Robust Normative Systems*

Thomas Agotnes!, Wiebe van der Hoek?, and Michael Wooldridge?

! Dept. of Computer Engineering, Bergen University College, Norway
2 Dept. of Computer Science, University of Liverpool, UK

Abstract. Although normative systems, or social laws, have proved to beahighly
influential approach to coordination in multi-agent systems, the issue of compli-
ance to such normative systems remains problematic. In al real systems, it is
possible that some members of an agent population will not comply with the
rules of a normative system, even if it is in their interests to do so. It is there-
fore important to consider the extent to which a normative system isrobugt, i.e.,
the extent to which it remains effective even if some agents do not comply with
it. We formalise and investigate three different notions of robustness and related
decision problems. We begin by considering sets of agents whose compliance is
necessary and/or sufficient to guarantee the effectiveness of a normative system;
we then consider quantitative approaches to robustness, where we try to identify
the proportion of an agent population that must comply in order to ensure suc-
cess, and finally, we consider amore general approach, where we characterise the
compliance conditions required for success as alogical formula.

1 Introduction

Normative systems, or socia laws, have been widely promoted as an approach to co-
ordinating multi-agent systems [11,12,6,8,1,2]. The basic idea is that a normative
system is a set of constraints on the behaviour of agents in the system; after imposing
these constraints, it is intended that some desirable overall property will hold. One of
the most important i ssues associated with such normative systems—and one of the most
ignored — is that of compliance. Put simply, what happens if some system participants
do not comply with the regulations of the normative system? Non-compliance may be
accidenta (e.g., a message fails and so some participants are not informed about the
regulations). Alternatively, it may be deliberate but rational (e.g., a participant chooses
to ignore the norms because it does not see them as being in its own best interests), or
deliberately irrational (e.g., a computer virus). Whatever the cause, it seems inevitable
that, in real, large-scale systems, non-compliance will occur, and it is therefore impor-
tant to consider the consequences of non-compliance. Existing research has addressed
the issue of non-compliancein at least two ways.

First, one can design the normative system taking the goals and aspirations of sys-
tem participants into account, so that compliance is the rational choice for partici-
pants [2]. Using the terminology of mechanism design [10, p.179], we try to make

* The content of this paper isalso found in a paper appearing in the proceedings of the AAMAS
2008 conference.

Dagstuhl Seminar Proceedings 09121
Normative Multi-Agent Systems
http://drops.dagstuhl .de/opus/volltexte/2009/1897

compliance incentive compatible. Where this approach is available, it seems highly at-
tractive. However, given some desired objective for a normative system, it is not always
possible to construct an incentive compatible normative system that achieves some out-
come, and even where it is possible, it is still likely that large, open systems will fall
prey to irrational behaviour.

Second, one can combine the normative system with some penalty mechanism, to
punish non-compliance [4]. The advantage of this approach is that it can be applied
to most scenarios, and that it is familiar (thisis, after al, how normative systems often
work in thereal world). There are many disadvantages, however. For example, it may be
hard to detect when non-compliance has occurred, and in large, Internet-like systems,
it may be hard to impose penalties (e.g., across national borders).

For these reasons, in this paper we introduce the notion of robustness for norma-
tive systems. Intuitively, a normative system is robust to the extent to which it remains
effective in the event of non-compliance by some agents. Following an introduction to
the technical framework of normative systems, we introduce and investigate three ways
of characterising robustness. First, we consider trying to identify coalitionswhose com-
pliance is necessary and/or sufficient to ensure that the normative system is effective.
We characterise the complexity of checking these notions of robustness, and consider
cases where verifying these notions of robustness is easier. In addition to verification
we consider the complexity of robust feasibility of a normative system: given a reli-
able coalition, does there exist a normative system which is effective whenever that
coalition complies? We then consider a more quantitative notion of robustness, called
k-robustness, where we try to identify the number of agentsthat could deviate and still
leave the normative system effective. Finally, we consider a more general, logical ap-
proach of characterising robustness, whereby we define a predicate over sets of agents,
such that this predicate characterises exactly those sets of agents whose compliance
will ensure the success of the normative system. We conclude with a brief discussion,
including some pointersto related and future work.

2 Formal Preliminaries

In this section, we present the formal framework for normative systems that we use
throughout the remainder of the paper. This framework is based on that of [8,1,2],
which isin turn descended from [11]. Although our presentation is complete, it is suc-
cinct, and readers arereferred to [8, 1, 2] for details and discussion.

Kripke Structures: We use Kripke structures as our basic semantic model for multi-
agent systems [5]. A Kripke structure is essentially a directed graph, with the vertex
set S corresponding to possible states of the system being modelled, and the relation
R C S x S capturing the possible transitions of the system; S° C S denotes the
initial states of the system. Intuitively, transitions are caused by agents in the system
performing actions, although we do not include such actionsin our semantic model (see,
e.0., [11, 8] for models which include actions asfirst class citizens). Anarc (s, s’) € R
corresponds to the execution of an atomic action by one of the agents in the system.
Note that we are therefore here not modelling synchronous action. This assumption

is not essential, but it simplifies the presentation. However, we find it convenient to
include within our model the agents that cause transitions. We therefore assume a set
A of agents, and we label each transition in R with the agent that causes the transition
viaafunction o : R — A. Finally, we use a vocabulary ¢ = {p, g, ...} of Boolean
variablesto expressthe properties of individual states S: weuseafunction V : § — 22
to label each state with the Boolean variables true (or satisfied) in that state.

Formally, an agent-labelled Kripke structure (over &) is a 6-tuple:

K = <S7 SO’R7 A’a7 V>7

where: S isafinite, non-empty set of states; S° C S (S° # () isthe set of initial states;
R C S x Sisatota binary relation on S, which we refer to as the transition relation;
A={1,...,n}isaset of agents; o : R — A labelseachtransitionin R with an agent;
and V : S — 2% |abels each state with the set of propositional variables true in that
state.

We hereafter refer to an agent-labelled Kripke structure simply as a Kripke struc-
ture. A path over atransition relation R is an infinite sequence of states m = sg, s1, - - -
suchthat Vu € N: (sy, sy+1) € R. If u € N, then we denote by 7[u] the component in-
dexed by « in 7 (thus7[0] denotesthe first element, 7[1] the second, and so on). A path
m such that w[0] = s isan s-path. Let IT(s) denote the set of s-paths over R; since
it will usually be clear from context, we often omit reference to R, and simply write
I1(s). We will sometimes refer to and think of an s-path as a possible computation, or
system evolution, from s.

CTL: Weuse Computation Tree Logic (cTL), awell-known and widely used branching
time temporal logic, to express the objectives of normative systems [5]. Given a set
& = {p,q,...} of aomic propositions, the syntax of cTL is defined by the following
grammar, where p € &:

eu=TIlp|-@0|leVe|EOe|E(@Up) | ADp | AlpU p)

The semantics of CTL are given with respect to the satisfaction relation “ =", which
holds between pointed structures K, s, (where K is a Kripke structure and s is a state
in K), and formulae of the language. The satisfaction relation is defined as follows:

K,sET,;

K,sEpiffp e V(s) (where p € &);

K,s = -piffnot K,s | ¢;

K,sEeVyiff K,sEpor K, s = ;

K,s =EAOyiffVr € II(s) : K,7[1] = ¢;

K,s EEOQwpiff Inr € II(s) : K,w[1] E ¢;

K,s = AlpU) iff Vo € II(s),3u € N,st. K,w[u] E ¢ and Vo, (0 < v < u) :
K,nv] e

K,s = E(pUy) iff Ir € II(s),3u € N, st. K, w[u] = ¢ and Vv, (0 < v < u) :
K,m[v] o

Theremaining classical logic connectives(“A”, “—", “«+") aredefined as abbreviations
in terms of —, v in the conventional way. The remaining CTL temporal operators are

defined:
Ay = A(TU) EQp = E(TU)
Ay = -EG-p ECp = -Ad-e

We say ¢ issatisfiableif K, s = o for some Kripke structure K and state s in K; p is
valid if K, s = ¢ for al Kripke structures K and states s in K. The problem of check-
ing whether K, s |= ¢ for given K, s, ¢ (model checking) can be done in deterministic
polynomial time, while checking whether a given ¢ is satisfiable or whether ¢ isvalid
is EXPTIME-complete [5]. We write K = ¢ if K, 5o = o foral sp € S, and = ¢ if
K = pfordl K.

Later, we will make use of two fragments of CTL: the universal language L “ (with
typical element 1), and the existential fragment L ¢ (typical element ¢):

pr=T[L pl-p|lpVp|lpAp|AOW | ALIL | A(pl p)
ex=T|L| p|-pleve|ene|EOQe|ELe | E(eUe)

The key point about these fragmentsis as follows. Let us say, for two Kripke structures
Ki = (S,5° R, A, V) and K2 = (S, 5% Ry, Ao, V) that K; is a subsystem of
K, and K> is a supersystem of K, (denoted K1 T Kb), iff Ry C Rs. Then we have
(cf. [8]).

Theorem 1 ([8]). Suppose K1 C K»,and s € S. Then:

VeeL®: Ki,s=e¢ = Ky, sEe and
VueL": Ko, s Ep = Ki,s E p.

Normative Systems: For our purposes, a hormative system (or “norm”) issimply a set
of constraints on the behaviour of agentsin a system [1]. More precisely, a normative
system defines, for every possible system transition, whether or not that transition is
considered to be legal or not. Different normative systems may differ on whether or
not atransition is legal. Formally, a normative system n (w.r.t. a Kripke structure K =
(S,89 R, A, V)) is simply a subset of R, such that R \ 7 is a total relation. The
requirement that R \ 7 is total is a reasonableness constraint: it prevents normative
systems which lead to states with no successor. Let N(R) = {n : (n € R) & (R '\
nistota)} be the set of normative systems over R. The intended interpretation of a
normativesystem» isthat (s, s’) € n meanstransition (s, s") isforbiddenin the context
of 7. We denote the empty normative system by 7y, i.e., g = 0. Let A(n) = {a(s, s’) |
(s,s") € n} denotethe set of agentsinvolvedin 1.

The effect of implementing a normative system on aKripke structureis to eliminate
fromit all transitions that are forbidden according to this normative system (see[8, 1]).
If K isaKripke structure, and » is a normative system over K, then K 1 n denotesthe
Kripke structure obtained from K by deleting transitions forbidden in n. Formally, if
K =(S,5° R, Aa, V),andn € N(R), thenlet K t = K’ be the Kripke structure
K' = (8,8 R, A" o, V') where:

- 5§5=8,80=8" A=A and V = V/;
- R =R\ n; and

— o/ istherestriction of o to R’:

o Ja(s,s’) if(s,s’) e R
o/(s,5) = { undefined otherwise.

The next most basic question we can ask in the context of normative systems is
as follows. We are given a Kripke structure K, representing the state transition graph
of our system, and we are given a cTL formula ¢, representing the objective of a nor-
mative system designer (that is, the objective characterises what a designer wishes to
accomplish with a normative system). The feasibility problem is then whether or not
there exists a normative system 7 such that implementing n in K will achieve ¢, i.e.,
whether K 1 = ¢. We say that) is effectivefor ¢ in K if K {0 = ¢.

We make use of operators on normative systems which correspond to groups of
agents “defecting” from the normative system. Formally, let K = (S, S° R, A,a, V)
be a Kripke structure, let C' C A be a set of agents over K, and let n be a normative
system over K. Thenn [C denotes the normative system that is the same as n except
that it only contains the arcs of 1 that correspond to the actions of agentsin C,i.e., n |
C={(s,8"):(s,8') en& afs,s") € C}. Also,n1 C denotesthe normative system
that is the same as n except that it only contains the arcs of » that do not correspond to
actionsof agentsin C:n 1 C ={(s,s’) : (s,s') e n& a(s,s’) & C}.

3 Necessity and Sufficiency

As we noted in the introduction, the basic intuition behind robust normative systems
is that they remain effective in the presence of deviation, or non-compliance, by some
members of the agent population. As we shall see, there are several different ways of
formulating robustness. Our first approach is to try to characterise “lynchpin” agents
— those agents whose compliance with the normative system is somehow crucial for
the successful operation of the system. This seems appropriate when there are “key
players’ in the normative system — for example, where thereis asingle point of failure.
In this section, we therefore consider coalitions whose compliance is hecessary and/or
sufficient to ensure that the normative system is effective.

We say that C' C A are sufficient for i in the context of K and ¢ if the compliance
of C withn is effective, i.e,, iff:

VC'CA(CCC) = (Kt C)Egl
The following exampleillustrates this notion of sufficiency.

Example 1. Consider four agents who are attending a conference with an on-site com-
puter facility. This service centre has currently one printer, two scanners and three PCs
available. Agent a has tasks that require access to a printer and PC, agent b needs a
printer and scanner, agent ¢ is in need of a scanner and PC and agent d will need a
scanner only. The set of agentsis A = {a, b, ¢, d}. They are interested in using re-
sources of type R1, R2, Rs, of each resource type R; there are j instances of each:
Ry = {printer;}, Ro = {scannery, scanners}, Rs = {pc1, pca, pcs}. At a given
point in time, aresource can be owned by an agent. The actions available to the agents

are making available a resource they currently own, or taking possession of aresource
which is available. We assume that the agents never act at exactly the same time; in
particular we assume that actions are turn-based —first o can perform some action, then
b, and so on. A state s isatuple

s = <O(l; Ob; OC7 Oda Z>

where, for each i € A, O, isthe set of resources currently owned by .

The number of agents that own a resource of type j cannot be greater than j. Let,
for each resource R; and state s, avail(j, s) be the number of resources of type j that
are not owned by an agent. The component i € A of s denotes whose turn it is: we
write turn(s) = i. If R; N O; # (), we say that 7 owns aresource of type j and write
Rj < Oz

Our agents are not equal. In order to fullfil his task, agent « would every now and
then like to use resources of type R; and R3 simultaneously. We write Useful(a) =
{R1, R3}. Simililary, Useful(b) = {R1, R2}, Useful(c) = { Rz, R3} while Useful(d)
= {R2}.

Let s = (Oq, O, O;, Oq,1) and s' = (0., Oy, OL, 04, 1) be two states. Then
(s,s") € Riff

1Ld=0bb=cc=dadd =g
2. foral k #ianddl j: R; < O & R; < Op;
3. if Rj < Ol and R; £ O, then avail(j, s) > 0.

Furthermore, (s, s’) = ¢ when turn(s) = 1.

Let the starting state of the system be such that it is agent o’s turn, and nobody
owns any resource. If we call this system K, then a first norm 7, we impose on K
is that no agent (i) owns two resources of the same type at the same time, (ii) takes
posession of aresourcethat he doesnot need, (iii) takes possession of two new resources
simultaneously, and (iv) fails to take possession of some useful resourceif itisavailable
whenitis histurn:

turn(s) = i, and

(37 :|0;NR;|>2,0r

35 :|0O;NR;| > 1and R; & Useful(i), or
dz,y:zx#y,z,y€ Olandz,y & O, or
vy (R] S Useful(z'), |Oz N le =0,
avail(j, s) > 0) = |0/ N R;| =0).

o = (8,8/) |

Let K1 = Ko T no. Now, in order to formulate some objectives of the system, let o
denote that agent « owns aresource of type 5 and similarly for the other agents. Let

happy(i) = N\ @
R;€ Useful(3)

Thus happy(i) meansthat ¢ isin possession of all his useful resources, simultane-
ously. Our first objectiveis:

o1 =AC] /\ AQhappy(i).

i€A

The normative system that we will useforitis
m ={(s,s) | turn(s) =i & O; = Useful(i)& O] # 0}

Inwords: if at some point an agent simultaneously owns all the resourcesthat are useful
for him, then he will make them availableif it ishisturn. Which coalitions are sufficient
for this norm in the context of K7 and ¢1? First of al, consider a coalition without
agent a. If a does not comply with norm 74, then he can grab the printer and hold on
to it forever. Thus, agent b will not be happy, because there is only one printer. The
same argument holds for a coalition without agent b. Thus, it seems that any sufficient
coalition must include both agents a and b. But { a, b} aloneisnot asufficient coalition,
asthefollowing scenarioillustrates: (1) a grabsaPC; (2) b grabsthe printer; (3) ¢ grabs
ascanner; (4) d grabsthe other scanner. Now, if ¢ and d do not comply with 7 1, it might
bethat they never give up their scanners, in which case b never will be happy. However,
if « and b arejoined by ¢ in complying with 1, the objectiveis obtained:

K T (771 I {av b, c}) ': ¥1

—itiseasy toseethat infact {a, b, c} is sufficient for n; in the context of K7 and ¢;.
But {a, b, ¢} and its extension {a, b, ¢, d} are not the only sufficient coalitionsin this
context: {a, b, d} isalso sufficient.

Now, associated with this notion is a decision problem: we are given K, 1, ¢, and
C, and asked whether C' are sufficient for » in the context of K and ¢. It may appear
at first sight that this is an easy decision problem: don’t we just need to check that
Ki(n| C) = ¢?Theanswer isno. For suppose the objectiveis an existential property
n € L. Thenthefactthat K ¥ (n | C) E nand C C C’ does not guarantee that
K 1 (n 1 C") E n. Intuitively, thisis because, if more agents than C' comply, then this
might eliminate transitions from K, causing the existential property » to be falsified.

Example 2. We continue Example 1. To demonstrate that sufficiency for anormin the
context of a system and an objective is not monotonic in the coalition C, consider the
following existential objective:

2 = E[J=happy(b)

That is, it is possible that b is forever unhappy (we will not discuss why the designer of
the normative system might have such an objective). We have that:

Kif(m [{b}) & w2

That is, if b complies with the norm 7, the objective is true. This is because, for ex-
ample, agent a can block b’s access to the printer. However, as we saw in Example 1,
K11 (m [{a,b,c}) = 2, s0{b} isnot sufficient for the objective ¢o.

We can prove that, in general, checking sufficiency is computationally hard.

Theorem 2. Deciding C-sufficiency is co-NP-complete.

s(3ks1)

Q L

d d d

\ s6 (3K) / \ 5(3k+3)
(¢

st s4
IO ®
s0 d ‘
! s2 1 2 k
N 5 (32 K
(b) st 4
Q Q o)
so 4 d\ 8 u\ 6 Y di\s(sk.a)
‘\ 2 1 S5 5(3k+2)

Fig. 1. lllustrating the reduction used in Theorem 2: (a) the Kripke structure produced in the
reduction; (b) how the construction corresponds to a valuation: if only agent 1 defects, then the
Kripke structure we obtain corresponds to a valuation in which z; istrue (a state in which z; is
true is reachable in the resulting structure — E<>xl in the objective we construct) and all other
variables arefalse (i.e., are true in unreachable states).

NV

2
d

e

s(3k+1)

Proof. Membership of co-NP is straightforward from the definitions of the problems.
We prove hardness by reducing TAUT, the problem of showing that a formula & of
propositional logic is a tautology, i.e., is true under al interpretations. Let z1, ..., z
be the Boolean variables of ¥. The reduction is as follows. For each Boolean vari-
able z; we create an agent a;, and in addition create one further agent, d. We create
3k + 3 dtates, and create the transition relation R and associated agent labelling «
and valuation V as illustrated in Figure 1(8): inside states are the propositions true
in that state, while arcs between states are labelled with the agent associated with
the transition. Let S° = {s,} be the singleton initial state set. We have thus de-
fined the Kripke structure K. For the remaining components, define ¢ = (), n =
{(So, 82), (SQ, 83), (83, 85), (55, 86), ey (53k+27 83k+3)} (i.e., al the lower arcs in the
figure), and finally, define ¢ to be the formula obtained from ¥ by systematically re-
placing each Boolean variable z; by (E<>x;). Now, we claim that » is C-sufficient for
@ in K iff ¥ isatautology. First, notice that since C' = (), thenfor al ¢’ C A, we have
C C (', and so the problem reduces to the following:

VC'CA:[Kt(nlC) el

The correctness of the reductionisillustrated in Figure 1(b), where we show the Kripke
structure obtained when only agent 1 defects from the normative system; in this case,
the Kripke structure we obtain correspondsto avaluation of ¥ which makesvariable z 1
true and all othersfalse.

However, the news is not all bad: for universal objectives, checking sufficiency is
easy.

Corollary 1. Deciding C-sufficiency for objectives n € L* is polynomial time decid-
able.

Proof. Simply checkthat K1(n [C) = u; sincep € L*, thefactthat Kt(n | C') = p
foral ¢ C ¢’ C Afollowsfrom Theorem 1.

Next, we consider the obvious counterpart notion to sufficiency; that of necessity.
We say that C' are necessary for 7 in the context of K and ¢ iff C' must comply with
in order for it to be effective, i.e., iff:

VO'CA: Kt C) ¢l = (CCC).
The following exampleillustrates necessity.

Example 3. We continue Example 1. We observed that {a, b, ¢} and {a, b, d} are suf-
ficient for n; in the context of K7 and ;. Indeed, {a, b} is necessary for 7, in the
context of K3 and ;. Both ¢ and b must comply with the norm for the objective to be
satisfied.

Theorem 3. Deciding C-necessity is co-NP-complete.

Proof. Membership of co-NP isobviousfrom the statement of the problem, so consider
hardness. Note that proof of Theorem 2 does not go through for this case: since we
set C = () inthereduction, C are trivially necessary. However, we can use the same
basic construction as Theorem 2 to prove NP-hardness of the complement problem to
C'-necessity, i.e., the problem of showing that

AC"C ALKt C)EelA-(CC).

We reduce sSAT. Given a SAT instance ¥, we follow the construction of Theorem 2,
except that set the input coalition C to be C = {d}. It is now easy to see, using a
similar argument to Theorem 2, that ¥ is satisfiable iff 3C C A : [Kf(n | C) E
p] A(CC).

The following sums up some general properties of the concepts we have discussed
so far. Here, “sufficient” (“necessary”) means“ sufficient (necessary) for n in the context
of K and ¢”.

Proposition 1.

There might be no sufficient coalitions.

There is always a hecessary coalition: the empty coalition.

There might be two disjoint sufficient coalitions.

There might be no non-empty necessary coalitions.

If C' isnecessary and C’ sufficient, then C C C".

If there are two digjoint sufficient coalitions, then there is no non-empty necessary
coalition.

oukrwbdpE

Proof.

1. Trivia. Take, e.g., a system consisting of a single state with a self-loop and where
p istrue, and let ¢ = EQ—p. n must be empty, and can never be true.
2. Immediate.

3. Take again the system from the first point, and let ¢ = EQOp. Both {a} and {b}
are sufficient, for any a # b.

. Take the system and formulain the previous point.

. Let C' benecessary and C’ sufficient. From sufficiency of C” wehavethat K 1 (n |
C") & ¢, and from necessity of C it followsthat C' C C”.

6. Immediate from the above point.

[S20F >3

Note that point 5 above implies that every necessary coalition is contained in the
intersection of all sufficient coalitions. Does the other direction hold, i.e., is the inter-
section of all sufficient coalitions necessary? In the general case the answer is“no” , as
the following exampleillustrates.

Example4. Takethe systeminFigure?2, andlet o = EOAO p. Itiseasy to seethat:

— {a} issufficient;

- Ki(n{b}) F ¢

— Noneof {b}, {c} or {b, ¢} aresufficient.

From thefirst and last point it follows that {a} is the intersection of all sufficent coali-
tions; from the second point it follows that {a} is not necessary.

o P
/ |
(&
| ¢
a
\
o P o P o P
b
| a | b\
\ \
P o o P P

Fig. 2. A normative system. The dashed lines indicate “illegal” transitions. The uppermost state
isthe singleinital state.

However, for universal objectives the greatest necessary coalition is exactly the in-
tersection of the sufficient coalitions:

Lemma 1. Whentheobjectiveisaformulain L*, theintersection of all sufficient coali-
tionsis a necessary coalition.

Proof. Let o € L* andlet C' = (), gyfficient C'- Assumethat K 1 (n [C2) = ¢; we
must show that C' C Cs. From Theorem 1wehave K { (n [Cs) = ¢ forany C5 such
that Cy C Cs. It followsthat Cs issufficient. But then C' C Cs.

Thus, for the case of universal objectivesthe necessary coalitions are exactly the subsets
of the intersection of the sufficient coalitions. Indeed, in Examples 1 we saw that the
intersection of the sufficient coalitions, consisting of agents « and b, is a necessary
coalition.

3.1 Feasbility of Robust Normative Systems

So far, our technical results have focussed on verifying robustness properties of norma-
tive systems. However, an equally important question isthat of feasibility. Aswe noted
earlier, feasibility basically asks whether there exists some normative system such that,
if thislaw was imposed (and, implicitly, everybody complies), then the desired effect of
the normative system would be achieved. In the context of robustness, we ask whether
anormative system is robustly feasible. In more detail, we can think about robust feasi-
bility asfollows. Suppose we know that some subset C' of the overall agent population
is“reliable”, inthat we are confident that C' can berelied uponto comply with anorma-
tive system. Then instead of asking whether there exists an arbitrary normative system
7 that is effective for our desired objective ¢, we can ask whether there exists anorma:
tive system n such that C is sufficient for n in the context of . We call this property
C-sufficient feasibility®. Formally, this question is as follows:

In e N(R): (K inke)A
VC'CA:(CCC)=[Ktn|)¢l

It turns out that, under standard complexity theoretic assumptions, checking this prop-
erty is harder than the (co-NP-complete) verification problem.

Theorem 4. Deciding C-sufficient feasibility is X% -complete.

Proof. We deal with the complement of the problem, which we show to be 17 7' -complete.
The complement problem is that of deciding:

Vne NR): (KinkEy¢) =
JC"CA(CCOINKT(n]C)FE).

Membership is immediate from the definition of the problem. For hardness, we reduce
the problem of determining whether QBF, v formulae are true [9, p.96]. An instance of
QBF, v is given by aquantified Boolean formulawith the following structure:

Vi 37 x(71, 72) 1)

inwhich z; and 7, aredigjoint sets of Boolean variables, and x (1, #2) isapropositional
logic formula (the matrix) over these variables. Such aformulaistrueif for al assign-
ments to Boolean variables 7, there exists an assignment to &, such that x (i1, %) is
true under the overall assignment. An example of aQBF 2 v formulais:

Vay3ae[(21 V 22) A (21 V —22)] 2

The reduction is related to that of Theorem 2, athough dightly more involved. Let
T = {m,...,z,} betheuniversaly quantified variablesin the input formula, let § =

31t may at first sight seem strange that we consider this problem: why not simply look for a
normative system n such that A(n) = C? Our rationale is that the worst case corresponds to
only C' complying with the normative system; it may well be that we get better resultsif more
agents comply.

/Q Q s(agn; Q s(3g 4)@ Q Q (\\

L 2
g g ” 2" - S)g g . z'g

Fig. 3. lllustrating the reduction used in Theorem 4.

{w1,...,yn} betheexistentialy quantified variables, and let x(z, y) be the matrix. We
create a Kripke structure with 3(3(g + h) + 3) states and ¢ + & agents. We create
variables corresponding to z and g, and in addition to these, we create a variable end.
The overall structureis defined to be as shown in Figure 3; note that end istrue only in
the final state of the structure. Weset C = {1, ..., g}, and create the objective ¢ to be

=(—EQend) V (~x* (2, 7))

where x*(z, 3) isthe cTL formula obtained from the propositional formula x(z, y) by
systematically substituting (E{>v) for eachvariablev € zUy. Correctnessfollowsfrom
construction. Since the complement problem is 172 -complete, C-sufficient feasibility
is X¥-complete.

4 k-Robustness

The notions of robustness described above are based on identifying some “critical”
coalition, whose compliance is either necessary and/or sufficient for the correct func-
tioning of the overall normative system. In this section, we explore a dlightly different
notion, whereby we instead quantify the extent to which a normative system is resistant
to non-compliance. We introduce the notion of k-robustness, where k& € N: intuitively,
saying that anormative system is k-robust will mean that it remains effective aslong as
k arbitrary agents comply.

As with C'-compliance, we can consider k-compliance from the point of view of
both sufficiency and necessity. Where k > 1, we say anormativesystem » is k-sufficient
(w.r.t. some K,) if the compliance of any arbitrary k£ agents is sufficient to ensure
that the normative systemis effective with respect to . Formally, thisinvolveschecking
that:

VOCA:(C 2k = (Kt O)Ee

Aswith checking C'-sufficiency, checking k-sufficiency is hard.
Theorem 5. Deciding k-sufficiency is co-NP-compl ete.

Proof. Membership of co-NP is obvious from the problem definition; for hardness, we
reduce TAUT, constructing the Kripke structure, normative system, and objective asin

the proof of Theorem 2; and finally, we set &£ = 0. The correctness argument is then as
in Theorem 2.

We define the resilience of a normative system » (w.r.t. K,) as the largest number
of non-compliant agents the system can tolerate. Formally, the resilience is the largest
number k, k < n, such that

VOCA:(ICl<k) = (KinlO)Ee

where n isthe number of agents. It is easy to see that the resilience of 7 is the largest
number % such that 7 is (n — k)-sufficient. Observe that the resilience is undefined iff
the objective does not hold even if al agents comply to the norm (K | n [~ ¢). Itis
immediate that computing the resilience of a normative system is co-NP-complete with
respect to Turing reductions.

Example 5. We continue Example 3. While both {a, b, ¢} and {a, b, d} are sufficient
coalitions, 77 is not 3-sufficient wrt. K, ¢, because not every three-agent codlition is
sufficient. It is 4-sufficient (the objective is satisfied if the grand coalition complies).
Thus, theresilienceis equal to 0.

Now consider the situation where a has left the computer facility; b, ¢, d remains.
Let K{,n}, ¢} bethe corresponding variants of K1,7; and 1. Now, each of {b, c},
{b,d} and {c, d} are sufficient. Thus, n} is 2-sufficient wrt. K7, ¢/, and the resilience
isl.

We then define k-necessity in the obviousway — 1 is k-necessary (w.r.t. K, ¢) iff:

VOCA:(Kt(n!1C)Eye = (ICl=k).
Theorem 6. Deciding k-necessity is co-NP-compl ete.

Proof. Membership of co-NP is again obvious from the problem definition; for hard-
ness, we reduce SAT to the complement problem, proceeding as in Theorem 3; where [
is the number of Boolean variables in the SAT instance, we set k = [+ 1. Correctness
of the reduction is then straightforward.

We say that 7 is k-robust, ¥ > 1, if it is both k-sufficient and k-necessary. In other
words, 7 is k-robust if it is effective exactly in the event of non-compliance of any
arbitrary coalition of upto n — k agents:) is k-robust iff

VOCA:(ICl<n-k) < (Ki(n10)Fe

where n is the number of agents. From the results above, it isimmediate that checking
k-robustnessis co-NP-compl ete.

Example 6. We continue Example 5. While {a, b} is the largest necessary coalition,
11 IS 3-necessary wrt. K, 1 because at least three agents must comply (in this case,
either {a, b, c} or {a, b, d}). It isnot k-robust for any %, because it is 4-sufficient but
not 3-sufficient, and 3-necessary but not 4-necessary.

7y is both 2-sufficient and 2-necessary wrt. K1,). It is thus 2-robust. Thus, the
objective will be maintained if and only if at least 2 agents comply.

Example 7. We continue Example 6. Consider yet another variant: the agents are again
al four a, b, ¢, d, but their needs have changed. Now each agent only needsa PC, i.e,,
Useful(a) = Useful(b) = Useful(c) = Useful(d) = {Rs}. Now we have that no
singleton coalition is sufficient and every two-agent coalition is sufficient. The system
is 2-sufficient, 2-necessary, 2-robust and itsresilienceis4 — 2 = 2.

The following sums up some general properties of the concepts of £-robustness.
Here, “k-sufficient” (“k-necessary”) means “ k-sufficient (k-necessary) in the context
of K and ¢”.

Proposition 2.

1. Any systemis 0-necessary.

2. If the systemis k-sufficient, then C' is sufficient for any C suchthat |C| > k.

3. If C'isnecessary, then the systemis | C'|-necessary.

4. If the systemis k-sufficient for £ < n, then no non-empty coalition is necessary.
5. k-robustnessis unique: if the systemis k-robust and k£’-robust, then & = £’.

Proof.

1.-3. Immediate.

4. Let k < n and assume that the system is k-sufficient and that C' # () is necessary.
Let C’ beacodlition suchthat |C’| > k. By k-sufficiency, K 1 (n | C’) = ¢, and
by necessity of C, C C C". Since C’ was arbitrary, we havethat C' C n\mzj .
Assumethat a € C.Let |C1| =k.a € C;.Nowletb € A\ C; (b exists because
kEk<mn= |A|), and let Cy = (4 \ {(1} U{ b} |C2| =k, but a € Cy which
contradicts the assumption that a« € C. Thus, C must be empty.

5. If the system is k-robust and &’-robust for ¥ > k' and C"’ is a codlition of size
k', then by k’-sufficiency (K 1 (n | C)) E ¢ and by k-necessity it follows that
|C| > k whichisnot the case.

5 A Logical Characterisation of Robustness

We have thus far seen two different ways in which we might want to consider robust-
ness. try to identify some “lynchpin” coalition, or try to “quantify” the robustness of
the normative system in terms of the number of agents whose compliance is required
to make the normative system effective. Often, however, robustness properties will not
take either of these forms. For example, here is an argument about robustness that one
might typically see: “the system will not overheat as long as at least one sensor works
and either one of the relief valves is working or the automatic shutdown is working”.
Clearly, such an argument does not fit any of the types of robustness property that we
have seen so far. So, how are we to characterise such properties? The idea we adopt is
to characterise the robustness by means of a coalition predicate. Coalition predicates
were originaly introduced in [3] as away of quantifying over coalitions. A coalition
predicate, as the name suggests, is simply a predicate over coalitions:. if P isacoalition
predicate, then it denotes a set of coalitions — those that satisfy P.

eq(C) = subseteq(C) N supseteq(C)
subset(C') = subseteq(C) A —eq(C)
supset(C) = supseteq(C) N —eq(C)
incl(i) = supseteq({i})
excl(i) = —incl(i)
any = supseteq(D)

nei(C) = Viec incl(7)
ei(C) = —nei(C)
gt(n) = geq(n + 1)
lt(n) = —geq(n)
leg(n) = lt(n + 1)
maj(n) = geq([(n +1)/2])
ceq(n) = (geg(n) A leg(n))

Table 1. Derived coalition predicates.

We first introduce the language of coalition predicates (from [3]), and then show
how this language can be used to characterise robustness properties. Syntactically,
the language of coalition predicates is built from three atomic predicates subseteq,
supseteq, and geq, and we derive a stock of other predicate forms from these®. For-
mally, the syntax of coalition predicatesis given by the following grammar:

P ::= subseteq(C) | supseteq(C) | geq(n) | ~P | PV P

where C' C Aisaset of agentsand n € N isanatural number.
The circumstances under which acoalition Cy C A sdtisfiesacoalition predicate P
are specified by the satisfaction relation “ = .,,”, defined by the following rules:

Co [=cp subseteq(C) iff Cy C C

Co =cp supseteq(C) iff Cy O C

Co oy geq(n) iff | Co| > n

Co EEep ~Piff not Cy =¢p P

Co):cppl\/PgiffCO):cpPlorCO 'ZC[) Py

We assume the conventional definitions of implication (—), biconditiona (<), and
conjunction (A) in terms of — and v. We aso find it convenient to make use of the
derived predicates defined in Table 1.

Now, given a Kripke structure K, normative system 7, objective ¢, and coalition
predicate P, we say that P characterises the robustness of 7 iff the compliance of
any codlition satisfying P is sufficient to ensure that 7 is effective (w.r.t. K,). More
formally, P characterises the robustness of w.r.t. K and ¢ iff:

VOCcA: (CkepP) < (Ki(l10O)Ee).
Now, consider the following simple coalition predicate.
supseteq(C) (©)]

“In fact, we could choose a smaller base of predicates to work with, deriving the remaining
predicates from these, but the definitions would not be succinct; see the discussion in [3].

Expanding out the semantics, we have that (3) characterises the robustness of a norma-
tive systemn w.r.t. K, o iff:

verca: (cc) e (Kt C) Ee).

In other words, (3) expresses that C' are necessary and sufficient. As another simple
example, the predicate geq(k) characterises the robustness of # iff # is k-robust. The
decision problem of P-characterisation is that of checking whether a given coalition
predicate P characterises robustness in the way described above. Since we can use P-
characterisation to express necessary and sufficient coalitions, we have the following.

Coroallary 2. Deciding P-characterisation is co-NP-complete.

Notice that P-characterisation is fully expressive with respect to robustness properties,
in that any robustness property can be characterised with a coalition predicate of the
form:

eq(C1) V eq(C2) V- -V eq(Cy).

for some u € N. Inthe worst case, of course, we may need a coalition predicate where
u may be exponential in the number of agents.

L et us consider some exampl e coalition predicates, and what they say about robust-
ness. Recall theinformal examplewe used in the introductionto this section. Let S bea
set of sensors, let R bethe set of relief valves, and let o be the automatic shutdown sys-
tem. Then the following coalition predicate expresses the robustness property expressed
in this argument.

nei(S) A (nei(R) V incl(a))

Thecoalition predicate any expressesthefact that the normative systemistrivial, in
the sensethat it is robust against any deviation (in which caseit is unnecessary, sincethe
objective will hold of the original system). The coalition predicate —any expressesthe
fact that the normative system will fail w.r.t. its objective irrespective of who complies
withit.

6 Conclusions

We have investigated three types of robustness. necessary and/or sufficient coalitions;
the number of non-compliant agentsthat can be tolerated; and, more generally, alogical
characterisation of robustness.

Fitoussi and Tennenholz [6] formulate two criteriawhen choosing between different
social laws. Smplicity tries to minimise, for each agent, the differences between states
in terms of the alowed actions. The idea behind minimality is to reduce the number
of forbidden actions that are not necessary to achieve the objective. Obviously, these
two criteriatypically conflict: one may sacrifice one in favour of the other. One would
expect that there is a trade-off between minimality and robustness, and that minimality
of n would coincide with the grand coalition A being necessary for it. This match is
not perfect, however: first of all, if the latter condition holds, there still may be more
transitions forbidden for A than necessary to guarantee the objective . Secondly, it

might be that not all agentsin A are constrained by 7. But what we do have is that a
minimal norm n must have A(n) (the agentsinvolved in it) as a necessary coalition.

Recently, French et al. proposed atemporal logic of robustness[7]. A brief descrip-
tion of the main ideas, using our formalisms, is as follows. Let be anorm. A path =
complieswith n if fornon € N, (n[n],w[n + 1]) € n, i.e, no step in 7 is forbidden.
Let Oy meanthat ¢ isobligatory: itistruein s if for al n-compliant s-paths, ¢ holds.
Py (v ispermitted) is -O—¢. Given an s-path , let

Al(m) = {n'" | n’iss-path,3j € NVi < jn(i) = 7'(i) &

[+ 1]7'[j + 2] ... complieswith 7}

Inwords: 7/ € Al if itislike 7 up to some point j, in j it may do anillegal step,
but from then on complies with the norm. French et al. then define an operator Ay
(‘robustly, ') which is true on a path , if for al pathsin Al(r), and 7 itself, o is
true. So, Ay istruein an-complient path, if it istruein all paths that have at most one
n-forbidden transition. This is a way of bringing robustness in to the object language.
However, note that in [7], there is no notion of agency: only the system can deviate
from or comply with a norm. If ¢ is a universal formula, then K, so = P Ay would
imply (in our framework) that there is a single agent 7 such that A \ {i} is sufficient
for Ey, given K and n. Although it seems a good idea for future work to incorporate
such ‘deontic-like' operators in the object language, even the semantics of [7] is quite
different from ours: whereas [7] focusses on the number of illegal transitions, we are
concerned with the number of compliant agents, or compliant coalitions.

References

1. T. Agotnes, W. van der Hoek, J. A. Rodriguez-Aguilar, C. Sierra, and M. Wooldridge. On
the logic of normative systems. |In Proc. of the Twentieth Inter. Joint Conf. on Artificial
Intelligence (1IJCAI-07), Hyderabad, India, 2007.

2. T Agotnes, W. van der Hoek, and M. Wooldridge. Normative system games. In Proc. of
the Sixth Intern. Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-
2007), Honolulu, Hawaii, 2007.

3T Agotnes, W. van der Hoek, and M. Wooldridge. Quantified coalition logic. In Proc. of the
Twentieth Intern. Joint Conf. on Artificial Intelligence (1JCAI-07), Hyderabad, India, 2007.

4. R. Axelrod. An evolutionary approach to norms. American Political Science Review,
80(4):1095-1110, 1986.

5. E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of Theoret-
ical Computer Science Volume B: Formal Models and Semantics, pages 996-1072. Elsevier
Science Publishers B.V.: Amsterdam, 1990.

6. D. Fitouss and M. Tennenholtz. Choosing social laws for multi-agent systems: Minimality
and simplicity. Artificial Intelligence, 119(1-2):61-101, 2000.

7. T. French, C. McCabe-Dansted, and M. Reynolds. A temporal logic of robustness. In
B. Konev and F. Wolter, editors, Frontiers of Combining Systems, volume 4720 of LNCS,
pages 193-205, 2007.

8. W. van der Hoek, M. Roberts, and M. Wooldridge. Social laws in aternating time: Effec-
tiveness, feasibility, and synthesis. Synthese, 156(1):1-19, May 2007.

9. D. S. Johnson. A catalog of complexity classes. In J. van Leeuwen, editor, Handbook of The-
oretical Computer Science Volume A: Algorithms and Complexity, pages 67—161. Elsevier
Science Publishers B.V.: Amsterdam, 1990.

10.

11.

12.

M. J. Osborne and A. Rubinstein. A Course in Game Theory. The MIT Press; Cambridge,
MA, 1994.

Y. Shoham and M. Tennenholtz. On the synthesis of useful social laws for artificial agent
societies. In Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI-
92), San Diego, CA, 1992.

Y. Shoham and M. Tennenholtz. On social lawsfor artificial agent societies: Off-line design.
In P E. Agre and S. J. Rosenschein, editors, Computational Theories of Interaction and
Agency, pages 597-618. The MIT Press, 1996.

