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Abstract. We consider the problem of approximating the branch and
size dependent demand of a fashion discounter with many branches by
a distributing process being based on the branch delivery restricted to
integral multiples of lots from a small set of available lot-types. We pro-
pose a formalized model which arises from a practical cooperation with
an industry partner. Besides an integer linear programming formulation
we provide an appropriate primal heuristic for this problem.
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1 Introduction

The problem studied in this note is motivated by a special feature of the ordering
process of a fashion discounter with many branches: For each product that hits
the shelves, the internal stock-turnover has to distribute around 10 000 pieces
among the around 1 000 branches, correctly assorted by size. This would mean
10 000 picks with high error probability in the central-warehouse (in our case in
the high-wage country Germany). In order to reduce the handling costs and the
error proneness in the central warehouse, all products are ordered in multiples
of so-called lot-types from the suppliers who in general are located in extremely
low-wage countries.

A lot-type specifies a number of pieces of a product for each available size,
e.g., (2,2,2,2,2) if the sizes are (S, M, L, XL, XXL) means two pieces of each size.
A lot of a certain lot-type is a foiled pre-pack that contains as many pieces of
each size as specified in its lot-type. The number of different lot-types is bounded
by the supplier.

So we face an approximation problem: which (integral) multiples of which
(integral) lot-types should be supplied to a branch in order to meet a (fractional)
mean demand as closely as possible? We call this specific demand approximation
problem the lot-type design problem (LDP). A detailed version of this work
appeared in [1], where also references to related work can be found.
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2 The lot-type design problem

Formally, the problem can be stated as follows: Consider a fashion discounter
with branches b ∈ B who wants to place an order for a certain product that can
be obtained in sizes s ∈ S and that can be pre-packed in lot-types l ∈ L. Each
lot-type is a vector (ls)s∈S specifying the number of pieces of each size contained
in the pre-pack. Only k different lot-types from L are allowed in this order, and
each branch receives only lots of a single lot-type. We are given lower and upper
bounds I, I for the total supply of this product. Moreover, we assume that a
the branch and size dependent mean demand db,s for the corresponding type of
product is known to us.

The original goal is to find a set of at most k lot-types, an order volume for
each of these chosen lot-types, and a distribution of lots to branches such that
the revenue is maximized. In order to separate the order process from the sales
process (which involves mark-downs, promotions, etc.), we restrict ourselves in
this paper to the minimization of the distance between supply and mean demand
defined by a vector norm.

The Lot-Type Design Problem (LDP) is the following optimization problem:

Instance: We are given

– a set of branches b ∈ B
– a set of sizes s ∈ S
– a mean demand table db,s, b ∈ B, s ∈ S
– a norm ‖·‖ on IRB×S

– a set L of feasible lot types (ls)s∈S ∈ INS0
– a maximal number M ∈ IN of possible multiplicities
– a maximal number k ∈ IN of lot types to use
– lower and upper bounds I, I for the total supply

Task: For each branch b ∈ B choose a lot type l(b) ∈ L and a number
m(b) ∈ IN , 1 ≤ m(b) ≤M of lots to order for b such that

– the total number of ordered lot types is at most k
– the total number of ordered pieces is in [I, I]

(the total capacity constraint)
– the distance of the order from the demand measured by ‖·‖

is minimal

The LDP can be formulated as an Integer Linear Program if we restrict
ourselves to the L1-norm for measuring the distance between supply and demand.
This norm is quite robust against outlies in the demand estimation.

We use binary variables xb,l,m, which are equal to 1 if and only if lot-type l is
delivered with multiplicity m to Branch b, and binary variables yl, which are 1
if and only if at least one branch in B is supplied with Lottype l. The deviation
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of the demand from the supply if Branch b is supplied by m lots of lot-type l is
given by cb,l,m :=

∑
s∈S |db,s −m · ls|.

The following integer linear program models the LDP with L1-norm.

min
∑
b∈B

∑
l∈L

M∑
m=1

cb,l,m · xb,l,m (1)

s.t.
∑
l∈L

M∑
m=1

xb,l,m = 1 ∀b ∈ B (2)∑
l∈L

yl ≤ k (3)

M∑
m=1

xb,l,m ≤ yl ∀b ∈ B,∀l ∈ L (4)

I ≤
∑
b∈B

∑
l∈L

M∑
m=1

∑
s∈S

m · ls · xb,l,m ≤ I (5)

xb,l,m ∈ {0, 1} ∀b ∈ B,∀l ∈ L,∀m = 1, . . . ,M
(6)

yl ∈ {0, 1} ∀l ∈ L (7)

The objective function (1) computes the L1-distance of the supply specified
by x from the demand. Condition (2) enforces that each branch is assigned a
unique lot-type and a unique multiplicity. Condition (3) models that at most k
different lot-types can be chosen. Condition (4) forces the selection of a lot-type
whenever it is assigned to some branch with some multiplicity. Finally, Condition
(5) ensures that the total number of pieces is in the desired interval – the total
capacity constraint.

Our ILP formulation can be used to solve all real world instances of our
business partner in at most 30 minutes by using a standard ILP solver like
CPLEX 11. Interestingly, the model seems quite tight – most of the time is spent
in solving the root LP.

Although 30 minutes may mean a feasible computation time for an offline-
optimization in many contexts, this is not fast enough for our real world appli-
cation. The buyers of our retailer need a software tool which can produce a near
optimal order recommendation in real time on a standard laptop. For this rea-
son, we present a fast anytime-heuristic, which has only a small gap compared
to the optimal solution on a test set of real world data of our business partner.

We briefly sketch the idea of the heuristic Score-Fix-Adjust (SFA): It

1. sorts all lot-types according to certain scores, coming from a count for how
many branches the lot-type fits best, second best, . . . (Score);

2. fixes k-subsets of lot-types in the order of decreasing score sums (Fix);
3. greedily adjusts the multiplicities so as to achieve feasibility w.r.t. the total

capacity constraint (Adjust).
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Details can be found in [1].
Since in the case k = 1 we can very often loop over all feasible lot-types, it

is interesting that in this case SFA always yields an optimal solution (for any
norm).

Lemma 1. For k = 1 and costs cb,l,m = ‖db,·−m · l‖ for an arbitrary norm ‖·‖,
our heuristic SFA produces an optimal solution whenever all lot-types l ∈ L are
checked.

In order to substantiate the usefullness of our heuristic, we have compared the
quality of the solutions, given by this heuristic after one second of computation
time (on a standard laptop: Intel R© CoreTM 2 CPU with 2 GHz and 1 GB RAM)
with respect to the solution given by CPLEX 11 (after solving to optimality).

Our business partner has provided us with historic sales information for nine
different commodity groups, each ranging over a sales period of at least one-
and-a-half years. From this we estimated mean demands via aggregating over
products in a commodity group. By normalizing the lengths of the products’
sales periods to the point in time when half of the product was sold out, we
were able to mod out the effects of any product’s individual success or failure.
Prior to each test calculation, the resulting demands were scaled so that the
total mean demand was in the center of the total capacity interval given by the
management for a new order of a product in that commodity group.

For each commodity group we have performed a test calculation for k ∈
{2, 3, 4, 5} distributing some amount of items to almost all branches. The crucial
parameters are given in Table 1, the results are presented in Table 2.

Commodity group |B| |S|
ˆ
I, I

˜
|L| M

1 1119 5 [10 630, 11 749] 243 10

2 1091 5 [10 000, 12 000] 243 10

3 1030 5 [9 785, 10 815] 243 10

4 1119 5 [10 573, 11 686] 243 9

5 1175 5 [16 744, 18 506] 243 15

6 1030 5 [11 000, 13 000] 243 9

7 1098 5 [15 646, 17 293] 243 9

8 989 5 [11 274, 12 461] 243 9

9 808 5 [9 211, 10 181] 243 10

Table 1. Parameters for the test calculations.

We can see that – given the uncertainty in the data – the performance of
SFA is more than satisfactory.
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Commodity group k = 2 k = 3 k = 4 k = 5

1 2.114 % 1.226% 2.028% 1.983 %

2 0.063 % 0.052% 0.006% 0.741 %

3 0.054 % 0.094% 0.160% 0.170 %

4 0.019 % 0.007% 0.024% 0.038 %

5 0.015 % 0.017% 0.018% 0.019 %

6 0.018 % 0.022% 0.024% 0.022 %

7 0.013 % 0.013% 0.014% 0.014 %

8 0.016 % 0.017% 0.018% 0.019 %

9 0.011 % 0.939% 0.817% 0.955 %

Table 2. Optimality gap in the ‖ · ‖1-norm for our heuristic on nine commodity
groups and different values for the maximum number k of used lot-types.

3 Conclusions

We identified the lot-type design problem in the supply chain management of a
fashion discounter. It can be modeled as an ILP, and real-world instances can be
solved by commercial-of-the-shelf software like CPLEX in half an hour whenever
the number of lot-types is not too large.

Our SFA-heuristics finds solutions with a gap of mostly under 1 % in a second,
also for instances with a large number of lot-types. Given the volatility of the
demand estimation, these gaps are certainly tolerable.

Meanwhile, the model and SFA have been put to operation by our business
partner with significant positive monetary impact.
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