Testing Run-time Evolving Systems

Tudor Dumitras,’ Frank Eliassen,? Kurt Geihs,3
Henry Muccini,* Andrea Polini,”> Theo Ungerer®

! Carnegie Mellon University, Electrical & Computer Engineering Department
5000 Forbes Ave., Pittsburgh, PA 15217, USA
tudor@cmu.edu
2 University of Oslo, Department of Informatics
N-0316, Oslo, 1080 Blindern, Norway
frank@ifi.uio.no
3 Universitit Kassel, Verteilte Systeme
FB 16, Wilhelmshoher Allee 73, D-34121 Kassel, Germany
geihs@uni-kassel.de
4 University of L’Aquila, Department of Computer Science
67100 L’Aquila, Via Vetoio, 1, Italy
henry.muccini@di.univaq.it
5 University of Camerino, Department of Mathematics and Computer Science
62032, Camerino, Via Madonna delle Carceri,9 — Italy
andrea.polini@unicam.it
6 University of Augsburg, Institute of Computer Science
86159 Augsburg, Germany
ungerer@informatik.uni-augsburg.de

Abstract. Computer systems undergoing runtime evolution, such as on-
line software-upgrades or architectural reconfigurations, must cope with
changes that happen during the system execution and that might be
unpredictable at design-time. The evolution requires a sequence of tran-
sition phases, where the system enters configurations emerging at run-
time that could not have been validated in advance. Reasoning about
such emerging behavior is difficult because previously-established sys-
tem invariants do not hold, changes are implemented by both human
and software agents, and externally-imposed deadlines might determine
the success of the evolution. The workgroup has discussed three concrete
scenarios for runtime evolution and has identified a set of challenges that
are not adequately addressed by current testing approaches.

Keywords. Software Testing, Dynamically Evolving Systems

1 Introduction

Software evolution is an integral part in the life cycle of a computer system.
Evolution refers to the possibility of changing or updating system characteristics
in order to preserve their usefulness. As discussed in [1], and depending on the
motivation leading to the change, we can generally distinguish among three
different types of changes:

Dagstuhl Seminar Proceedings 09201
Combinatorial Scientific Computing
http://drops.dagstuhl.de/opus/volltexte,/2009,/2106

tudor@cmu.edu
frank@ifi.uio.no
geihs@uni-kassel.de
henry.muccini@di.univaq.it
andrea.polini@unicam.it
ungerer@informatik.uni-augsburg.de

2 T. Dumitras, F. Eliassen, K. Geihs, H. Muccini, A. Polini, T. Ungerer

Initial Final
— 7\
Y

~
Test Test
Transition Procedure Final State

Fig. 1. Testing evolving systems.

— Perfective: the modification is required to satisfy new emerging requirements;

— Corrective: the modification is required to remove a bug reported by the final
user of the system;

— Adaptive: the modification is required to adapt the working system to a new
running environment (such as a new operating system).

Software Engineering textbooks describe successful strategies for putting in place
evolution activities. These best practices recommend to accurately plan the
changes off-line, taking into account the characteristics of the whole system.
Once the change has been designed thoroughly, it is typically implemented off-
line and integrated in a copy of the running system. The integration is checked,
for instance by running a regression test suite, and, if the tests are successful,
the old system is substituted with the new version. With this traditional testing
approach, any running system is (or, at least provides the opportunity to be)
accurately checked before being exposed to real workloads.

This is an ideal situation in which there are no strict time constraints for
concluding the evolution step. However, the reality is much more complex, and
changes are not always performed as cleanly as described above. Nevertheless,
evolution can be considered, so far, an activity to be carried out by a single
organization controlling and having a clear view on the whole system.

For many reasons, the situation is rapidly changing. Software today has high
availability requirements and, increasingly, must be extended at run-time. In
some cases, the various system components become available after the initial
deployment of the system, and integration tests cannot be conducted off-line.
This is the case, for instance, for Service-Oriented Applications, where several
services developed, deployed, and owned by different organizations can start co-
operating at run-time to fulfill a common goal. Moreover, there are situations
where the whole system changes continuously, integrating and substituting com-
ponents on-the-fly. In other situations, the system cannot be switched off to be
upgraded, or it may not be possible to make a faithful copy of the entire running
system for performing off-line testing.

Such scenarios require a novel approach for verification and validation (V&V).
To account for the transition phases, when the system undergoes changes that
could not have been tested in advance, V&V operations must be be executed at
run-time to ensure that the evolution does not impact the dependability of the

Testing Run-time Evolving Systems 3

live system. These operations must have two goals, shown in Figure 1: (i) test
the correctness of the transition procedure (e.g., the online upgrade mechanism);
and (ii) test the final state of the system, which represents the outcome of the
transition, in its operational environment.

2 Evolution scenarios

In order to identify the concrete challenges for testing evolving systems, the
workgroup has discussed three realistic scenarios where the current testing ap-
proaches testing are insufficient.

2.1 Online upgrades of enterprise systems

Wikipedia (http://www.wikipedia.org) is one of the ten most popular websites
to date,! providing a multi-language, free encyclopedia. The English-language
Wikipedia has 17 million articles, with content stored in a 1 TB database and
850,000 static files (e.g. images). The web site is supported by an infrastructure
(Figure 2) running on 352 servers, including 23 MySQL database servers config-
ured for master/slave replication. A wiki engine called MediaWiki, implemented
as a set of PHP scripts, accesses the database and generates the article content.

Our first scenario would upgrade Wikipedia’s business logic to a completely
different wiki engine, which provides similar, but not entirely equivalent func-
tionality. This upgrade is performed online, in the presence of Wikipedia’s live
workload. This upgrade scenario implements major changes: the persistent data
must be migrated to a different data store (e.g., a distributed file system instead
of a database) and converted to a new format (the markup language used by
the new wiki engine); the new application exhibits different behaviors than the
previous wiki engine; and the interface presented to the users is different. This
example simulates the practical scenario of a a competitive upgrade, performed
when business reasons mandate switching software vendors.

Existing techniques for online upgrades [2,3,4,5,6] focus on upgrading enter-
prise systems in-place, without additional storage and computational resources,
and on supporting mized versions, which interact and synchronize their states in
the presence of a live workload. During transitional states, with mixed versions,
the system behavior does not correspond to the specification of either the old or
the new versions. Testing and validating the behavior of such transitional states
is difficult, because the mixed versions can induce behaviors that are difficult
to understand and to reason about [2]. For instance, ensuring the correctness
of mixed-version interactions [3,6] typically requires tedious and error-prone de-
veloper interventions, such as establishing constraints to prevent old code from
accessing new data [6]. Moreover, for in-place upgrades, run-time testing would
be conducted in parallel with the live workload and would risk overloading the

! According to http://www.alexa.com. Wikipedia handles peak loads of 70,000 HTTP
requests/s.

http://www.wikipedia.org
http://www.alexa.com

4 T. Dumitras, F. Eliassen, K. Geihs, H. Muccini, A. Polini, T. Ungerer

Internet frontend Backend

S9OIAIBS 0T

Media files

iejielelele

Media files

S30IAIBS
snoaue||99sIN

sssss Networkodls Bachjobs Scrachhosss

O 9 ® &4 & [OHD e e @ o @ @A

Siwace spacne o s sl loibame Sewhnst Sawhedner Fiesewr ooscaer Websence MalRCsewe ek seice

Source: http://meta.wikimedia.org/wiki/Wikimedia_servers

Fig. 2. Wikipedia architecture.

production system. For these reasons, enterprise-system upgrades are often not
tested appropriately; a 2006 survey suggests that 84% of upgrades are tested
and deployed in different environments [5], which increases the risk of upgrade
failures. Operator errors [4,5] further reduce the effectiveness of offline testing
in ensuring the dependability of enterprise upgrades.

Alternatively, an approach for performing atomic, online upgrades, by us-
ing additional hardware and storage resources, has been proposed [7]. The new
version is installed in a parallel universe — a logically distinct collection of re-
sources, realized either through virtualization or by leasing storage and compute
cycles, during the upgrade, from existing cloud-computing infrastructures (e.g.
Amazon’s Elastic Compute Cloud) —, and, while the old version continues to
service the live workload, the persistent data is transferred, opportunistically,
into the new version. This approach supports a series of run-time testing phases
before switching over to the new version, without disrupting the live workload.
It is possible to validate the new version through either offline testing — using
pre-recorded or synthetically-generated traces — or online testing — using the
live requests received and processed by the old version. After adequate testing,

http://meta.wikimedia.org/wiki/Wikimedia_servers

Testing Run-time Evolving Systems 5

the upgrade can be rolled back, by simply discarding the parallel universe, or
committed, by making it the production system, thus completing the atomic
switchover to the new version. However, in the Wikipedia-upgrade scenario,
the outputs of the old and new systems cannot be compared directly because
non-deterministic executions and behavioral differences between the two systems
may lead to state divergence. The information that can be elicited through such
online testing remains an open research question.

2.2 Run-time evolution of component-based applications

Testing applications based on component frameworks, such as OSGi [8], presents
additional challenges, because the transition phase constitutes the normal mode
of operation for these systems. The run-time evolution is typically specified
as structural changes [9], such as adding, removing, or replacing components
or changing connectors dynamically. As in the previous example, the run-time
configuration does not correspond to a system state that was tested in advance.
Because of this reason, the system must be tested at run-time, in the opera-
tional environment. While not eliminating the need for traditional unit- and
integration-testing, this approach is needed to improve the dependability of sys-
tems with zero-downtime requirements. Moreover, component-based applica-
tions often depend on third-party services, and compositions of distributed OSGi
modules can be upgraded online [10]. Unlike in the enterprise-upgrade scenario,
the online testing procedure might not control all of the system’s stateful re-
sources (e.g., the data store), which would render rollback after failed tests more
difficult and would present the risk of violating existing service-level agreements.

2.3 Run-time patching of real-time software

Real-time applications must often be upgraded online as well. The control soft-
ware of satellites in orbit requires periodic patches, to change the memory layout
or to correct software bugs. For instance, dynamic memory allocation is prohib-
ited in satellite software, in order to avoid unpredictable behaviors and to meet
the real-time deadlines; however, equipment aging and damages due to space ra-
diation impose changing the memory layout. Such damages make each satellite
unique, even within the same series, and software must be adapted specifically
to each satellite [11]. The changes performed in this case are more restricted
than in the previous scenarios and are typically limited to modifying the im-
plementations of existing real-time tasks. The biggest testing challenge for this
scenario is to ensure that the control software will continue to meet its real-time
deadlines — which are imposed by external factors, such as the satellite’s orbit
and temperature — during and after the upgrade.

2.4 Summary

While strikingly dissimilar, these three scenarios emphasize a set of common
challenges for testing evolving systems:

6

T. Dumitras, F. Eliassen, K. Geihs, H. Muccini, A. Polini, T. Ungerer

The transition phase must be tested, taking into account actions performed
by both software and human agents;

The final state of the system must be tested in its operational environment,
in order to ensure a correct and dependable behavior in unique run-time
configurations and to meet externally-imposed timeliness constraints;

The testing procedure must not assume that the entire operational environ-
ment can be controlled and must avoid violating the existing service-level
agreements;

A systematic way is needed for reasoning about the behavior of systems
under continuous evolution, either by establishing evolution invariants or by
evolving the oracle together with the system it models;

The testing procedure must provide fault-management strategies, including
the ability to roll back after a failed test.

3 Conclusions

The discussion initiated in this abstract highlights that verifying and validating
run-time evolving systems is challenging and requires novel techniques beyond
those used in systems that undergo off-line evolution. This work is in a pre-
liminary stage and represents the outcome of informal discussions within our
workgroup at Dagstuhl. Further research is needed to refine these initial find-
ings and to implement solutions to the challenges presented here.

References

. Sommerville, I.: Software Engineering. 8th edn. Addison—Wesley (2007)
. Segal, M.: Online software upgrading: new research directions and practical con-

siderations. In: Computer Software and Applications Conference, Oxford, England
(2002) 977-981

. C. Boyapati et al.: Lazy modular upgrades in persistent object stores. In: Object-

Oriented Programing, Systems, Languages and Applications, Anaheim, CA (2003)
403-417

. Nagaraja, K., et al.: Understanding and dealing with operator mistakes in Internet

services. In: USENIX Symposium on Operating Systems Design and Implementa-
tion, San Francisco, CA (2004) 61-76

. Oliveira F., et al.: Understanding and validating database system administration.

USENIX Annual Technical Conference (2006)

. Neamtiu, I., Hicks, M., Stoyle, G., Oriol, M.: Practical dynamic software updating

for C. In: ACM Conference on Programming Language Design and Implementa-
tion, Ottawa, Canada (2006) 72-83

. Dumitrag, T., Tan, J., Gho, Z., Narasimhan, P.: No more HotDependencies:

Toward dependency-agnostic upgrades in distributed systems. In: Workshop on
Hot Topics in System Dependability, Edinburgh, Scotland (2007) 14

. OSGi Alliance: OSGi service platform, core specification, release 4, version 4.1

(2007)

. Kramer, J., Magee, J.: The evolving philosophers problem: Dynamic change

management. IEEE Transactions on Software Engineering 16 (1990) 1293-1306

Testing Run-time Evolving Systems 7

10. Rellermeyer, J.S., Duller, M., Alonso, G.: Consistently applying updates to compo-
sitions of distributed osgi modules. In: ACM Workshop on Hot Topics in Software
Upgrades. (2008)

11. Buisson, J., Carro, C., Dagnat, F.: Issues in applying a model driven approach
to reconfigurations of satellite software. In: ACM Workshop on Hot Topics in
Software Upgrades, Nashville, Tennessee (2008)

	Testing Run-time Evolving Systems
	Tudor Dumitras, Frank Eliassen, Kurt Geihs, Henry Muccini, Andrea Polini, Theo Ungerer

