fact that the normative system will fail w.r.t. its objective irrespective of who complies
with it.

6 Conclusions

We have investigated three types of robustness: necessary and/or sufficient coalitions;
the number of non-compliant agents that can be tolerated; and, more generally, a logical
characterisation of robustness.

Fitoussi and Tennenholz [6] formulate two criteria when choosing between different
social laws. Simplicity tries to minimise, for each agent, the differences between states
in terms of the allowed actions. The idea behind minimality is to reduce the number
of forbidden actions that are not necessary to achieve the objective. Obviously, these
two criteria typically conflict: one may sacrifice one in favour of the other. One would
expect that there is a trade-off between minimality and robustness, and that minimality
of η would coincide with the grand coalition A being necessary for it. This match is
not perfect, however: first of all, if the latter condition holds, there still may be more
transitions forbidden for A than necessary to guarantee the objective ϕ. Secondly, it



might be that not all agents in A are constrained by η. But what we do have is that a
minimal norm η must have A(η) (the agents involved in it) as a necessary coalition.

Recently, French et al. proposed a temporal logic of robustness [7]. A brief descrip-
tion of the main ideas, using our formalisms, is as follows. Let η be a norm. A path π
complies with η if for no n ∈ N, (π[n], π[n + 1]) ∈ η, i.e., no step in π is forbidden.
Let Oϕ mean that ϕ is obligatory: it is true in s if for all η-compliant s-paths, ϕ holds.
Pϕ (ϕ is permitted) is ¬O¬ϕ. Given an s-path π, let

∆1
s (π) = {π′ | π′ is s-path , ∃j ∈ N∀i < jπ(i) = π′(i) &

π′[j + 1]π′[j + 2] . . . complies with η}
In words: π′ ∈ ∆1

s if it is like π up to some point j , in j it may do an illegal step,
but from then on complies with the norm. French et al. then define an operator #ϕ
(‘robustly, ϕ’) which is true on a path π, if for all paths in ∆ 1

s(π), and π itself, ϕ is
true. So, #ϕ is true in a η-complient path, if it is true in all paths that have at most one
η-forbidden transition. This is a way of bringing robustness in to the object language.
However, note that in [7], there is no notion of agency: only the system can deviate
from or comply with a norm. If ϕ is a universal formula, then K , s 0 |= P#ϕ would
imply (in our framework) that there is a single agent i such that A \ {i} is sufficient
for Eϕ, given K and η. Although it seems a good idea for future work to incorporate
such ‘deontic-like’ operators in the object language, even the semantics of [7] is quite
different from ours: whereas [7] focusses on the number of illegal transitions, we are
concerned with the number of compliant agents, or compliant coalitions.
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