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Abstract. For three rather diverse applications (truck scheduling for in-
ter warehouse logistics, university-course timetabling, operational train
timetabling) that contain integer multi-commodity flow as a major mod-
eling element we present a computational comparison between a bundle
and a full linear programming (LP) approach for solving the basic re-
laxations. In all three cases computing the optimal solutions with LP
standard solvers is computationally very time consuming if not imprac-
tical due to high memory consumption while bundle methods produce
solutions of sufficient but low accuracy in acceptable time. The rounding
heuristics generate comparable results for the exact and the approxi-
mate solutions, so this entails no loss in quality of the final solution.
Furthermore, bundle methods facilitate the use of nonlinear convex cost
functions. In practice this not only improves the quality of the relaxation
but even seems to speed up convergence of the method.

Keywords. Lagrangian decomposition, large scale convex optimization,
bundle methods, integer multi-commodity flow

1 Introduction

Integer multi-commodity flow problems arise naturally as modeling elements in
many applications containing logistic aspects. In particular if these arise from
time discretization the models are typically of very large scale. While the models
lend themselves ideally to Lagrangian decomposition, they are mostly put into
a standard linear programming solver as a whole because of convenience and
because it is widely considered the only efficient environment for cutting plane
approaches. The purpose of this paper is to point out that bundle methods with
primal aggregation (like ConicBundle [1]) are a very attractive alternative in
such cases, because they allow to use Lagrangian decomposition in combination
with cutting plane approaches and even seem to profit in speed an quality from
the use of more complex convex cost functions. Indeed, we present three real
world applications where a bundle approach was able to generate reasonable
starting points for rounding heuristics within several minutes while solving the
full initial linear programming relaxation by a state of the art solver already took
hours to days or failed due to memory requirements. In addition, the quality of
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the rounded solutions does not seem to depend on whether the exact solution
of the relaxation or only a rough approximation to it is used for starting the
rounding heuristics.

This extended abstract is structured as follows. Section 2 recapitulates the
basic steps of a bundle method with primal aggregation and the use of cutting
planes. In each of the following three sections we briefly describe a practical
application, outline a model and give some numerical results. These are, in fact,
short summaries of [2,3,4] and involve the work of many other people that I wish
to acknowledge here with the affiliations of that time: F. Eckle (Fiege eCom),
F. Fischer (TU Chemnitz), J. Janßen (Deutsche Bahn), B. Krostitz (Deutsche
Bahn), A. Lau (TU Chemnitz), S. Röhl (ZIB Berlin), W. Rüstau (Fiege eCom).

2 Primal aggregation in bundle methods

The basic theory of bundle methods is explained in [5] or in more concise form
in [6] and Lagrangian decomposition is a standard technique. Primal aggrega-
tion [7,8,9], however, and dynamic versions [10,11] (i.e., combined with cutting
planes) are not yet common knowledge, so we sketch the main ideas shortly
following the expositions in [2,10]. For the purpose of this presentation it is suf-
ficient to consider Lagrangian relaxation of the linear constraints of the primal
problem

max{c>x : Ax = b, x ∈ X}

where ∅ 6= X ⊂ IRn is a compact (e.g., finite discrete or bounded polyhedral)
set so that max{c̃>x : x ∈ X} is efficiently solvable for any c̃ ∈ IRn (like, e.g.,
uncoupled minimum cost flow problem) and A ∈ IRm×n, b ∈ IRm describe addi-
tional linear constraints (e.g., the coupling of the capacities in multi-commodity
flow). Finding the best Lagrangian relaxation amounts to solving the (convex)
dual problem

min
y∈IRm

ψ(y) where ψ(y) := max
x∈X

(c>x+ (b−Ax)>y).

Given a starting point y0 = ŷ0, the bundle method iteratively determines the
next candidate yk+1 as optimizer of a quadratic model,

yk+1 = arg min
y∈IRm

max
x∈ bXk

[
c>x+ (b−Ax)>y + 1

2‖y − ŷ
k‖2
]
, (1)

where ŷk serves as current center of stability and the model X̂ k ⊆ {x0, . . . , xk, x̄k}
is a subset of the previous optimal solutions xi ∈ Argmaxx∈X (c − AT yi)>x of
the Lagrangian relaxations and a special primal aggregate x̄k to be explained
below. Next, in the oracle step, the Lagrangian relaxation ψ(yk+1) is solved giv-
ing a corresponding primal optimizer xk+1. If this value improves sufficiently
upon ψ(ŷk), the center is moved to this candidate, ŷk+1 = yk+1 (a descent step).
Otherwise, a null step occurs, ŷk+1 = ŷk, so the center is not changed but the
next model X̂ k+1 is improved in yk+1 by including the new xk+1.
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Instead of solving (1) directly, one may interchange min and max (strong
duality holds by compactness if we switch to the convex hull of X̂ k) and solve
the new inner minimization over y explicitly giving y(x) := ŷk − (b − Ax). By
substituting this for y one obtains a primal convex quadratic subproblem in x
equivalent to (1) and an optimal solution to this gives the next primal aggregate,

x̄k+1 ∈ Argmax{− 1
2‖Ax− b‖

2 + (c−AT ŷk)>x+ b>ŷk : x ∈ convX̂ k}. (2)

Note, x̄k+1 ∈ convX because it is a convex combination of the points in X̂ k, and
the next candidate is yk+1 = y(x̄k+1). To guarantee convergence the next model
only needs to satisfy {xk+1, x̄k+1} ⊆ X̂ k+1. If the convex hull of the primal
feasible set is nonempty and compact and a dual optimal solution exists the
method generates a subsequence yk, k ∈ K, of dual feasible points that converges
to an optimal y∗ and satisfies ‖yk− ŷk−1‖ → 0 and c>x̄k +(b−Ax̄k)>yk → ψ(y∗)
(see, e.g., [12]; K = {k : ŷk 6= ŷk−1} in the case of infinitely many descent steps,
otherwise, ignoring the finite case, K = IN). On this subsequence b− Ax̄k → 0
and c>x̄k → ψ(y∗), so any cluster point x∗ of the x̄k, k ∈ K, satisfies x∗ ∈ {x ∈
convX : Ax = b} and c>x̄∗ = ψ(y∗) and is therefore an optimal solution to the
relaxation.

Thus, the primal aggregates x̄k (2) serve as successively better approxima-
tions to the primal optimal solution of the relaxation and as the basis for round-
ing heuristics or for cutting plane approaches. When adding constraints violated
by x̄k and reoptimizing, the following two issues have to be considered. The di-
mension of the dual problem changes on the fly and the next aggregate x̄k+1 will,
in general, still violate the newly added inequalities. However, as this violation
goes to zero over time, both aspects can be taken care of by dynamic bundle
methods [10,11] if an appropriate violation measure is used in the separation
procedure.

In all our experiments we use the ConicBundle callable library [1]. It is de-
signed for Lagrangian relaxation and supports primal aggregation, primal cut-
ting planes as well as the use of independent bundle models for sums of con-
vex functions. Like for subgradient algorithms, the user only has to provide
an oracle implementing the evaluation of ψ(y), i.e., a routine that finds x∗ ∈
Argmaxx∈X (c−AT y)>x for given y and returns the value (c>x∗)+(b−Ax∗)>y,
the primal violation (subgradient) b−Ax∗, and x∗ itself for primal aggregation.
In principle, primal aggregation is also possible for pure subgradient algorithms
[9], but while requiring exactly the same oracle data, the quadratic term in (2)
enhances convergence towards feasibility as well as the stability of the optimiza-
tion process. We illustrate the advantages of the bundle approach in comparison
to state of the art linear programming solvers on three applications from practice.

3 Truck scheduling for inter warehouse logistics [2]

Problem Description. A company operates several warehouses within the
same city. In each warehouse articles in stock are commissioned into shipments
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but part of the stock may currently be located in other warehouses. In order to
complete the shipments within one working day several trucks transfer pallets
between the warehouses. The total transportation time of a pallet between au-
tomatic storage systems of different warehouses is roughly six hours (with up to
one hour actual driving time on the truck), each pallet carries a standard num-
ber of items of only one type of article, and a truck can carry up to 27 pallets
in one ride. The task is to determine, within roughly ten minutes, a schedule
of the truck rides for the next 4 hours together with their loads of pallets so
that with good probability all current and future shipments can be completed
in each warehouse on time. Our scenarios from practice included two and three
warehouse, roughly 1000 pallets were transferred each day, and, based on current
demand for ordered shipments and a stochastic model of future demand, one or
several pallets of roughly 1000 different articles of a total of 40000 had to be
considered for transfer.

The model. For use in a rolling horizon technique the planning period is
the full next day based on a time discretization of ten minutes. For each article
a separate network represents the flow of the pallets of this article between the
warehouses (staying in the warehouse, getting ready for transfer, and the transfer
itself). For each truck class (i.e., trucks that need not be discerned in capacity) a
separate network models the actual loading, transport ride, unloading, waiting,
and empty transfers of the trucks. A flow of one along a transport ride in a truck
graph raises the joint capacity of the corresponding transfer arcs in the article
graphs by the truck capacity. Further coupling capacities are induced by the
storage capacity of each warehouse and the number and capacity of the loading
and unloading platforms in each warehouse. The selection of appropriate pallets
is guided by a convex, piecewise linear cost function (a separate one for each
warehouse and time-step in each article graph) that maps the probability of a
shortage on account of current stock of this article to a penalty value.

Results. The instances stem from half a year of real world data for two
warehouses (2-WH in Table 1) and are also mapped to three warehouses (3-
WH). Computing schedules at 6:00, 9:00, 12:00, and 15:00 hours each day yields
a total of 942 instances ranging between of 200,000 to 1,100,000 arcs and 1500 to
4500 multipliers (in the case of 2-WH). Table 1 is taken from [2] and compares

Table 1. Average and deviation of running time and relative precision for truck
scheduling instances

LP by simplex bundle
scenario #inst. time(sec) heur-gap(%) time(sec) relax-gap(%) heur-gap(%)

2-WH 942 2138 (1445) 5.29 (5.90) 229 ( 95) 3.37 (3.44) 5.75 (6.13)
3-WH 942 6629 (5724) 19.4 (12.8) 312 (129) 6.45 (4.34) 18.8 (11.7)

the dual simplex code of CPLEX 9.1 [13] to stopping after at most 2000 oracle
evaluations of a ConicBundle implementation using MCF [14] for computing the
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minimum cost flow subproblems, where

relax-gap = 100 ·
(

1− bundle-sol.
LP-sol.

)
, heur-gap = 100 ·

(
1− LP-sol.

heuristic-sol.

)
.

Computation times refer to a Linux PC with Pentium 4, 3.2 GHz processor, 1
GByte RAM, and 1 MByte level 2 cache. Some preliminary experiments with
CPLEX 12.1 suggest that the new version is faster by a factor of two, so the bun-
dle approach is clearly faster also today. Note, there is no significant difference
in the quality of solutions after rounding heuristics have been applied.

4 University-course timetabling [3]

Problem description. Setting and results are based on the current situation
at TU Chemnitz and have been worked out in the diploma thesis of Anja Lau
[3]. The basic requirements of university-course timetabling are quite the same
in most universities, so we will only give the two special features arising at TU
Chemnitz. First, the campus is distributed over four distinct locations within the
city so that transfer times pose a significant constraint in setting up timetables.
Second, the study programs at TU Chemnitz include a significant number of
semiobligatory and optional courses, so the goal is to find a timetable that keeps
many options open to the students.

The Model. For each distinct study group (i.e., for each semester of each
branch of a study program) and each day of the week a separate network repre-
sents the flow of the students through the courses at the various locations and
time slots (one arc per slot for obligatory courses, one for each semiobligatory
and optional course, arcs for transferring, for waiting, for going to no course
at all, . . . ). Course arcs are opened by separate assignment variables, assigning
for each course a time slot on some day at some location (the room problem is
skipped, similar in style to [15]. A convex piecewise linear reward structure mo-
tivates students to visit as many semiobligatory and optional courses as possible
so that in the case of several available options (and in lack of better data) they
try to split up so that each course is visited by at least 10% of the study group.
But of course they still prefer fewer waiting periods and transfers between loca-
tions. Further convex piecewise linear terms penalize deviations from the average
daily course load of each study group.

Results. Instances are constructed by taking various subsets of increasing
size (A to E in Table 2) of study programs at TU Chemnitz for the winter term
2007/08 and the summer term 2008. The number of primal variables ranges from
roughly 200,000 for A to 1,300,000 for E. Table 2 compares the computation
time for solving the relaxations with CPLEX 9.1 barrier [13] (simplex variants
performed abysmal here) and with a ConicBundle implementation using MCF
[14] for computing the minimum cost flow subproblems. All times are in minutes
and refer to a computer with Intel Xeon Dual Core 3.0 GHz processor with 64
GB RAM. Again, an acceptable approximate solution is quickly computed by
the bundle approach. Note, the differences in quality of the solutions produced
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Table 2. running time and relative precision for university-course timetabling

LP by barrier bundle
scenario term time(min) heur-gap(%) time(min) relax-gap(%) heur-gap(%)

A W07/08 6.1 3.0 0.4 4.3 3.8
S08 4.9 2.3 0.3 8.2 3.1

B W07/08 10.1 6.3 0.7 3.6 7.8
S08 7.2 5.8 0.6 3.0 6.0

C W07/08 77.4 7.1 2.1 2.5 7.2
S08 176.5 5.2 2.5 2.5 6.1

D W07/08 > 720 - 3.5 - -
S08 169.5 5.4 3.6 2.4 5.7

E W07/08 572.8 6.8 6.8 1.6 7.8
S08 258.6 4.8 7.0 1.5 4.8

by the rounding heuristic slightly favor the exact relaxation solution as a starting
point. These differences, however, are of little relevance considering the many
uncertainties in the data concerning the expected number of students in the
audience.

5 Operational train timetabling [4]

Problem description. For long term simulation studies concerning network
capacities, Deutsche Bahn is interested in the following setting. Given passenger
and freight trains with fixed routes and desired stopping intervals at selected
stations along their routes, find an operational timetable for all trains so that
actual train stops satisfy the interval constraints and technical restrictions like
stopping dependent running times, headway times and station capacities are ob-
served. Note, neither is any connection data available nor is periodicity required
other than specified by the stopping intervals.

The Model. Time is discretized into steps of one minute. For each train
the progress along its route is represented by a time discretized network that
encodes stopping dependent running times and can be solved as a shortest path
problem. The capacities of the arcs are coupled via station capacities and head-
way time restrictions. In the computations reported in [4] both constraint types
are implemented in a cutting plane approach. While separation of the station
capacities is trivial, separation of headway conflicts is implemented by a heuris-
tic searching for maximal cliques in a conflict graph (in contrast to [16], exact
separation is impractical here).

Results. Instances are based on a real timetable over a time span of six
hours for south-western Germany. Instance 1 includes only those trains that run
over the five most frequently used track segments (242 Passenger trains, 9 freight
trains, 317336 variables), instance 2 is the main traffic route along the river Rhine
(50 passenger and 67 freight trains, 2,448,842 variables), and instance 3 considers
the entire subnet (2501 passenger, 659 freight trains, 8,990,060 variables).
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Table 3. running times for operational train timetabling

Instance Cplex ConicBundle

1 33s 12s
2 1945s 341s
3 – 2512s

Table 3 compares the running times of the cutting plane algorithms imple-
mented with CPLEX 9.1 [13] and with ConicBundle, where both use the same
basic relaxation and separation procedures. Times refer to an Intel Xeon Dual
Core 3 GHz computer with 16 GB RAM, the largest problem could not be
finished by CPLEX due to insufficient memory. For both approaches the devel-
opment of the bound over time is illustrated in Figure 1 for instance 2. Even
considering the fact that the code was carefully tuned for ConicBundle while
CPLEX is used in default setting, the differences in running time are surprising
as cutting plane applications are considered a classical domain of the simplex
algorithm.
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Fig. 1. Development of the bound for instance 2: ∗ CPLEX, ◦ ConicBundle
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14. Löbel, A.: MCF Version 1.2 – A network simplex Implementation.
Konrad-Zuse-Zentrum für Informationstechnik Berlin. (2000) Available at
http://www.zib.de/Optimization/Software/Mcf (free of charge for academic
use).
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