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Abstract. Cars in rail freight service follow prescribed routes from their
origin via intermediate shunting yards to their destination. The goal
in designing such routes is to reduce the number of trains and their
travel distances. Various real-world hard constraints make the problem
difficult to formulate and also to solve. We present integer programming
formulations for this car routing problem arising at the largest Furopean
railway company and discuss their pros and cons.
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1 Introduction

In 2006, around 500,000 Mil. ton kilometers freight was transported in Germany.
The vast majority of freight is transported on the street (75%), a small share of
5% by ships, and the remaining 20% by train. From these 100,000 Mil. ton kilo-
meters, inland and cross-border traffic have an equal share of 45% each, leaving
10% for transit traffic. Deutsche Bahn, the largest German railway company,
offers mainly two products to commercial and industrial customers that want to
transport goods via rail.

Typically large customers order whole trains of about 20 to 40 cars. In this
case, Deutsche Bahn as the operator can pull such a train by a locomotive
from origin to destination. Small customers on the other hand order only 1 to
5 cars. In such case it is too expensive to pull this group of cars by a single
locomotive through the network. Instead the cars are only pulled to the next
classification yard. There they are grouped with the cars from other customers,
and then as new trains pulled to the next classification yards. There the trains are
disassembled, and the cars are again re-grouped with others. This procedure is
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now repeated until each car has reached its final destination. The central question
emerging here for our research is the following: What are the “best” paths for
all cars that fulfill certain operative restrictions. Whatever “best” means in this
context will be specified in the sequel.

This problem is challenging from a computational point of view due to the
enormous complexity inherent in a large railway company. Deutsche Bahn op-
erates a network of a total length of about 38,000 km. This network is tra-
versed each day by approximately 5,000 freight trains with together 150,000
cars. The origins and destinations of the customers’ orders are 2,200 terminal
stations. Re-classification is carried out at intermediate classification yards of
three different sizes: 200 are considered as small (“Satellitenbahnhofe”), 30 as
medium (“Knotenbahnhéfe”), and 11 are large (“Rangierbahnhéfe”). The dif-
ferences among these will be explained in the sequel.

Classification yards schematically are made of three parts: entry tracks, sort-
ing tracks, and exit tracks. When a train enters the yard, it is parked on an entry
track. There the train is disassembled, and the individual cars are pushed over
the hump, entering the sorting tracks behind. Each sorting track is assigned to
a unique station (another yard or a terminal). Only by gravitational force the
cars then roll into the right sorting tracks. As soon as enough cars are gathered
on one sorting track, these cars are connected. This new train is then pulled
into the exit group, where it waits, until it can leave the yard and re-enter the
network. The operations within a classification yard by themselves give rise to
interesting and difficult optimization problems. For our model, however, we can
treat each yard as a black-box, and only have to take the respective capacity
restrictions into account.

The problem of routing single cars through a railway network with inter-
mediate classification operations emerged in the OR literature in the 1960s [1].
Computational studies mainly cover scenarios from US and Canadian railway
freight companies [2,3,4,5,6,7,8,9,10,11], where different operational rules com-
pared to Deutsche Bahn are applied. There the problem is known as the blocking
problem, since it involves the decision which cars should stay together as a block
(more than a car, less than a train) during their journey through the network.
We will explain these differences in the next section.

2 Aspects of Single Car Scheduling at Deutsche Bahn

There are mainly two aspects that distinguish the single car scheduling at
Deutsche Bahn from some of the approaches found in the literature. First, the
main cost factor are trains and the sum of all train travel distances (also called
train kilometers, for short), the second most important is the use of infrastruc-
ture, and only the least important are car kilometers. Hence cars can make
detours, as long as they do not violate some maximum travel time constraints.
That means that one is interested in those car paths that bundle as much orders
as possible.
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2.1 The Bundling Effect

Consider the graph in Figure 1. In this example a graph with 5 nodes V :=
{A, B,C, D, E} is given. The respective costs for traversing an edge are cyp =
100, cag = 40,cgr = 10,ccp = 100, ccg = 30,cpr = 30,cgr = 60. There are
two orders, one emerging in A with destination B (blue node), and the other
has source C and destination D (red node).
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Fig. 1. An example for the bundling effect.
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If the car travel costs would be the dominating factor then the optimal solu-
tion to this transportation problem is to assemble one train for each order. This
gives car travel costs of cap + cop = 200 and similar costs for the trains.

On the other hand, if the train costs are dominating (as they do at our
project partner), then the optimal solution is to transport the two orders to
the intermediate yards E, assemble a train with these two orders that delivers
them to F, where they are split up again and are taken in individual trains to
their respective destination. For the car costs that means an increase from 200
to cag + ccg + 2 cgr + cgr + cpr = 230, but the train costs decrease from
200 to cag + ccg + cgr +cpp + cpp = 170.

2.2 Modes of Operating a Classification Yard

Generally speaking there are three main modes of operating a classification yard,
called individual car routing, blocking of orders, and the rule of the unique suc-
cessor (within Deutsche Bahn also called Leitwege). We will present all three in
the sequel and discuss their differences. From an abstract point of view, we want
to describe for each yard s a function fs that yields the next station where the
cars have to be sent to. The three operation modes differ in the input parameters
that are necessary to determine this successor station.

Individual car routing gives the greatest flexibility of operation. It means
that each car of the order receives its individual path through the network, that
can differ from all other cars, even those cars from the same order. Speaking in
terms of our function from above, it means that f,(¢,7,!) depends on the origin
i, the destination j, and car [ among all orders with cars from ¢ to j. From
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the organizational point of view that would mean not only to compute all these
paths, but also attach the information to the cars so that the workers handling
the cars can read it and put the car on the right sorting track. Although this
system would offer great flexibility in practice, it is not implemented yet, and
probably will not be implemented in the future, as long as humans are involved
in the manual sorting process of the cars: The error sensitivity is simply to high
so that it would most likely overcompensate the potential savings. However, if
we leave the human factor out of our considerations we obtain car paths that
give at least a theoretical lower bound on the actual costs.

Blocking cars that belong to the same order is similar to individual car rout-
ing, but now all cars from one order have to follow the same path. The cars
can of course travel in different trains. At each intermediate station s the next
station fs(7,j) depends on the origin i and the destination j of the orders, but
no longer on the number of the car [. For the manual sorting process that means
that one source of potential errors is reduced and the entire freight system can
be operated more stable.

The unique successor rule states that cars with the same destination share
their remaining path to the destination from the station where they first meet.
That is, at an intermediate station s the next station fs(j) only depends on the
destination j, and not even on the origin anymore. This yields a very simple rule
and hence reduces the human error potential again by some order of magnitude.
The price is a lower flexibility when designing car paths.

3 Model Formulation

We give a formulation of the problem as a linear mixed-integer programming
problem.

Denote by V' the set of all stations (yards and terminals), and by A C V xV
the set of precedence relations. The set of customer orders is denoted by K.

We introduce three families of integer variables. For the routes of the cars we
introduce decision variables xfj e Bforall (i,j) € Aand k € K. If xf] =1 then
station j is directly after station ¢ in the path for the cars belonging to order k.
Another decision of the model concerns the number of trains from station ¢ to
J, for which we introduce the integer variable y; ; € N. Finally the model has to
decide on the number of sorting tracks n; ; € N at station ¢ on which trains are
assembled exclusively in direction of station j.

Similar to the variables there are also three main groups constraints: one for
the orders, one for the trains, one for the yards.

The central constraints for the orders are the usual multi-commodity flow
conservation constraints:

1,if i = o(k),
VieVike K: > af,— > ab, =0 -1ifi=d(k), (1)
ji(i,j)EA ji(ji)EA 0, otherwise,

stating that each order k has to start at its origin o(k) and end at its destination
d(k), and is not lost in between.
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There is an upper bound restriction 7} on the time that the cars of order
k are allowed to travel in the network. Typically the freight company offers
so-called A-C-relations (delivery within 48 hours) and A-B-relations (express
delivery within 24 hours). We denote by t; ; the travel time from station ¢ to
7 and by u; the time spend in station ¢. For the moment both are given input
parameters, which is justified for ¢; ; but questionable for u;. We will come back
to this in Section 4.4. For now the time limit constraint is the following:

Vk e K : Z (u7 + ti,j) Ifj <Tj. (2)
(i,5)€A

Each yard i has a maximal capacity of cars H; that it can handle per time
period. For large yards with a hump the limiting factor is the respective hump
capacity. For small yards without a hump, the sorting is carried out by small
locomotives, which is even more a limiting factor. If we denote by vy the number
of cars belonging to order k£ we can formulate this capacity restriction as the
following constraint:

VieV: > weaf; <H,. (3)
keK,j:(i,j)EA

The number of trains that can be assembled per time period on a single
sorting track is a station dependent parameter IN; for yard i. Typically this
value is between 3 and 6. We thus have the constraint

V(i,j) € Aingy < Ny . (4)

This means, the number of tracks in station ¢ on which trains in direction of j
can be assembled equals the number of trains from ¢ to j divided by the number
trains per track and time period.

Each yard i has a total number of sorting tracks Y;. Hence the total number
of assignments must not exceed this capacity restriction:

VieV: > oy <V (5)
j:(,5)€A

The trains have an upper limit on the total length and the weight of the
cars. It is not allowed to assemble trains longer than 700m. This is because
freight trains have to wait in the network at certain bypass tracks so that faster
passenger trains can overtake them. Since these bypasses are 700m long (speaking
of the German railway network, in Denmark, for example, this is 850m), no longer
freight train is allowed to travel in the network. If [;, denotes the length in meters
of all cars belonging to order k and L; ; the maximum length of trains between
1 and j, then

V(Z,]) cA: Zlk‘%’ﬁ] SL%J”ZJ (6)
keK
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There is an upper bound weight restriction W; ; that reflects the strength of
DB’s locomotives and the track properties between ¢ and j. If wy denotes the
weight in tons of all cars belonging to order k, then

V(i,j) € A: Zwkxfj < Wij-nij. (7)
kek

Finally we have the “Leitweg” unique successor constraint: The successive
station only depends on the destination, not on the origin, and also not on the
order. That means, if two different orders with the same destination meet at
some station in the network, it is not allowed to send them further to different
stations, which is modelled by the following inequalities:

Vkvl S Kal 7é kvd(k) = d(l)7z S ‘/7(17.]1)7(27.72) € Av.jl #]2 :

k l
,J1 +

\J2 <L (8>

x

The overall objective is to find the most economical car paths. The most
crucial cost component is the number of train kilometers, second is the amount
of used infrastructure, which we assume is proportional to the number of sorting
tracks. Of least importance is the number of car kilometers. Let §; ; denote the
distance (in the network) between station ¢ and j, then we have the following
objective function:

o1 - Z 6i,j SNt Q- Z Yi,j tas- Z 5i,j . Qﬁﬁj — min, (9)

(i,j)€A (i,j)€A keK,(i,j)€A

where a1, ag, oz are suitably scaled weight parameters.

4 Improving the Formulation

We describe two exact methods and one heuristic method to improve the model
formulation from the last section. The goal is to achieve a formulation that a
MILP solver is able to solve faster.

4.1 Lifting

It is possible to combine the unique successor constraints (8) with the flow
conservation constraints (1). Consider two orders k,l € K, # k with the same
destination d(k) = d(I) and a station ¢ € V. By (8) it is required that k and [ must
not use different arcs (4, j1), (¢, j2) with j1 # jo. Because of (1) it is required that
exactly one outgoing arc for the cars of k and [ is selected. Thus we can consider
any partition of V' into disjoint sets Vq, Vo C V with Vq, Vo # 0, V1NV, = 0, and
Vi UVa =V (shortly V1UV, = V), and lift further coefficients into (8) that were
previously set to zero:

Vi€ K, k#1,dk) =dl),icV,iUVy=V:

Sooak, Y Al <1 (0

g1:(i,51)€EA J2:(i,j2) €A
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We remark that there are too many partitions to include all these inequalities
right from the beginning. Instead we separate them on demand.

4.2 Tree Structures

Another way to formulate the unique successor constraints (8) or (10) is to
consider all orders with the same destination simultaneously, and to use ar-
borescences rooted at the common destination. This leads to a formulation with
less constraints but more variables. We will later discuss whether the trade-off
is positive.

Denote by K := {d(k) : k € K} the set of all destinations. We introduce new
binary variables zf; € B for all (i,j) € A and x € K. If 2, = 1 then all cars
with destination  in station i are sent to station j next. The uniqueness of the
successor station is guaranteed by the following constraints:

VieVieeK: >z <1 (11)
j:(i,j)€EA

The cars are only allowed to use those arcs that were selected by the trees before:
i .ok d(k)
V(i,j) e A ke K ai; <z . (12)

Equations (11) and (12) replace now equations (8) and (10).

4.3 Heuristic Cuts: Hierarchy Constraints

The previous two model improvements were exact in nature, that is, their inclu-
sion does not chance the set of feasible solutions to the problem. We will now
present a further idea that is of great help in finding solutions, but it will cut
away parts of the feasible solutions. This is what we call heuristic cuts [12].

Valid inequalities are typically discovered by a polyhedral analysis of the
convex hull of feasible solutions. Heuristic cuts, however, emerge from a different
source. First, one solves a number of (small) test instances to proven optimality.
Then, one has to analyse the structure of the solutions, in order to deduce
certain structures or patterns within them. In doing so, new knowledge about
optimal or near optimal solutions is gathered. If possible this new knowledge is
formulated as (linear) inequalities and included in the model formulation, so that
our anticipation of the solution is already in the model from the very beginning.
Or, to put it in other words, the implicit description of an optimal solution is
made more explicit.

In general, the cuts one discovers in that way are too strong from a polyhedral
point of view. But, on the other hand, they can speed up the solution process
drastically. If one was careful enough they only sacrify little optimality, and they
might be able to streamline or polish the solution, so that minor peculiarities
that cannot be explained, and might even be the result of weak input data, do
not show up in the end.
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After this brief introduction to heuristic cuts we will discuss what that means
to our car routing model. From the solution of small instances we observed that
cars are somehow attracted by large yards. A typical paths through the network
starts at a terminal station, seeks it way to a satellite yards, and then to the
medium and large yards where the cars travel the longest distances through the
network. When they come closer to their destination they leave this hierarchy
level. Then they are transported to a satellite and finally to the terminal. The
vast majority of all paths has such a hump structure: the cars first climb up in
the hierarchy from small to large yards, then they stay a while on that level,
and finally they climb down from large to small again. Only very few paths had
intermediate jumps, from high to low and back to high again.

Making use of this observation is further justified by an analysis of historical
data. About 98% of all paths had a hump structure.

In order to separate the hump-structured paths from the zig-zag paths, we
introduce the following heuristic cuts:

VieViieK: Y b+ Y ah, <l (13)
i:(4,§)EA,h; <h; k:(4,k)EAh; >hy

Here h; is the hierarchy level of station ¢ € V: The larger the station, the smaller
h.

4.4 Refining the Model: Turnover Times

The latter includes waiting times on entry and exit tracks, sorting times, and
times for coupling and decoupling the trains, which all can be well estimated for
each station i from historical data. One component however cannot be taken as
a constant, namely the waiting time on a sorting track, until enough cars are
gathered to start the assembly of a new train. This time depends on the number
of trains per time period that are created, and which is the variable n; ; in our
model. Hence a more precise model would not take u; as a constant, but rather
u;,j(ni,;) as a variable (or a function) depending on the number of trains:

24

V(Z,j) cA: Ui j = (14)

ni,j

Due to these constraints our problem has turned into a nonlinear (nonconvex)
mixed-integer problem. Since it is a combinatorial problem with otherwise linear
structure we rather try to reformulate (14) as a linear constraint instead of using
nonlinear solution techniques that are faster on the nonlinear part but then
struggle with the integer decisions.

We made experiments with several linearization techniques [13]. Even in the
best formulation we found the solution times increase by a large factor (10-100
times slower).
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5 Conclusions and Future Work

We presented a linear mixed-integer model for a strategic freight car scheduling
problem that arises at Deutsche Bahn. We gave some ways to reformulate the
model in order to achieve better results faster when using a numerical solver for
the resulting MIPs. An outlook to further refinements of the model that lead
to nonlinear problems was given. Currently we test our implementations of the
models and variants presented in this extended abstract. Computational results
will thus be given in a forthcoming full article.

Our future work aims at an improvement of the lower bound, since we be-
lieve that the upper bound (feasible solution) is already quite satisfying. To this
end, we are going to use a path based approach in a branch-and-price (column
generation) way.
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