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Abstract. We model the problem of managing capacity in a build-to-
order environment as a Brownian drift control problem and seek a policy
that minimizes the long-term average cost. We assume the controller can,
at some cost, shift the processing rate among a finite set of alternatives.
The controller incurs a cost for capacity per unit time and a delay cost
that reflects the opportunity cost of revenue waiting to be recognized or
the customer service impacts of delaying delivery of orders. Furthermore
he incurs a cost per unit to reject orders or idle resources as necessary
to keep the workload of waiting orders within a prescribed range. We
introduce a practical restriction on this problem, called the S-restricted
Brownian control problem, and model it via a structured linear program.
We demonstrate that an optimal solution to the S-restricted problem
can be found among a special class of policies called deterministic non-
overlapping control band policies. These results rely on (apparently new)
relationships between complementary dual solutions and relative value
functions, through which we to obtain a lower bound on the average
cost of any non-anticipating policy for the problem even without the S
restriction. Under mild assumptions on the cost parameters, we show
that our linear programming approach is asymptotically optimal for the
unrestricted Brownian control problem in the sense that by appropriately
selecting the S-restricted problem, we can ensure its solution is within
an arbitrary finite tolerance of a lower bound on the average cost of any
non-anticipating policy for the unrestricted Brownian control problem.

Keywords. Capacity Management, Brownian Motion, LP, Relative Value
Function, Duality

1 Introduction

We consider the problem of managing capacity in a build-to-order environment
like the personal computer manufacturing operations of Dell. We model this
problem as a Brownian control problem and seek a policy that minimizes the
long-run average cost. The workload of orders awaiting processing incurs a delay
cost or waiting cost per unit per unit time that reflects the opportunity cost
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of revenue waiting to be recognized or the customer service impacts of delaying
delivery of orders. On the other hand, maintaining capacity at a higher pro-
duction rate also incurs a higher cost for capacity per unit time. We assume
the controller can, at some cost, shift the processing rate among a finite set of
alternatives by, for example, adding or removing staff, increasing or reducing
the number of shifts or opening or closing production lines. We model the cost
of changing the processing rate from u to v as a fixed cost K(u,v) > 0 and
assume the cost function K satisfies the usual triangle inequality so that chang-
ing the processing rate from u to v in a single step is no more expensive than
accomplishing the same change via a series of intermediate steps.

Even with changes in the processing rate, the workload of waiting orders can
grow without limit. To ensure that delivery commitments can be met, we intro-
duce additional boundary controls. In particular, we impose a fixed maximum
level on the workload of waiting orders and exert instantaneous controls, e.g.,
rejecting orders, to keep from exceeding this limit.

Similarly, the workload of waiting orders can drain to 0 and to ensure that the
process remains non-negative, i.e., that the manufacturer does not build product
in advance of orders, we impose instantaneous controls at the lower boundary
corresponding roughly to idling lines briefly until additional orders arrive.

In this paper, we consider a restricted version of the problem, called the S-
restricted Brownian control problem, in which the controller may change the drift
rate only when the workload of waiting orders reaches a value in a given finite
set . Choosing S to be the set of non-negative integers up to the maximum
workload for example, imposes no limitation on the system in practice, but allows
us to formulate a linear program approximating the problem by considering only
a special class of policies called control band policies. We show that an optimal
solution to our structured linear program can be found among the special class of
deterministic non-overlapping control band policies and that an optimal solution
to the linear program actually solves the S-restricted Brownian control problem,
i.e., a deterministic non-overlapping control band policy is optimal among all
non-anticipating policies for the S-restricted problem. We further provide a lower
bound on the average cost of any non-anticipating policy (i.e., any policy whose
decisions at time ¢ depend only on the history up to time t, and not on future
events) for the unrestricted problem and show that under mild assumptions on
the cost parameters the average cost of an optimal solution to the restricted
problem can be made arbitrarily close to this lower bound.

Drift control problems were studied in the literature in different contexts with
different cost structures and solution approaches. See, for example, [1,2,3,4,5,6,7].
A major difference between the works of [2,3,6,7] and ours is that these works
restrict the controller to only two drift rates. In [1], the authors solve a drift
control problem in which the process is confined to a finite range by instantaneous
controls at the boundaries and the objective is to minimize the long term average
cost of control for drift and displacement at the upper boundary. They show
that the optimal drift rate in each state is the smallest minimizer of the Bellman
equation they derive. In [4] the authors address the same problem, with the



Managing Capacity by Drift Control 3

added task of determining the optimal buffer size. A major difference between
these works and ours is that these works restrict the controller to only two drift
rates. The model of [1] includes more general processing costs, but does not
address the holding or delay costs and changeover costs, in [4] they include a
congestion cost similar to a holding cost but do not include changeover costs.
The changeover costs in our model make the controller liable for past decisions
and result in optimal policies that depend not only on the position of the process
but also on the current drift rate.

In [7] and [3] the authors study a reflected Brownian motion process in which
the controller can switch between two sets of drift and diffusion parameters. The
problem involves operating, switching and holding costs. Since only a reflective
boundary at zero was defined, at least one of the drift rates must be negative.
While in [7] the authors solve the continuous time control problem by approxi-
mating the Brownian motion processes using the corresponding random walks,
in [3] the authors address the same problem directly by treating it in continuous
time using dynamic programming. The optimal policy is similar to our control
band policies, with two switching points. In [6] they address a similar problem
where a controller chooses between two drift rates, however they take the form
of the policy as given and look at several different cost functions.

Our model differs from the ones in these works in many ways. We address
the more general problem of selecting from many rates. Furthermore, instead of
a reflecting boundary at zero with zero cost, we require the process to remain
between two fixed boundaries and impose costs on the instantaneous controls
needed to keep it there. The process incurs the cost of lost production whenever
the lines are idled and the cost of rejecting orders whenever the upper boundary
is reached, reflecting both the immediate lost revenue and the potential impact
on future sales to the customer.

Our work also differs from the ones in the literature as we develop a novel
solution approach based on linear programming and exploiting relationships be-
tween dual solutions and relative value functions.

Our linear programming approach directly addresses the continuous time
Brownian control problem by isolating the individual cost components and ex-
plicitly calculating the frequencies at which controls are exerted. Being able to
quickly obtain a breakdown of costs, and see the impacts of policy changes is a
valuable tool to the controller, which the other approaches do not provide.

The use of linear programming to reformulate long-term average stochastic
control problems began with [8] in the context of a discrete time, finite state
controlled Markov chain and now has become standard (see, for example, [9]).
In [10], general discretization schemes based on approximate controlled Markov
chains are introduced to solve stochastic control problems in continuous time and
continuous state. In [11], a discretization scheme using the finite element method
is developed for certain singular control diffusion problems. This method per-
forms better than those in [10], but again does not provide an error bound with
respect to the continuous problem. In [12] and [13], linear programming based
approaches are developed to solve diffusion control problems. These methods
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generate constraints on a finite set of moments to develop an approximate solu-
tion, but do not provide an error bound.

In this paper we develop an innovative discretization scheme based on drift
rates and transition points that not only provides a near-optimal average cost,
but also explicitly defines an easily implementable policy to achieve that average
cost. The discretization scheme is natural to and consistent with industrial set-
tings. We provide error bounds on the quality of the solutions produced via our
discretization scheme and show that these solutions can be made asymptotically
optimal by appropriate refinements of the discretization.

In Section 2, we describe the average cost Brownian control problem and
its policy space. In Section 3 we state our linear programming formulation and
main results.

2 Brownian Control Problem

Let
W(T) =W(0) +/ wt)dt+oB(T), T >0, (1)
0

be a diffusion process with drift p(¢) in some fixed finite set A for each ¢ > 0,
variance o > 0 and initial level W (0) on some filtered space {2, F, P; F;,t > 0}.
The process W (T) describes the difference between cumulative work to have
arrived and cumulative work processed by time T, i.e. the netput process. The
drift rate {u(t),t > 0}, which is adapted to the Brownian motion {B(¢) : ¢ > 0},
is the difference between the average arrival rate and the rate A(t) at which
work is completed. We assume the arrival process is time homogeneous with
average rate ug and that the controller can, at some cost, shift the processing
rate among a finite set of alternatives. Further, the controller must exert the
minimal instantaneous control required to keep the process within the allowed
range [0,0]. We let A(t) denote the cumulative increases in work and R(t) the
cumulative decreases in work up to time ¢ exerted by the controller at 0 and O,
respectively. The resulting controlled process is

X(T) = X(0) + /OT p(t)dt + oB(T) + A(T) — R(T), T >0, 2)

where X (0) = W(0). The controlled process X (¢) lives in the bounded region
[0, 0], and the controller may only adjust the drift rate by choosing from among
the possible values in the finite set A. We assume, without loss of generality,
that W(0) € [0,0]. To avoid tedious case analysis, we also assume that 0 ¢ A.
Analogous results hold when 0 € A. We let D = {(a,u) : a € [0,0],u € A}
denote the domain of this process.

A policy defines the times at which and amounts by which we adjust the
drift rate. We restrict attention to the space P of all non-anticipating policies
b = {(E,UZ) 11> 0}, where (l) 0<Ty<Th <Th<..<T;< TiJrl,... is a
sequence of stopping times and (ii) Each u; € A is a random variable adapted
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to Fr, indicating the rate to which we change the drift at time 7;. Under the
policy & = {(T;,u;) : i > 0}, the drift rate u(t) = u; for T; <t < Tj41.

With each policy {(T;,u;) : 4 > 0} = {u(t) : t > 0}, the associated Skorohod
problem:
(a) X(t) €[0,0],t >0,
(b) A(-), R(-) are nondecreasing and continuous with A(0) = 0, R(0) =0,
(©) [T Lixys01dA®) = fif 1ix(<erdR(t) =0, t >0,
where the continuous process {X(¢) : ¢ > 0} is defined by (2), uniquely de-
fines {X, A, R} (See Section 2.4 of [14]). Note that since the drift rate controls
uniquely determine the instantaneous controls exerted at the boundaries, we do
not include the latter in our specification of a policy.

To change the drift from rate u to rate v, the controller must pay a fixed
cost, K (u,v) > 0, for u # v, which satisfies a triangle inequality:

K(u,v) + K(v,w) > K(u,w) for all rates u,v and w. (3)

To simplify notation, we let K (u,u) =0 for all u € A.

There is a cost ¢(u) per unit time for the capacity to process work that
depends on the drift rate u and when X (¢) > 0 there is a backlog of orders, which
incurs a linear delay cost at rate h per unit per unit time. The instantaneous
controls exerted at 0 and @ to adjust the workload either up or down incur a
unit cost of U and M, respectively.

We consider the Average Cost Brownian Control Problem, which is to find a
non-anticipating policy that minimizes the long run average cost:

1 T N(T)
AC(®) = lim sup ~ ] / () +h X (Ddt+U AT+ MR(T)+ S K (w1, )]
0 =1

T—o00
(4)
where, p(t) denotes the drift rate at time ¢ and, for each t > 0, N(T') = sup{n >
0: T, < T} denotes the number of changes in the drift rate by time 7.

A control band v = (u, s,S) is defined by a rate u € A and an interval (s, S).
Given pu(t) = v and X (t) € (s,S), a policy implementing the control band ¢ =
(u,s,S) maintains the drift rate v until X first reaches {s, S}. Given a control
band ¢ = (u, s,S), we let u(¢)) denote the rate u, s(¢)) denote the lower limit s
and S(¢) denote the upper limit S. We say that a point z € [0, O] is contained
in ¢ if z € (s,5). A point (z,u) € IR x A is contained in the control band ) if
z is contained in ¥ and u = u(v)).

The fact that u(t) is right-continuous with left-hand limits leads to a certain
ambiguity in the interpretation of a lower limit s = 0 or an upper limit S = 6.
When s = 0, it is not clear whether we mean to change the drift rate or to
invoke instantaneous control when X (¢) reaches 0. To resolve this ambiguity, we
distinguish between a control band with lower limit s = 0, which changes the
drift rate when X (t) = 0, and one with lower limit s = —oo, which simply relies
on instantaneous control at 0 to keep X (¢) > 0 and maintains the drift rate
until X (¢) first reaches S. Similarly, we distinguish between a control band with
upper limit § = © and one with S = oo, which simply relies on instantaneous
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control at © to keep X (t) < ©. Thus, the lower limit of a control band must
be in the set {-co} U[0, O] and the upper limit must be in the set [0,0] U {oco}.
More specifically, compare the control bands ¥ = (u, s,.5) where: (i) s = 0 and
the process switches to band 1 if X (¢) reaches the lower limit s, (ii) S = © and
the process switches to band ), if X (t) reaches the upper limit S, (iii) s = —oc0
and (iv) S = co. Then

u(y), if X(t) =0 and s =0,
_ Ju(ye), f X(t) =0 and S =06,
ultt) = u, if X(t) =0 and s = —o0,
u, if X(t) =6 and S = cc.

Given a collection ¥ = {4, : i € Z} of control bands, we often refer to the
band ; simply by its index i, so for example, we refer to the band ; simply as
band i, to u(t);) as u(i), etc. We say that two bands i and j overlap if u(i) = u(j)
and (s(7),S(2)) N (s(4), S(j)) # 0. Otherwise, bands ¢ and j are non-overlapping.
We say that a collection of bands is non-overlapping if no two of its members
overlap. Note that our definition of non-overlapping bands includes bands with
the same drift rate whose intervals share a common endpoint. If a policy includes
overlapping bands additional management tools may be required to resolve which
band should be in effect at any given time.

A control band policy is defined by a collection of control bands ¥ = {4 :
i € T} such that each point = € [0,0)] is contained in some band v; together
with a rule for switching from one control band to the next. A control band
policy maintains the drift rate of the current control band ¢ until X (¢) first
reaches s(¢) or S(1) at which point it changes to a new band as dictated by the
switching rule and adopts the corresponding drift rate.

A deterministic control band policy is a control band policy defined by a
collection ¥ = {¢); : i € T} together with two maps ( : Z—Z and 7 : Z — Z.
The switching rule for this policy follows the map ¢ when X (¢) reaches the
(finite) lower limit of the current band and follows the map 7 when X (t) reaches
the (finite) upper limit of the current band. In particular, if the policy is in
control band i and X (t) first reaches s(i), the policy deterministically changes
to the control band ((i) and so changes the drift rate to u({(¢)). Similarly, if
X (t) first reaches S(7), the policy deterministically changes to the control band
7(7) and so changes the drift rate to u(7(¢)). Deterministic policies are simple to
describe and implement.

If the process starts at a point (X (0), £(0)) that is not in any control band
of the policy, we may transition to a band of the policy without affecting the
average cost so long as this transition is accomplished in finite time and with
finite cost. One method to accomplish this one-time transition is, for example,
to maintain the drift rate p(0) until the process first reaches a point in some
specified set and then switch to any band of the policy that contains this point.

In this paper we consider the S-restricted Brownian control problem in which
the controller may only change the drift rate when X(¢) is in a given finite set
S={s; :i=1,2,...,n}, where 0 < 81 < $3... < 8, < O. We define the
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subset P(S) C P to be those non-anticipating policies {(T;,u;) : 4 > 0} in which
each T; is a hitting time for some subset of S. Every control band policy in
which the (finite) end points of each control band are in S is a non-anticipating
policy of the S-restricted Brownian control problem and so a member P(S). Not
every policy in P(S), however, is a control band policy since, for example, the
hitting times need not be first hitting times or may involve other complicating
conditions.

3 The LP Formulation and Summary of Results

We formulate a linear program LP(A,S) to find a minimum average cost con-
trol band policy in P(S). The formulation of LP(A,S) requires the following
performance characteristics of each control band as input.

Consider a band ¥ = (u,s,S5) and a point z € (s,5). We let p(z,1,s) de-
note the probability of exiting band 1 at s given the starting point z, i.e. the
probability that, starting at z, X (¢) with drift rate fixed at w first reaches s.
Thus, p(z,v,S) is the probability of exiting band ¢ at S given the starting
point z. Observe that if both endpoints s and S of the band are finite, then
p(2z,1,8) + p(z,¢,S) = 1. If only one endpoint of ¢ is finite, the probability of
exiting the band at that endpoint is clearly 1. If both endpoints are infinite, i.e.,
if s = —o0 and S = oo, then there are no transitions out of band . Such bands
are called absorbing.

We let E[X|(z,%)] denote the average value of X (t) over the time the process
is in band ¢ = (u,s,S) given we enter the band at point z € (s,S). When
s = —oo, we let E[A|(z, )] denote the average rate per unit time at which the
controller must exert instantaneous control to keep the process non-negative in
band 1 when it enters the band at the point z. Similarly, when S = oo we let
E[R|(#,v)] denote the average rate per unit time at which the controller must
exert instantaneous control to keep the process from exceeding @ in band 1) when
it enters the band at the point z. Observe that E[A|(z,%)] = 0 when s(¢) > 0
and E[R|(z,v)] = 0 when S(¢) < 6.

We denote by Cost(z, ) the average rate at which the process accumulates
cost in band ¢ = (u, s, S) when it enters the band at the point z. In particular,

Cost(z, 1) = c(u) + hE[X|(2z,9)] + UE[A|(z,¢)] + ME[R|(z,v)].

The average rate at which the process accumulates cost in an absorbing band
1 with drift rate v is independent of the point at which it enters the band. In
fact, the cost only depends on w. In this case, we often write Cost(u) in place of
Cost(z, ).

We let E[T|(z,1)] denote the expected time for the process to hit {s, S}
when it enters band ¥ = (u, s,.5) at the point z. We also use §(z, 1, s) to denote
the average rate per unit time at which the process reaches s when it enters
band v at the point z. Thus, d(z,v,S) denotes the average rate per unit time
at which the process reaches S when it enters band v at the point z. When
—00 =8 < 8 <06, §z,1,5) is defined to be 1/E[T|(z,%)]. Similarly, when
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0<s<8=o00,dz21,s) is defined to be 1/E[T|(z,)]. Finally, when both s
and S are finite 6(z,1), s) and §(z,1, S) are defined by the relations:

L/E[T|(z,4)] = 6(z,¢,8) + 0(2,9, 5)

B d(z,1,s)
p(z:9,s) = (2,0, 8) +0(2,9, 5)

B 0(z,1,5)
p(z,9,5) = (2,0, 8) +6(2,,5)

These quantities may easily be obtained by solving a small system of linear
equations derived through Basic Adjoint Relations (BAR) [15,16].

At this point we may formulate the linear program LP(A,S) approximating
the S-restricted Brownian control problem.

Given a finite set A of potential drift rates and a finite set S of candidate
transition points we define ¥ (A4, S) = {; : ¢ € Z(A,S)} to be the finite collection
of control bands ¢ = (u,s,S5) with v € 4 and s and S in S U {—00, 0} such
that s < S. The set Z(A,S) ={(z,4) : i € Z(A,S), z € SN (s(2), S(¢)) and 1; is
not absorbing} indicates all the possible points z € S at which the process can
transition into each non-absorbing band i in ¥(4, S).

The linear programming formulation of the S-restricted Brownian control
problem, LP(A,S), has three types of variables:

Band Variables:

x(z,1) for each entry point (z,i) € Z(A,S), describing the rate or average
number of transitions per unit time at which the process enters the band
1 at the entry point z and,

z(u) for each u € A, describing the long-run fraction of time that the ab-
sorbing band (u, —o00, c0) is used. Since there are no transitions out of
absorbing bands, x(u) should be either 0 or 1, but it can be shown that
it is not necessary to impose that restriction.

Transition Variables: y(z,u,v) for each triple (z,u,v) € § x A x A, describing
the rate per unit time at which the process changes the drift from u to v at
point z.

w-Variables: w(z,u) for each (z,u) € S x A, which we include as a conve-
nient mechanism for effectively allowing “y(z,u,u)” to be a free variable by
representing it as the difference of two non-negative variables w(z,u) and

y(z7 u7 u).
We denote the objective function value of a solution (z*, y*, w*) by AC(z*, y*, w*).

Minimize

Z Cost(z,))E[T|(z,1)]xz(z,7) + Z Cost(u)x(u) + Z K(u,v)y(z,u,v)

(z,4)€Z(A,S) u€A (z,u,v)ESXAXA
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subject to the constraints:

Scale Constraint:

> E[T(z0)]w(z0) + Y w(u) =1 (5

(z,1)€Z2(A,S8) u€eA

In-Conservation Constraint for each (z,v) € S x A :

Z x(z,1) + w(z,v) — Z y(z,u,v) =0 (6)

(z,4)€Z(A,S): u(i)=v u€eA

Out-Conservation Constraint for each (z,u) € S x A:

- > p(2i,2)2(2, 1) —w(z,u) + ) y(zu,0) =0 (7)
(2!,i)EZ(A,S): veEA
u(i)=u and z€{s(7),S(:)}

z,y,w > 0.

The rate x(z,1) or average number of transitions per unit time at which the
process enters band ¢ at the point z times E[T'|(z, )], the average time the process
spends in the band when it enters at the point z, is simply the fraction of time
the process spends in band 7 having entered it at point z. The Scale Constraint
ensures that these fractions sum to one and thereby scales the formulation to
one time unit. The In-Conservation Constraint for (z,v) € S x A, ensures that
the rate at which the process switches to the drift rate v at the point z is equal
to the rate at which it enters bands with that drift rate at that point. Similarly,
the Out-Conservation Constraint for (z,u) € S x A ensures that the rate at
which the process switches from drift rate u at the point z is equal to the rate
at which it reaches the boundary z of bands with that drift rate.

The variable z(u) associated with the absorbing band (u, —o00, c0) appears
in the Scale Constraint with a coefficient of 1 because, if z(u) is positive in a
basic feasible solution, then z(u) is the only positive variable in the solution
and so we are only interested in the rate at which it accumulates cost. Thus,
the linear programming formulation correctly models the fact that there are no
transitions out of absorbing bands. These variables have no non-zero coefficients
on the conservation constraints.

We define a family of functions called relative value functions, each of which
satisfies an ordinary differential equation (ODE) known as the Poisson equation
with certain boundary conditions.

For each basic feasible solution (z*,y*,w*) to LP(A, S), we define the corre-
sponding domain

D(z*,y",w*) = {(a,i) : i is an active band of (z*,y*,w*) and a € [s(4), S(7)]}.

When considering a function f defined on a a domain like D(z*, y*, w*), we
treat f as a family of functions {f(-,4) : ¢ € Z} each defined on the corresponding
subset of IR and so, for example, use f’ and f” to represent derivatives with
respect to the first argument.
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A function f: D(z*,y*,w*) — IR is said to be a relative value function with
respect to (z*,y*, w*) if there is a scalar v such that

2

%f//(a, i) +u(i) f'(a, 1) + c(u(i)) + ha = v (8)

for almost all (a,) € D(z*, y*, w*),

f(s(i),i) = f(s(i), C(8)) + K (u(@), u(C(2))) (9)
for each active band ¢ such that s(i) > 0,
f(S(i),0) = f(S(0), 7(i) + K (u(i), u(7(7))) (10)

for each active band i such that S(i) < O,
f'(0,i) = —=U for each active band i with s(i) = —oo and (11)

1 (©,i) = M for each active band i with S(i) = oco. (12)

Corresponding to each basic feasible solution (z*,y*, w*) to LP(4,S) there
is a relative value function that is unique up to an additive constant. In fact, we
establish a correspondence between relative value functions and complementary
dual solutions. Namely we show that

— for each complementary dual solution (v*,a*, 5*) (where v*, a*, §* are the
dual variables corresponding to the scale constraint, in-conservation and out-
conservation constraints, respectively) and constant d the conditions

f(z,1) = a*(z,u(i)) + d for each z*(z,i) > 0
f(z,b(z,0)) = 8% (z,u) + d — K(u,v) for each y*(z,u,v) > 0,
define a unique relative value function f with respect to (z*, y*, w*),

— for each relative value function f with respect to (z*,y*, w*) and constant
d, any dual solution (v, c, ) satisfying

AC(z*,y",w™)
f(z,4) + d for each *(z,4) > 0
f(z,b(z,v)) + K (u,v) 4+ d for each y*(z,u,v) > 0,

Y
a(z, u(i))
Bz, u)

is a complementary dual solution.

Relying on the LP(A,S) formulation, its dual and the relationship between the
complementary dual solutions and the relative value functions we obtain several
results. Theorem 1 ensures that there is an optimal solution to LP(A,S) that is
a deterministic non-overlapping control band policy.

Theorem 1. For each finite set S, LP(A,S) admits an optimal policy that is a
deterministic non-overlapping control band policy.
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In particular, we show that if we choose (x*,y*, w*) to be a basic optimal
solution to LP(A,S) with a smallest number of active bands, then (x*,y*, w*)
corresponds to a non-overlapping control band policy.

We observe that every basic feasible solution to LP(A,S) corresponds to a
policy @ € P(S), however not every policy in P(S) can be captured by a feasible
solution of the linear program LP(A, S). Thus, a lower bound to the average cost
of policies in P(S) provides a lower bound for the linear program LP(A,S) just
as every feasible dual solution to the dual problem does. On the other hand a
feasible dual solution does not necessarily provide a lower bound for the average
cost of a policy in P(S). We construct a lower bound on the average cost of any
policy in P(S) from an optimal solution to the dual of our linear program and
so prove the stronger result, Theorem 2.

Theorem 2. For each finite set A of drift rates and finite set S of candidate
transition points, an optimal solution to LP(A,S) is an optimal policy for the
S-restricted Brownian control problem and so, the S-restricted Brownian control
problem admits an optimal policy that is a deterministic non-overlapping control
band policy.

Further, under mild assumptions on the cost coefficients, we can obtain deter-
ministic non-overlapping control band policies that are asymptotically optimal
for the unrestricted Brownian control problem by choosing consecutive points
of S sufficiently close together. In particular, we show how to compute a lower
bound on the average cost of any non-anticipating policy and, given € > 0, we
show how to choose the points of S so that (1 — €) is such a lower bound,
where 7y is the average cost of an optimal solution to LP(A,S). These results are
summarized in Proposition 1 and Theorem 3.

Note that when considering a function f defined on a subset of IR x A
(or IR x T for some finite index set Z), we treat f as a family of functions
{f(,u) :u € A} ({f(-,i) : i € IT}) each defined on the corresponding subset of
IR and so, for example, use f’ and f” to represent derivatives with respect to
the first argument.

Proposition 1. Suppose that for eachu € A, f(-,u) : [0,0] — R is a continuous
function that can be written as the difference of two convex functions and
1. 1s differentiable,

1. has bounded first and second derivatives and
1. has continuous second derivative

at all but a finite set of points. Further, suppose that for each uw € A the function
f(,u) and the scalar v satisfy:
2

%f”(a,u) +uf'(a,u) + c(u) + ha >~ for a.a. a € [0, 6], (13)
fla,v) = f(a,u) > —K(u,v) for all a € [0,0] and v € A14)

f(0,u) = -0, (15)

f(©,u) < M, (16)

pla,u) = f'(a+,u) — f'(a—,u) >0 for all a € (0,0). (17)
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Then v < AC(P) for each policy & € P and each initial state (a,u) € D.

Theorem 3. Suppose h > 0 and U > CT“) > —M for each u € A, then for
each € > 0 there is § > 0 such that if we choose the points of S in [0,0] so that
consecutive points in S U {0,0} are within § of each other, then

— < i < i = .
(1 =€) < jnf) AC(@)wén?;?S)AC(@) gl (18)

The proof of Theorems 1, 2 and 3 rely heavily on properties of complementary
dual solutions and on the apparently new relationships we establish between
complementary dual solutions and relative value functions.

4 Conclusion

In this paper we address a capacity management problem in a build-to-order
setting and model it as a diffusion problem. An advantage of the diffusion prob-
lem is that it requires limited information about the process, namely, the mean
and variance, and does not require any additional information like the distribu-
tion of demand which is usually hard to correctly identify and model. In solving
the diffusion problem we define an S-restricted Brownian control problem where
the controller may change the drift rate only when the available to build level
is equal to certain values. We initially restrict our attention to a class of poli-
cies called the control band policies that allow us to build an LP formulation.
We show that the optimal policy to this LP is a deterministic non-overlapping
control band policy and that this LP indeed solves the S-restricted problem by
showing that the solution to the LP achieves a lower bound for the S-restricted
problem. Then we achieve asymptotic optimality by showing that under mild
assumptions on cost parameters the average cost of an optimal solution to the
S-restricted problem can be made arbitrarily close to this lower bound. Thus,
this approach solves the unrestricted problem through different restricted ver-
sions of the problem and comes up with a simple policy. The simplicity of this
policy greatly facilitates its application in industrial settings. The approach can
easily be extended to settings that include the build-to-stock option. As the ap-
proach also isolates each cost component (and provides a simple expression to
calculate) it helps the controller judge the impact of policy changes in terms of
each cost component and its operational implications. One hopes to extend these
results so that LP formulations of individual diffusion control problems can be
knitted together and integrated into larger planning and control problems using
traditional modeling techniques.
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