
Design of Multistar Many-to-Many Distribution Networks

Anton J. Kleywegt, Jinpyo Lee, and Amy R. Ward
School of Industrial and Systems Engineering

Georgia Institute of Technology
December 31, 2006

Abstract

We consider the problem of designing a distribution network to facilitate the repeated movement of shipments
from many origins to many destinations. A sufficient number of the origin-destination shipments require less
than the capacity of a vehicle, so that consolidation of shipments is economical. We consider the case in which
consolidation takes place at terminals, and we assume each shipment moves through exactly one terminal on
its way from its origin to its destination. Then, a major design decision is to determine the best number of
terminals. We develop a continuous approximation method to estimate transportation costs as a function of
the number of terminals. We use the continuous approximation method to choose the number of terminals that
minimizes the sum of terminal cost and transportation cost. Numerical results indicate that the design resulting
from the continuous approximation method facilitates operations with lower cost than those resulting from a
widely used integer programming based design.

1 Introduction

In most distribution systems goods are transported from various origins to various destinations. For example,
many retail chains manage distribution systems in which goods are transported from a number of suppliers to
a number of retail stores. Much of this transportation takes place by truck, and it often happens that the flow
rates for a substantial fraction of the origin-destination pairs are so small that it is not economical to send
goods directly from each origin to each destination in a dedicated truck. That is, it is often more economical to
consolidate the shipments of various origin-destination pairs, and transport such consolidated shipments in the
same truck at the same time. There are many ways in which such consolidation can be accomplished. Next we
give a number of examples.

Figure 1 shows the locations of origins (circles) and destinations (squares) for a small example. Suppose that
freight has to be moved from each origin to each destination in the example every week. To keep the example
simple, we do not specify the volume of freight that has to be moved from each origin to each destination every
week, but rather suppose that each week a truck can accommodate the total freight flowing from up to four
origins to all destinations, and the total freight flowing from all origins to up to three destinations. The question
at hand is how to design the transportation operations to move all freight each week at minimum cost.

There are many alternative designs, and we give only a few examples that are qualitatively different from
each other. One alternative is to use out-of-vehicle consolidation, that is, to consolidate freight at terminal
facilities, also called consolidation terminals, transshipment terminals, crossdocks, or transfer facilities. There
are many alternative ways to design transportation operations involving terminal facilities. Here we present two
simple, but important, ways, distinguished based on the number of terminals that each shipment passes through
on its way from its origin to its destination. First, even if there are more than one terminal in the system,
each shipment may move through only one terminal on its way from its origin to its destination. This type
of system is quite widely used in the USA to distribute goods from multiple suppliers to multiple distribution
centers or retail stores. In such a system it is typical for each vehicle to be based at a terminal, and to execute
routes that take freight from the terminal to particular destinations, and after the freight has been delivered,
to visit particular origins and collect freight at these origins and take it back to the terminal, for organization
according to delivery routes and later delivery. This type of distribution network is called a multistar many-to-
many distribution network, and is the type of system for which we propose a design approach in this paper. We
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Figure 1: Origins (circles) and destinations (squares) for freight flows.

will point out some of the advantages and disadvantages of such a system soon, but first we give an example.
Figure 2 shows a solution using out-of-vehicle consolidation with two terminals denoted by X and Y , in which
each shipment moves through only one terminal on its way from its origin to its destination. The solution in
Figure 2 consists of the following routes: X,D,B,A, 1, 2, 3,X; X,C,E, F, 6, 5, 4,X; Y, C, B, A, 13, 12, 11, 10, Y ;
and Y,D,E, F, 9, 8, 7, Y . For example, consider a shipment that has to go from origin 1 to destination F . One
week the shipment is picked up at origin 1 by the vehicle that executes route X,C,B,A, 1, 2, 3,X, then at
terminal X the shipment is offloaded from the vehicle and loaded onto the vehicle that will execute the route
X,D,F,E, 6, 5, 4,X next, and later the shipment is delivered at destination F while the vehicle executes this
route.
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Figure 2: Solution in which each shipment moves through only one terminal on its way from its origin to its
destination.

Note that with such a system sufficient routes have to be chosen to ensure that all freight move from its origins
to its destinations, without exceeding constraints such as vehicle capacity constraints. In Figure 2, freight can
move from every origin to every destination, because each destination receives truck visits from both terminals
(but each origin receives truck visits from only one terminal). In practice, it seems quite common to ensure that
freight can move from every origin to every destination either by serving each origin from each terminal, or by
serving each destination from each terminal. However, such a solution may lead to unnecessarily many visits
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during which very little freight is picked up or delivered, and unnecessarily long distances traveled by vehicles.
In this paper we search for more economical ways to facilitate all freight flows.

An alternative system that uses out-of-vehicle consolidation is the following. Each origin and each destination
is served from one terminal only, typically the terminal closest to the point (origin or destination). To enable
freight to move from every origin to every destination, vehicles also move freight between each pair of terminals.
The vehicles that move freight between the terminals are often of a different type (usually larger) than the
vehicles that pick up and deliver freight at origins and destinations. Such a distribution network is called a
complete topology many-to-many distribution network. In such a system, each shipment moves through either
one or two terminals on its way from its origin to its destination. Figure 3 shows a solution using out-of-vehicle
consolidation with two terminals denoted by X and Y , in which each origin and each destination is served from
one terminal only. For example, consider a shipment that has to go from origin 1 to destination F . One week
the shipment is picked up at origin 1 by the vehicle that executes route X,D,B,A, 1, 2, 3,X, then at terminal X

the shipment is offloaded from the vehicle and loaded onto the vehicle that goes from terminal X to terminal Y ,
then at terminal Y the shipment is offloaded from the vehicle and loaded onto the vehicle that will execute the
route Y, F, 9, 8, 7, Y next, and later the shipment is delivered at destination F while the vehicle executes this
route.
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Figure 3: Solution in which each shipment moves through only one or two terminals on its way from its origin to
its destination.

There are various other systems in which each shipment moves through one or more terminals on its way
from its origin to its destination. Some such systems, such as complete topology systems in which an origin or a
destination may be served by more than one nearby terminals, are reviewed in Section 2. Another related design
is a star topology many-to-many distribution network with a central terminal through which all freight flows.
Specifically, with a star topology, each shipment travels from its origin through the pickup and delivery terminal
serving the origin to the central terminal, from there to the pickup and delivery terminal serving the destination,
and from there to the destination. Thus, in such a system, each shipment travels through three terminals on its
way from its origin to its destination. Some practical systems, such as distribution systems for small packages,
can be much more complicated than the basic system types described above, involving a hierarchy of terminals
and many vehicle types traveling between terminals, with different shipments moving through different numbers
of terminals on their way from their origins to their destinations.

Complete topology, star topology, and hierarchical systems may facilitate solutions with less total travel
distance than a multistar system. The transportation cost with such systems may also be less if the cost per unit
freight and distance is less for the vehicles that travel between the terminals than for the pickup and delivery
vehicles. However, when a shipment moves through more than one terminal on its way from its origin to its
destination it requires more loading, offloading, and additional load sorting operations, and such additional
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handling incurs not only more cost, but also increases the risk that shipments are lost or damaged. Which of the
types of systems is best depends on the importance of handling related costs relative to transportation costs.

Finally, an alternative that does not require any terminals is to use in-vehicle consolidation. For example,
one vehicle may pick up the loads at origins 1, 2, and 3, in that order, that have to go to destinations A, B,
and D, and then drive to destinations D, B, and A, in that order, and deliver these loads. From destination A,
the vehicle would next return to origin 1, ready to repeat the cycle 1, 2, 3,D,B,A, 1. Other vehicles would
perform similar cycles. Sufficient cycles have to be chosen to ensure that all freight move from its origins to its
destinations, without exceeding constraints such as vehicle capacity constraints. For example, if in addition to
cycle 1, 2, 3,D,B,A, 1, cycle 1, 2, 3, E, F,C, 1 is performed, then all the freight originating from origins 1, 2, and 3
could be moved to its various destinations. In-vehicle consolidation is a reasonable alternative if for many of the
origin-destination pairs, the amount of freight is not much less than the vehicle capacity. Figure 4 shows a solution
using in-vehicle consolidation with the following cycles: 1, 2, 3,D,B,A, 1; 1, 2, 3, E, F,C, 1; 4, 5, 6,D,B,A, 4;
4, 5, 6, E, F,C, 4; 7, 8, 9, 10, A,B,D, 7; 7, 8, 9, 10, F, C,E, 7; 13, 11, 12, A,B,D, 13; and 11, 12, 13, C,E, F, 11.
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Figure 4: Solution using in-vehicle consolidation.

In this paper we focus on multistar many-to-many distribution systems in which each shipment moves through
one terminal on its way from its origin to its destination. These systems are sufficiently widely used to justify an
in-depth study focused on such systems. In addition, sometimes there is interest in determining which basic type
of system is the best for a particular case, and clearly it is desirable to be able to estimate the cost of the optimal
design for each type of system in order to find the best overall system. Our major motivation is to develop a
method to design such distribution systems. To facilitate such design, we develop a continuous approximation
(CA) method to estimate the cost of the operations that will be conducted with a given design, and then we use
these estimates to search for a good design. Chosen designs are then evaluated with more detailed calculations
of the resulting operations.

As mentioned, often a vehicle makes all the deliveries at the destinations on its route before it picks up any
new loads at the origins on its route. Such a practice may increase the travel distance over what would have
been possible if pickups and deliveries could have been done in any sequence. However, often this is infeasible or
undesirable, sometimes because of scheduling constraints (for example, loads are delivered at the destinations in
the morning and picked up from origins in the afternoon), or because loads that are picked up before all deliveries
have been done would obstruct access to the loads in the back of the truck that still have to be delivered. We
focus on the case in which all deliveries on a route take place before any pickups take place. Some aspects of
our approach can also be used if pickups and deliveries can be done in any sequence on a route.

This work was motivated by our collaboration with two companies that manage their own inbound distribution
systems. One is a large retailer that obtains merchandize from many suppliers in the USA as well as overseas. For
the purpose of the distribution system in the USA, the ports of import (more precisely, warehouses close to the
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ports) are regarded as the origins of the imported freight. Thus the origins are suppliers and import warehouses
in the USA. The destinations are individual retail stores. The retailer owns and operates a number of terminals.
Each shipment moves through one terminal on its way from its origin to its destination with transportation
provided by independent contract carriers. In the current system, each origin is served by all the terminals, and
each destination is served by the terminal closest to the destination. The greater the travel distances of the
carriers’ vehicles, the more the retailer has to pay the carriers, and thus the retailer has an incentive to design
a distribution system that minimizes the total distance traveled, also taking into account the cost of owning
and operating a terminal, and handling related costs. The retailer was considering increasing the number of
terminals, and asked for design guidelines. The other company is a distributor of a large variety of products,
most of which are sold to retailers, and some to industrial consumers. The origins are the distributor’s suppliers,
most of whom are located in the USA and Canada, and the destinations are the distributor’s distribution centers
located close to various cities in the USA. The distributor owns and operates a number of terminals, as well as
a fleet of trucks. As for the retailer, each shipment moves through one terminal on its way from its origin to
its destination. Unlike the retailer, in the current system, most origins are served by one terminal, and each
destination is served by all the terminals. Products are further distributed from the distributor’s distribution
centers to the distributor’s customers with a separate fleet of smaller vehicles.

The first challenge in designing such a system is to determine how many terminals there should be. Trans-
portation cost is decreasing in the number of terminals, but the cost of owning and operating terminals is
increasing in the number of terminals. Since we focus on systems in which each shipment moves through one
terminal on its way from its origin to its destination, handling costs do not vary with the number of terminals.
The second challenge in designing such a system is to determine the best locations for the chosen number of
terminals. We argue that one can accurately determine the best number of terminals without exactly deter-
mining the best locations of the terminals. We also argue that to determine the best number of terminals it
is important to accurately estimate how operational costs, in this case transportation costs, vary as a function
of the number of terminals. As the examples above already indicate, important operational variables are the
numbers of terminals that serve each origin and each destination. It will be shown that these variables have
an important impact on the transportation costs, and thus should be taken into account when choosing the
number of terminals. The major part of the work is the development of a new CA approach for the estimation
of transportation cost, and especially linehaul cost (the average distance from a terminal to the center of the
points on a route), as a function of the number of terminals as well as the numbers of terminals that serve each
origin and each destination, before knowing the exact terminal locations. Then we use these estimates to search
for the best number of terminals as well as the numbers of terminals that serve each origin and each destination.
Thereafter the terminals are located, and the resulting design is evaluated through detailed calculations of the
vehicle routes to move all the freight from its origins to its destinations.

The remainder of this paper is organized as follows. We review related literature in Section 2, and we
formulate the problem in Section 3. Section 4 provides a qualitative discussion of the factors influencing total
cost, and identifies the factors that do and do not seem important in the selection of the best number of terminals.
Section 5 describes our CA method for the design of multistar many-to-many distribution networks. We also
provide a procedure for making operational decisions (which terminals to use for each origin-destination flow
and how to route the vehicles from each terminal) in Section 6 that we use in Section 7 to evaluate our solutions
compared with those produced by a widely used approach.

2 Related Literature

Optimization problems that incorporate both facility location and vehicle routing decisions, such as the problem
in this paper, are called location-routing problems. Laporte (1988) proposed a classification of location-routing
problems, and gave an overview of both exact branch-and-bound algorithms and heuristics for a number of
specific location-routing problems. However, the paper considered only the case of a single commodity — all
shipments were considered as the same product, and thus a shipment picked up from an origin did not have a
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specified destination. In the problem we consider, each shipment has a specified origin-destination pair. Also,
the paper did not consider the possibility of deliveries and pickups on the same route. The method that we
propose is applicable both for the case with deliveries and pickups on separate routes, as well as for the case with
deliveries and pickups on the same routes. The type of approach that we consider, namely a two-phase approach
in which location decisions are made in the first phase and routing decisions are made repeatedly, possibly with
varying data, in the second phase, and future routing costs are approximated when location decisions are made,
was mentioned on p. 192 as a promising research area. Laporte et al. (1989) formulated and solved integer
programming models of stochastic location-routing problems. The problems involve decisions regarding the
location of a single depot among a set of candidate sites, the vehicle fleet size, and the pickup routes. All these
decisions are made before the pickup quantities become known. The models constrain either the probability of
a route failure or the expected penalty of a route failure due to insufficient capacity to handle the pickups on a
route. Vidal and Goetschalckx (1997) surveyed strategic production-distribution problems, with special emphasis
on features that are important for international supply chains. Some of the problems in the survey involve facility
location and distribution, and an overview is given of some mixed integer programming formulations and tools
for solving these problems.

The approach that we consider can be regarded as a continuous approximation (CA) approach. In the trans-
portation literature, the term “continuous approximation” refers to an approach in which some problem data,
typically discrete data such as the locations of origins, destinations, or facilities, are approximated with distri-
butions, typically continuous distributions such as the uniform distribution. Kantorovitch (1942), Beckmann
(1952), and Beardwood et al. (1959) did some path-breaking work on CA in transportation. Newell (1973)
described the use of CA methods to provide insight into the qualitative behavior of various discrete optimization
problems and sometimes to find good solutions for such problems. Various researchers developed these ideas
further. Here we only give a brief overview of this line of research, and we compare our work with some of the
more closely related work. Langevin et al. (1996) surveyed and classified the literature on CA methods in freight
distribution.

Daganzo (1984b) proposed a method to construct good tours in rectangles and presented formulas, similar to
that of Beardwood et al. (1959), to approximate the lengths of the tours. Daganzo (1984a) proposed a cluster-
first route-second method to construct vehicle routes and presented formulas to approximate the lengths of the
routes. The effect of the proportions of a rectangular district for each cluster on the sum of the linehaul and
detour travel distances for the cluster was studied. The results in Daganzo (1984b) were used to approximate
the detour travel distances. We also follow the approach of separately approximating the linehaul and detour
travel distances.

The approximations in Daganzo (1984a) were used to study various one-to-many distribution problems, that
is, problems with one origin and many destinations. (Note that a result for a one-to-many problem gives a result
for a many-to-one problem that is symmetric to it and vice versa). For example, Burns et al. (1985) developed
formulas to approximate the transportation and inventory costs for one-to-many direct shipping and peddling
(routes with multiple stops) distribution strategies. Daganzo (1985) derived expressions for transportation and
inventory costs, argued that vehicles should be fully loaded (assuming that inventory costs are not very high),
and then derived an expression for the optimal frequency with which to pick up loads for different classes of
items. Daganzo (1988a) showed that if products going to the different destinations are homogeneous, the same
vehicles operate everywhere, and there are no route length restrictions, then in-vehicle consolidation is cheaper
than out-of-vehicle consolidation, that is, transshipments are not economical. Daganzo (1988b) considered a
setting with more general vehicle capacity constraints than Daganzo (1988a). Also, different items have different
characteristics, so that optimal vehicle utilization (minimizing total vehicle miles traveled) may require careful
selection of the mix of items to place on different vehicles. In such a setting, in contrast with Daganzo (1988a), it
may be optimal to consolidate some items at a terminal into more efficient load combinations. Campbell (1990a)
considered a similar setting as Daganzo (1988a), except that Campbell (1990a) considered the case in which
there are two vehicle sizes, and the larger vehicles cannot be used for delivering at the destinations. Distribution
networks with transshipment terminals, in which larger vehicles transport freight from the origin directly to
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terminals, and smaller vehicles transport freight from terminals on routes to destinations, were compared with
distribution networks without transshipment terminals, in which smaller vehicles transport freight from the
origin on routes to destinations. Campbell (1993b) considered the same setting as Campbell (1990a), except
that in Campbell (1990a), each larger vehicle can visit only one terminal on a trip (that is, larger vehicles do not
make multiple stop routes), whereas in Campbell (1993b) larger vehicles may visit multiple terminals on a route.
Unlike many of the other papers, and similar to ours, Daganzo and Newell (1986) considered a problem that
involves both design and operational decisions. Specifically, the design of a hierarchical distribution network with
one origin and many destinations was studied. Also unlike many of the other papers, the case in which vehicles
with different transportation costs per distance operate at different levels in the hierarchy was considered. As a
result, it may be optimal for a shipment to undergo multiple transshipments from the origin to its destination.

Continuous approximations have also been used to study many-to-many distribution problems, that is, prob-
lems with many origins and many destinations such as the problem that we consider. Daganzo (1978) considered
many-to-many demand responsive transportation systems, such as taxicab systems with at most one request
being transported at a time and dial-a-bus systems that allow multiple requests to be transported at a time.
Three routing algorithms were modeled, and approximate expressions were derived for the average waiting times
and average riding times of customers. Blumenfeld et al. (1985) derived cost expressions for the following cases:
(1) Direct shipping from one origin to one destination. (2) Direct shipping from many origins to one destination.
(3) Direct shipping from one origin to many destinations. (4) Direct shipping from many origins to many destina-
tions. (5) Shipping from many origins to many destinations with all loads moving through a single consolidation
terminal. Vehicle routing is not considered — shipments move directly from each origin to the terminal, and
directly from the terminal to each destination. (6) Shipping from many origins to many destinations with some
loads moving directly from origin to destination and other loads moving through a single consolidation terminal.
Vehicle routing is not considered. Our work differs from Blumenfeld et al. (1985) as follows:

1. We consider the problem of shipping from many origins to many destinations only, and not the other
(easier) cases.

2. In our problem, the number and locations of terminals are to be determined, but in cases (5) and (6) above,
it is given that there is a single terminal with a given location.

3. We consider transportation costs and terminal costs, but not production setup costs and inventory costs.
Instead, as is the case with all the applications that we have worked on, it is given that the transporta-
tion schedule repeats periodically (daily or weekly), and thus the inventory costs are not affected by the
distribution decisions.

4. We take vehicle capacity constraints into account.

5. We consider vehicle routing — we allow a vehicle to visit multiple origins and/or multiple destinations on
a route.

Blumenfeld et al. (1987) described a number of simple models that were used to evaluate strategies for the
distribution of parts from suppliers to General Motors assembly plants. A variety of strategies involving direct
shipping, shipping through a single terminal, as well as peddling, were evaluated for the shipments from a
single supplier (Delco) with 3 plants to 30 GM assembly plants. The models considered the trade-off between
transportation costs that favor fewer larger shipments and inventory costs that favor more frequent smaller
shipments. A decomposition approach that exploited the small number of origins was proposed to find the best
combination of direct shipping and shipping through the terminal.

Hall (1984), Daganzo (1987), Hall (1987), Campbell (1990b), and Campbell (1993a) are closely related to
each other. These papers all considered a setting with an equal number of origins and destinations indepen-
dently and uniformly distributed in a square (sometimes rectangular) region. The flow rate is the same for all
origin-destination pairs. Terminals are arranged in a square (sometimes rectangular) grid. The following four
distribution strategies were considered by several of these papers (as described in more detail below, some papers
considered only some of these strategies, and some also considered other strategies):
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1. One-terminal-nearest-terminal: Each shipment moves through exactly one terminal. All shipments from
an origin move through the terminal closest to the origin irrespective of the location of the destination of
the shipment.

2. One-terminal-minimum-distance: Each shipment moves through exactly one terminal. A shipment from
an origin moves through one of the (typically four) terminals that surround the origin in the grid, that
minimizes the travel distance from the origin through the terminal to the destination.

3. Two-terminal-nearest-terminal: Each shipment moves through one or two terminals. All shipments from
an origin move through the terminal closest to the origin irrespective of the location of the destination
of the shipment, and all shipments to a destination move through the terminal closest to the destination
irrespective of the location of the origin of the shipment.

4. Two-terminal-minimum-distance: Each shipment moves through one or two terminals. A shipment from
an origin moves through one of the (typically four) terminals that surround the origin in the grid, and a
shipment to a destination moves through one of the (typically four) terminals that surround the destination
in the grid, to minimize the travel distance from the origin through the terminals to the destination.

Hall (1984) derived expressions for the average distance from origin to destination for the one-terminal-nearest-
terminal and the two-terminal-nearest-terminal strategies. The expressions were compared with average travel
distances computed between the 37 largest standard metropolitan statistical areas in the United States. Daganzo
(1987) considered the case of one-to-many distribution routes, without transhipment terminals, and the case of
many-to-many distribution routes, without transhipment terminals, in addition to the four strategies mentioned
above. Hall (1987) compared the four strategies in terms of (a) average travel distance, (b) number of terminals,
and (c) number of links. For a given average travel distance, the number of terminals and number of links were
regarded as measures of consolidation. Campbell (1990b) considered the case in which the transportation cost
per unit distance between terminals may be less than the transportation cost per unit distance between origins
and terminals and between terminals and destinations. The paper compared the two-terminal-nearest-terminal
strategy, the two-terminal-minimum-distance strategy, and the two-terminal-minimum-cost strategy, that takes
into account the difference between the local transportation cost and the transportation cost between terminals.
The expressions for the minimum cost were used to derive the optimal spacing between the terminals in the
grid for a given number of terminals. Unlike the other papers, the resulting service areas of the terminals
were not equal. Campbell (1993a) evaluated the accuracy of the approximation formula for minimum average
transportation cost derived in Campbell (1990b). The approximation formula was quite accurate, taking into
account the extent with which the idealized assumptions of the approximation were violated. With two terminals,
the errors were around 5%. However, as the number of terminals increased, the errors tended to increase as well.
Our paper differs from these papers as follows:

1. These papers assume that origins and destinations are independently and uniformly distributed in a square
or rectangular region, whereas we allow arbitrary distributions of origins and destinations in a rectangle.

2. These papers assumed that the number of origins equals the number of destinations, or equivalently that
the density of origins equals the density of destinations, whereas we allow the numbers of origins and
destinations to be different.

3. These papers assumed that the flow rate from origins to destinations is a deterministic constant for all
origin-destination pairs, whereas we allow flow rates that are random with different marginal distributions
for different origin-destination pairs.

4. These papers required terminals to be located on a square or rectangular grid in the region (and thus that
the number of terminals be a square number or the product of the numbers of rows and columns in the
grid), whereas we allow any number of terminals, but we assume that, except for a single centrally located
terminal, the terminals are independently and uniformly distributed in the rectangular region.

5. We focus on the case in which each shipment moves through exactly one terminal on its way from its origin
to its destination, whereas these papers consider various strategies in which each shipment moves through
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two terminals on its way from its origin to its destination.

6. For the case in which each shipment moves through exactly one terminal, the papers that considered this
case required that each shipment moves through the terminal closest to the origin (one-terminal-nearest-
terminal routing), or each shipment moves through one of the (typically four) terminals closest to the
origin (one-terminal-minimum-distance routing). That is, for one-terminal-nearest-terminal routing, each
origin is served by vehicles from the closest terminal and each destination is served by vehicles from all
terminals, and for one-terminal-minimum-distance routing, each origin is served by vehicles from the closest
four terminals, and each destination is served by vehicles from all terminals. It is easily seen that it can
be very inefficient to serve each destination by vehicles from all terminals. We allow each origin and each
destination to be served by vehicles from a chosen subset of terminals in addition to the central terminal,
where the number of terminals that serves an origin/destination depends on the total flow rate from/to
the origin/destination.

As mentioned before, our approach allows pickups on the same routes as deliveries. Some CA work has
addressed similar ideas. Hall (1991) considered a distribution problem with two terminals that serve as origins,
and multiple destinations. The items originating at the two terminals are different, so that items may be sent
from a terminal to destinations close to the other terminal. As a result, after delivering the items originating
at a terminal to some destinations, it may be better for a vehicle to next proceed to the other terminal to pick
up loads there. The paper develops approximate expressions for the linehaul and detour distances if a vehicle
travels from one terminal to a delivery district, and thereafter travels to the other terminal. Daganzo and Hall
(1993) derived expressions to approximate the cost of vehicle routes to do both pickups and deliveries, where the
deliveries on a route are completed before any pickups are done. It is assumed that the pickup and delivery points
are independent and uniformly distributed in a region that can be partitioned into approximate rectangles, that
each route can make at most C delivery stops, and that there is no bound on the number of pickups that a route
can make.

As mentioned above, very few papers address CA methods for network design, that is, to determine the
number and locations of terminals. It was mentioned that Daganzo and Newell (1986) considered hierarchical
network design for one-to-many distribution. In addition, Hall (1993) considered the design of a many-to-many
freight distribution network in a local area, such as a metropolitan area. The area has one gateway terminal
located in the center through which all shipments to and from locations outside the area pass. Unlike our problem,
origins and destinations in the area are independently and uniformly distributed. Similar to our problem, pickup
and delivery terminals are uniformly distributed, and the number of pickup and delivery terminals is a design
variable. Each origin and each destination is served on vehicle routes from the pickup and delivery terminal in
which service district it is located. Pickup and delivery routes are separate, and the vehicles used for pickup
and delivery routes are different from the vehicles used to transport freight between terminals. As is the case
in our problem, transportation and terminal costs were considered, and the headway between successive routes
was given. The optimal number of pickup and delivery terminals and the optimal number of stops on a vehicle
route were determined for two distribution systems, namely a star topology and a complete topology. The costs
for the two systems were compared, and a number of conclusions were made, such as that the star topology
is better if the interterminal vehicles are large relative to the pickup and delivery vehicles, and if handling
cost is small. Both Dasci and Verter (2001) and Ouyang and Daganzo (2006) considered problems in which a
number of facilities and their locations are to be selected, and the region is to be partitioned into service areas
such that each facility supplies the destinations in one of the service areas. Dasci and Verter (2001) considered
only outbound transportation costs from the facilities to the destinations, in addition to fixed facility costs
and facility capacity costs. Ouyang and Daganzo (2006) considered both inbound transportation costs from
a single origin to the facilities as well as outbound transportation costs from the facilities to the destinations;
thus the problem considered by Ouyang and Daganzo (2006) corresponded to a special case of the one-to-many
distribution network design problem considered by Daganzo and Newell (1986) in which each shipment moves
through one terminal from the origin to its destination. Dasci and Verter (2001) developed a CA that required
a service area size, or equivalently a terminal density, to be selected at each point in the region. Ouyang and
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Daganzo (2006) proposed an algorithm to convert the service area size as a function of the point in the region
to a solution with discrete terminal locations, and they also evaluated the differences between the CA costs and
the costs resulting from their algorithm. In all the design problems described above, the input data include
the spatial density of destination demand, and not many-to-many origin-destination flows as in our problem.
Recently, Dasci and Laporte (2005) studied a Stackelberg game in which location decisions are made by two
competitors. Each competitor can decide to locate many facilities, and the location decisions are represented
with location density functions, instead of with discrete variables that specify the exact location of each facility.

3 Model Formulation

In this section we give a formulation of the problem we want to solve. The purpose is threefold. First, we want
to give a precise statement of one version of the problem that we want to solve. Second, we want to determine
what size instances can be solved with available software. Third, we want to introduce a common approximation
to our problem that we will later compare with our CA method.

Distribution operations take place repeatedly over multiple time periods. We consider distribution systems
in which (1) each shipment moves through one terminal on its way from its origin to its destination, and (2) in
each time period, the vehicles based at each open terminal transport goods to be delivered from the terminal to
the destinations of the shipments, and thereafter pick up goods at their origins and return again to the terminals
where the vehicles are based. Specifically, in each time period, goods have to be moved from origins in a set O
to destinations in a set D. There is a finite set Ω of flow scenarios. Each scenario ω ∈ Ω has a probability or
weight p(ω). The set Ω may represent the support of an input probability distribution, or may be obtained from
an input probability distribution by sampling, or may represent predictable differences in flow rates in different
time periods such as seasonal differences, or a combination of the above. For each scenario ω ∈ Ω, let flow rate
qij(ω) ≥ 0 denote the quantity of goods per time period that must be moved from origin i ∈ O to destination
j ∈ D in scenario ω. Each vehicle has the same capacity Qv. There is a set XE of existing terminals, and a set
XP of potential terminals. For each terminal m ∈ X := XE ∪ XP , let cm denote the difference in cost per time
period between having terminal m open and operating, and not having terminal m open and operating. For each
i, j ∈ O ∪ D ∪ X , let dij denote the cost to move a vehicle from point i to point j. We assume that the vehicle
movement cost does not depend on the load carried by the vehicle. In addition to vehicle movement costs, there
is a cost of Cv per time period for each vehicle based at each terminal, whether the vehicle is used or not, and a
cost of cv for each vehicle that is used during a time period, independent of the distance traveled by the vehicle.

We have to decide which of the existing and potential terminals should be open for all scenarios. Let binary
decision variable um denote whether terminal m is open, that is,

um :=
{

1 if terminal m ∈ X is open
0 otherwise.

(1)

Let integer decision variable nm
v denote the number of vehicles assigned to terminal m.

For each scenario ω ∈ Ω, we have to decide how to move each shipment from its origin to its destination
through the open terminals. That is, for each origin-destination pair (i, j) ∈ O ×D with qij(ω) > 0, we have to
determine through which open terminal the shipment will move, and we have to decide how all the movements
will be handled with vehicle routes. Let the binary decision variable zm

ij (ω) denote whether the shipment from i

to j moves through terminal m, that is,

zm
ij (ω) :=

⎧⎨
⎩

1 if terminal m ∈ X is used in moving the shipment in scenario ω ∈ Ω
from origin i ∈ O to destination j ∈ D

0 otherwise.
(2)

The definition of zm
ij (ω) implies that the assignment of an origin-destination flow to a terminal may vary according

to the scenario. If the assignment of origin-destination flows to terminals must be the same for all scenarios,
then one only needs zm

ij variables that do not depend on ω.
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Vehicle routing decisions are formulated in more detail later in the section. At this stage, it is sufficient
to specify that τ (O′,D′, Q′, d′, nv) denotes the optimum cost of the vehicle routing problem with a particular
terminal, set O′ ⊂ O of origins, set D′ ⊂ D of destinations, quantities to be picked up and delivered given
by Q′ ∈ R

|O′|+|D′|
+ (where for each origin i ∈ O′, Q′

i denotes the quantity to be picked up at i and brought
to the terminal, and for each destination j ∈ D′, Q′

j denotes the quantity to be taken from the terminal and
delivered at j), vehicle movement costs between the terminal and the considered origins and destinations given
by d′ ∈ R

(1+|O′|+|D′|)2 , and nv vehicles with capacity Qv each. The arguments of interest of the function τ

depend on the decision variables in (2), as follows: For each m ∈ X and zm(ω) ∈ {0, 1}|O|×|D|, let

Om(zm(ω)) :=

⎧⎨
⎩i ∈ O :

∑
j∈D

zm
ij (ω) > 0

⎫⎬
⎭

Dm(zm(ω)) :=

{
j ∈ D :

∑
i∈O

zm
ij (ω) > 0

}

Qm
i (zm(ω), ω) :=

∑
j∈Dm(zm(ω))

qij(ω)zm
ij (ω) for i ∈ Om(zm(ω))

Qm
j (zm(ω), ω) :=

∑
i∈Om(zm(ω))

qij(ω)zm
ij (ω) for j ∈ Dm(zm(ω))

Qm(zm(ω), ω) := [Qm
l (zm(ω), ω) : l ∈ Om(zm(ω)) ∪ Dm(zm(ω))]

dm(zm(ω)) := [dij : i, j ∈ Om(zm(ω)) ∪ Dm(zm(ω)) ∪ {m}] .

Then the optimization problem of interest is

min
u∈{0,1}|X|,nv∈N|X|

{∑
m∈X

(cmum + Cvnm
v ) +

∑
ω∈Ω

p(ω)V (u, nv, ω)

}
(3)

where

V (u, nv, ω) := minz(ω)

∑
m∈X

τ (Om(zm(ω)),Dm(zm(ω)), Qm(zm(ω), ω), dm(zm(ω)), nm
v ) (4)

subject to
∑

m∈X
zm
ij (ω) = I{qij(ω)>0} for all i ∈ O, j ∈ D (5)

zm
ij (ω) ≤ um for all i ∈ O, j ∈ D, m ∈ X (6)

zm
ij (ω) ∈ {0, 1} for all i ∈ O, j ∈ D, m ∈ X (7)

gives the minimum cost distribution plan for scenario ω given the open terminals specified by u, vehicle fleet
sizes specified by nv, and the origin-destination flows specified by q(ω).

Note that in the definition of Qm(zm(ω), ω) above, the quantities that have to be picked up and delivered in
a time period in scenario ω are specified by the origin-destination flows qij(ω). In practice, in a time period it is
typical to deliver goods that were picked up in the previous time period and then to pick up goods and bring them
to a terminal to be delivered in the next time period. If the origin-destination flows vary from week-to-week,
then the total amount picked up in a particular week may not equal the total amount delivered in the same
week. For example, if q is positive every second time period and zero every other period, then in alternating
time periods goods will be picked up (but not delivered), and delivered (but not picked up). To capture such
behavior accurately, a multistage formulation is needed instead of the two-stage formulation (3)–(7).

The formulation above can accommodate various definitions of the function τ , and thus various types of
vehicle routing constraints. Below we give a definition of τ that allows multiple vehicles to visit an origin or a
destination during a time period, and that requires deliveries to be completed before any pickups are done on a
route. This definition was motivated by the applications described in the introduction. Such a vehicle routing
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problem is a combination of two problems that have been studied in the literature. The one problem is called the
vehicle routing problem with backhauls; see, for example, Goetschalckx and Jacobs-Blecha (1989), Anily (1996),
Potvin et al. (1996), Thangiah et al. (1996), Toth and Vigo (1997, 1999), Mingozzi et al. (1999), and Osman and
Wassan (2002). The other problem is called the vehicle routing problem with split deliveries (sometimes split
pickups); see, for example, Dror and Trudeau (1989), Dror et al. (1994), Mullaseril et al. (1997), Archetti et al.
(2006), and Lee et al. (2006). As far as we know, the vehicle routing problem with backhauls and split pickups
and deliveries has not been studied in the literature.

Consider a set O′ of origins, set D′ of destinations, quantities to be picked up and delivered given by Q′,
vehicle movement costs between the considered origins, destinations, and a particular terminal given by d′, and
n′

v vehicles with capacity Qv each. Let 0 denote the terminal. Let V ′ := {0} ∪ O′ ∪ D′ denote the set of nodes.
Because deliveries must be completed before any pickups are done on a route, the feasible arc set on a route is

A′ :=
{
(i, j) ∈ (V ′)2 \ O′ ×D′ : i �= j

}
.

The decision variables are as follows:

vk :=
{

1 if vehicle k is in use
0 otherwise

xijk :=
{

1 if vehicle k travels on arc (i, j)
0 otherwise

aik ≥ 0, the amount of goods picked up at i if i ∈ O′ or

the amount of goods delivered to i if i ∈ D′, by vehicle k.

Then

τ (O′,D′, Q′, d′, n′
v) := minx,v,a

∑
(i,j)∈A′

n′
v∑

k=1

d′ijxijk + cv

n′
v∑

k=1

vk (8)

subject to
∑

{j : (j,i)∈A}
xjik =

∑
{j : (i,j)∈A}

xijk for all i ∈ O′ ∪ D′, k ∈ {1, . . . , n′
v} (9)

aik ≤
⎛
⎝ ∑

{j : (i,j)∈A}
xijk

⎞
⎠Qv for all i ∈ O′ ∪ D′, k ∈ {1, . . . , n′

v} (10)

∑
i∈D′

aik ≤ Qvvk for all k ∈ {1, . . . , n′
v} (11)

∑
i∈O′

aik ≤ Qvvk for all k ∈ {1, . . . , n′
v} (12)

n′
v∑

k=1

aik = Q′
i for all i ∈ O′ (13)

n′
v∑

k=1

ajk = Q′
j for all j ∈ D′ (14)

∑
{(i,j)∈A : i,j∈S}

xijk ≤ |S| − 1 for all k ∈ {1, . . . , n′
v},

S ⊂ O′ or S ⊂ D′, |S| ≥ 2 (15)

vk ∈ {0, 1} for all k ∈ {1, . . . , n′
v} (16)

xijk ∈ {0, 1} for all (i, j) ∈ A, k ∈ {1, . . . , n′
v} (17)

aik ≥ 0 for all i ∈ O′ ∪ D′, k ∈ {1, . . . , n′
v}(18)
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With τ given by (8)–(18), problem (3)–(7) can be formulated as a two-stage mixed integer linear program,
or simply as a large mixed integer linear program. Very small instances of such a problem can be solved with
available software. In computational tests, instances with up to 5 origins, 5 destinations, 3 candidate terminals,
and a single scenario, could be solved. Most instances with 6 origins, 6 destinations, 3 candidate terminals, and a
single scenario, could not be solved — the computer’s memory was insufficient to complete the branch-and-bound
procedure. Problems in applications have hundreds of origins and destinations, and thus it seems that in the
foreseeable future it will be impractical to solve the mixed integer linear program.

Next we describe an approach to problem (3) that seems to be widely used. It is natural to attempt to improve
the tractability of problem (3) by simplifying the vehicle routing problem (8)–(18). A popular way to do this
is to model freight movements as flows on arcs instead of vehicle routes, and to ignore fixed vehicle costs. The
resulting problem is the following two echelon multicommodity (TEMC) location problem (for a deterministic
version, see for example Ghiani et al. 2004). Decision variable um is the same as in (1). Decision variable ym

ij (ω)
denotes the quantity of goods flowing from origin i to destination j through terminal m in scenario ω. Then the
TEMC location problem is as follows:

min
u∈{0,1}|X|

{∑
m∈X

cmum +
∑
ω∈Ω

p(ω)W (u, ω)

}
(19)

where

W (u, ω) := miny(ω)

∑
i∈O

∑
j∈D

∑
m∈X

(dim + dmj) ym
ij (ω) (20)

subject to
∑

m∈X
ym

ij (ω) = qij(ω) for all i ∈ O, j ∈ D (21)

ym
ij (ω) ≤ qij(ω)um for all i ∈ O, j ∈ D, m ∈ X (22)

ym
ij (ω) ≥ 0 for all i ∈ O, j ∈ D, m ∈ X (23)

Note that, for any u ∈ {0, 1}|X |, problem (20)–(23) has an easy solution. For each origin-destination pair
(i, j) ∈ O ×D, let m(i, j) := arg minm∈X {dim + dmj : um = 1} denote the cheapest open (given u) terminal to
use from origin i to destination j. Then

W (u, ω) =
∑
i∈O

∑
j∈D

(
di,m(i,j) + dm(i,j),j

)
qij(ω)

Thus ∑
ω∈Ω

p(ω)W (u, ω) =
∑
i∈O

∑
j∈D

(
di,m(i,j) + dm(i,j),j

)∑
ω∈Ω

p(ω)qij(ω)

=
∑
i∈O

∑
j∈D

(
di,m(i,j) + dm(i,j),j

)
q̄ij

= min
ȳ

∑
i∈O

∑
j∈D

∑
m∈X

(dim + dmj) ȳm
ij

subject to
∑

m∈X
ȳm

ij = q̄ij for all i ∈ O, j ∈ D

ȳm
ij ≤ q̄ijum for all i ∈ O, j ∈ D, m ∈ X

ȳm
ij ≥ 0 for all i ∈ O, j ∈ D, m ∈ X
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where q̄ij :=
∑

ω∈Ω p(ω)qij(ω). Therefore problem (19)–(23) reduces to the following problem:

min
u,ȳ

⎧⎨
⎩
∑

m∈X
cmum +

∑
i∈O

∑
j∈D

∑
m∈X

(dim + dmj) ȳm
ij

⎫⎬
⎭ (24)

subject to
∑

m∈X
ȳm

ij = q̄ij for all i ∈ O, j ∈ D (25)

ȳm
ij ≤ q̄ijum for all i ∈ O, j ∈ D, m ∈ X (26)

ȳm
ij ≥ 0 for all i ∈ O, j ∈ D, m ∈ X (27)

um ∈ {0, 1} for all m ∈ X (28)

Formulation (24)–(28) is used in several commercial software packages for distribution network design.

4 Qualitative Discussion of Important Factors in Distribution Net-

work Design

Recall the first stage problem (3), which can be rewritten as follows:

min
N∈{1,2,...}

min
{u∈{0,1}|X| :

∑
m∈X um=N}

min
nv∈N|X|

{∑
m∈X

(cmum + Cvnm
v ) +

∑
ω∈Ω

p(ω)V (u, nv, ω)

}
(29)

= min
N∈{1,2,...}

f(N)

where

f(N) := min
{u∈{0,1}|X| :

∑
m∈X um=N}

min
nv∈N|X|

{∑
m∈X

(cmum + Cvnm
v ) +

∑
ω∈Ω

p(ω)V (u, nv, ω)

}
(30)

In words, one can first choose the number of terminals, then the locations of the terminals, and then the number
of vehicles at each terminal. Of course, when one chooses the number N of terminals, one should take into
account how the following optimization problems depend on N . Next we describe an approach for choosing the
number N of terminals, approximating how the following optimization problems depend on N .

Suppose that the locations most likely to be chosen for the terminals (typically the locations with smaller val-
ues of cm) have approximately the same fixed costs cm ≈ c. Then the first term

∑
m∈X cmum in the objective func-

tion f can be replaced with cN . Next, note that the total number
∑

m∈X nm
v of vehicles needed can be estimated

quite accurately with the flow data and the vehicle capacity only, for example, by maxω∈Ω

∑
i∈O

∑
j∈D qij(ω)/Qv,

so that the total fixed vehicle cost
∑

m∈X Cvnm
v does not depend much on the chosen number N of terminals.

Selection of the optimal number nm
v of vehicles at each terminal is addressed later. Next, suppose that we approxi-

mate the remaining part of the objective function, min{u∈{0,1}|X| :
∑

m∈X um=N} minnv∈N|X|
∑

ω∈Ω p(ω)V (u, nv, ω),

with V̄ (N) :=
∑

ω∈Ω p(ω)V̂ (N,ω). Then one obtains an approximating problem

min
N∈{1,2,...}

{
f̂(N) := cN + V̄ (N)

}
(31)

It remains to show how an approximation V̄ (N) can be constructed that is both accurate and easy to compute.
In the remainder of this section, we make a few observations that guide the development of our CA method
regarding (1) the locations of the origins and destinations and the flow rates between them, (2) the importance
of terminal location, and (3) the selection of how many terminals serve each origin and each destination.

In most applications, the distribution of origins and destinations is quite different from the uniform distribu-
tion. A relevant question is whether approximation of the locations of origins and destinations with a uniform
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distribution may lead, or is likely to lead, to choosing an incorrect number N of terminals. It is not our purpose
to formulate precise questions and give precise answers in this regard; let us just point out that it is easy to
construct examples in which approximation of the locations of origins and destinations with a uniform distribu-
tion leads to an incorrect number of terminals being selected. Also, in most applications, the origin-destination
flow rates vary greatly for different origin-destination pairs. It can also easily be seen that approximating the
origin-destination flow rates with a constant rate for all origin-destination pairs may lead to an incorrect number
of terminals being selected. We also note that in the applications that motivated this work, data on locations
of origins and destinations, and historical flow rates, were easy to obtain. Thus, to select the number of termi-
nals, it is important to take into account the locations of origins and destinations, and the origin-destination
flow rates, with more accurate detail than a uniform distribution. For example, suppose that most origins and
destinations are located along the east coast and west coast. If most flows are between origin-destination pairs
on opposite coasts, then it may be good to have a central terminal, with some vehicles delivering and picking
up loads on the east coast, and other vehicles delivering and picking up loads on the west coast, with the loads
being exchanged at the central terminal. On the other hand, if most flows are between origin-destination pairs
on the same coast, then it may be good to have two terminals, one on the east coast and one on the west coast.
A uniform distribution cannot capture the distinction between the two cases above.

Next we address the question of whether it is important to accurately take into account how the terminals will
be located when the number N of terminals is chosen. First, note that a crucial difference between this question
and the questions of the previous paragraph is that the locations of the terminals are obviously not known
before the number of terminals is chosen, but as already pointed out, often one has data about the locations
of origins and destinations, and the flow rates. Also, it is reasonable to expect that, given N , the function
V (u, nv, ω) will not be very sensitive with respect to the locations u, the intuition being that the optimization
in the second stage problem (4)–(7) that defines V (u, nv, ω) allows the second stage decisions to adjust to the
locations u. Next we describe a crude but simple experiment to illustrate the intuition regarding the effect of
terminal location. We took the locations of the origins and destinations as well as the flow rates from the data
set for one of the applications that we worked on. The locations of the origins and destinations are shown in
Figure 5. The location and flow data are given in the online appendix. Given any set of terminal locations, for
each origin-destination pair the least great-circle distance from the origin to one of the terminals and from the
terminal to the destination can easily be calculated. For each origin-destination pair we calculate the following
weighted distance between the origin and destination:(

origin-destination flow rate
vehicle capacity

)
× (least great-circle distance from origin through a terminal to destination) .

Thus the total weighted distance over all origin-destination pairs can be calculated for any given set of terminal
locations. The number N of terminals was varied from 1 to 10. For each number N of terminals, the following
procedure was repeated 10,000 times. One terminal was located centrally in a rectangular area covering all
the origin and destination locations in our dataset. N − 1 terminals were located independently and uniformly
distributed in the rectangle that contains all origins and destinations. Then the total weighted distance over all
origin-destination pairs was calculated as described above. The total cost per time period was equal to the total
weighted distance in miles plus 25, 000×N for the terminals. We used 2000 units for the vehicle capacity. Table 4
shows the average total cost over the 10,000 replications, and the minimum total cost over the 10,000 replications
(approximating the total cost of the best terminal locations) for each number N of terminals. The number of
terminals minimizing the average cost is equal to the number of terminals minimizing the minimum cost, namely
4 terminals, which suggests that the optimum number of terminals can be determined quite accurately without
optimizing the locations of the terminals.

One further observation regarding terminal location is that in practice there are many factors that play a role
in the selection of exact locations of facilities that do not lead to simple models, such as the local transportation
infrastructure, availability of individual sites, property prices, taxes, cost of local labor, climate, aesthetics of the
location, and other subjective preferences. We agree with Dasci and Laporte (2005) that models that “entail a
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Figure 5: Origins (circles) and destinations (pluses) for one of the applications.

Number of Cost
Terminal Facilities Mean Minimum Standard Deviation

1 415,201 N/A N/A
2 407,240 317,864 48,997
3 391,429 305,709 55,679
4 385,652 300,914 53,914
5 389,874 320,991 50,023
6 398,968 342,544 44,989
7 420,964 359,528 47,112
8 438,693 379,866 44,242
9 458,251 401,393 39,517
10 477,503 418,487 36,558

Table 1: The total cost of locating N terminal facilities.
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very precise representation of the locations” are “a fixation in pursuit of theoretical accuracy that has relatively
little practical value”. We do not attempt to model factors such as those mentioned above, and therefore we do
not address the exact location of terminals. Fortunately, the optimal number of terminals does not seem to be
very sensitive with respect to the exact locations to be chosen for the terminals.

We also want to address the effect of the number of terminals that serve each origin and each destination.
Recall the one-terminal-nearest-terminal distribution strategy described in Section 2. With that strategy, ship-
ments from each origin are taken to the terminal closest to the origin, and from there the shipment is transported
to its destination. Thus, with such a strategy, each origin is served by exactly one terminal, and each destination
is served by all the terminals. The larger the number of terminals that serves an origin or destination, the
larger the number of vehicles that have to stop at the origin or destination per time period. It was shown in
Beardwood et al. (1959) that the optimal tour length increases proportionally to the square root of the number of
points to be visited on the tour. Therefore, the detour distance for pickups or deliveries increases approximately
proportionally to the square root of the number of terminals that serves origins or destinations. At the same
time, the larger the number of terminals that serves origins or destinations, the smaller the linehaul portion of
the transportation distance between origins and terminals, or terminals and destinations, can be made by careful
selection of the terminal to be used to flow goods for each origin-destination pair. Therefore, there is a trade-off
between linehaul distance and detour distance as a function of the number of terminals that serves origins and
destinations, and we want to capture this trade-off with our approach, instead of fixing a strategy such as the
one-terminal-nearest-terminal strategy. Also, it seems reasonable that the larger the total quantity of goods that
should be picked up at an origin or delivered to a destination in a time period, the larger the number of terminals
that serves that origin or destination should be in the time period. As an extreme example, if the total quantity
of goods that should be picked up at an origin in a time period is very small, then only one terminal should serve
that origin in that time period, so that only one vehicle has to make a stop at that origin in that time period.
It is typical for the total quantity of goods that should be picked up at an origin or delivered to a destination
to vary significantly among origins and destinations in the same time period, and also among time periods for
the same origin or destination. Figure 6 shows the distribution over origins and destinations of the average total
quantity of goods picked up or delivered per week for one of the applications that we worked on. Therefore, we
want to allow the number of terminals that serves an origin or destination to be different for different origins
and destinations in the same time period, and also different for the same origin or destination in different time
periods.
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Figure 6: The distribution over origins and destinations of the average total quantity of goods picked up or
delivered per week.

Motivated by the observations above, we construct an approximation V̂ (N,ω) that takes into account detailed
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data regarding locations of origins and destinations, and the origin-destination flows, that approximate terminal
locations with a uniform distribution, and that chooses the number of terminals that serve an origin or destination
in a time period based on the total quantity of goods that should be picked up at the origin or delivered to the
destination in the time period. Note that this approach is in some sense the opposite of the approach followed
in Hall (1984), Daganzo (1987), Hall (1987), Campbell (1990b), and Campbell (1993a), where it was assumed
that origins and destinations are uniformly distributed, and origin-destination flows are the same for all origin-
destination pairs, and the terminals were carefully located on a rectangular grid. Also note that the purpose of
the papers above was to obtain qualitative insight without data, and not to develop a method that can produce
good solutions, whereas we want to develop a method that can produce good solutions.

5 Continuous Approximation Approach

In this section we describe a CA approach for designing a distribution network in which each shipment moves
through one terminal on its way from its origin to its destination. First we provide an overview of the approach
in Section 5.1. Thereafter we describe the steps of the method.

5.1 Overview

It was shown in (29), (4), and (8) that we can make decisions in the following sequence, and that it should be
taken into account how each decision will affect the subsequent decisions and objective values. The following
decisions are made before the scenario ω (and thus the flow realization q(ω)) is known:

(i) Select the number of terminals.

(ii) Select the location of each terminal.

(iii) Select the number of vehicles at each terminal.

The following decisions are made after the flow realization q(ω) is known:

(iv) For each origin-destination pair with flow qij(ω) > 0, determine which terminal will be used to move the
shipment from the origin to the destination.

(v) For each terminal, decide how vehicles are routed from the terminal to do the pickups and deliveries of the
flows assigned to the terminal in the previous step.

Embarking on this work, we were primarily interested in the first design decision, namely how to select the
best number of terminals for a distribution network. However, inspection of (3), (4), and (8), reveals that the
design decision (i) should not be made without taking into account design decisions (ii) and (iii), and operational
decisions (iv) and (v). It was also argued that taking design decisions (ii) and (iii) and operational decisions (iv)
and (v) into account by solving mixed integer programs was impractical, and hopefully unnecessary. Thus a
major part of the work is aimed at the development of tractable approximations that take design decisions (ii)
and (iii) and operational decisions (iv) and (v) into account, so that design decision (i) can be made relatively
easily and well.

We also want to test the quality of the decisions resulting from the developed approximations. To do so,
we would like to take the value of design decision (i) resulting from the approximations and that resulting
from formulation (24)–(28), for each solve the mixed integer programs that produce decisions (ii)–(v), and then
compare the total cost resulting from the two values of design decision (i). The challenge that the mixed integer
programs that produce decisions (ii)–(v) are intractable remain, and therefore we developed heuristics to produce
decisions (ii)–(v). These heuristics require significantly more computational effort than the approximations
developed to make decision (i), but are tractable enough to do the comparison for given values of decision (i).
Some of these heuristics may be of interest by themselves.
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Section 5.2 describes a CA method for selecting the number of terminals. Section 5.3 describes how the
terminals are located in computational experiments to test the quality of the solutions produced with the CA
method. Section 5.4 provides a heuristic for determining the vehicle fleet sizes.

5.2 Selection of Number of Terminals

The two major cost components considered in the selection of the number of terminals are terminal fixed cost and
transportation cost. Terminal fixed cost increases proportionally with the number of terminals. Transportation
cost should decrease as the number of terminals increases, because there are more terminals to choose from when
routing shipments from their origins to their destinations through terminals. Transportation cost is taken to be
proportional to the transportation distance. The transportation distance results from the routes that vehicles
travel from each terminal to perform the pickups and deliveries, and is partitioned into two components, namely
the linehaul distance and the detour distance. The linehaul distance associated with a route is the distance from
the terminal to the center of the points that are visited, and back again. The detour distance is the remaining
distance on the route, and is approximately the length of a tour through the points that are visited, excluding
the terminal.

As explained in Section 4, as the number of terminals that serves each origin or destination increases, the
average linehaul distance, or the average distance from the origin of a shipment through the terminal used for
the shipment to the destination, decreases, but the total number of stops on vehicle routes increases, and thus
the detour distance increases. As also explained in Section 4, the larger the total flow from an origin or to a
destination, the larger the number of terminals that should serve that origin or destination. We control the
number of terminals that serves an origin or a destination as follows. Suppose there are N open terminals. Then
we select N−1 thresholds, 0 ≤ Q1 ≤ · · · ≤ QN−1. Consider an origin i and a scenario ω. If

∑
j∈D qij(ω) ∈ (0, Q1],

then 1 terminal serves origin i in scenario ω. If
∑

j∈D qij(ω) ∈ (QN−1,∞), then all N terminals serve origin i in
scenario ω. Otherwise, if

∑
j∈D qij(ω) ∈ (Qk−1, Qk], then k terminals serve origin i in scenario ω. The number

of terminals that serve each destination in each scenario is determined in the same way. Although the number
of terminals that serves an origin or a destination is allowed to depend on the scenario, the thresholds do not
depend on the scenario.

Since not all terminals serve each origin and destination, care has to be taken to ensure that for each origin-
destination pair (i, j) with qij(ω) > 0, there is at least one terminal that serves both i and j. We do that by
designating one terminal, called the center terminal, to serve all origins and destinations.

An outline of the method for selecting the number of terminals and the thresholds is as follows:

1. A method is developed to approximate total linehaul distance as a function of the number of terminals and
the thresholds. This method is described in Section 5.2.1.

2. Section 5.2.2 describes a method to approximate total detour distance as a function of the number of
terminals and the thresholds.

3. The approximations of total linehaul distance and total detour distance as a function of the number of
terminals and the thresholds are used to search for the optimal (as measured by the approximations)
number of terminals and thresholds. The search method is described in Section 5.2.3.

5.2.1 Linehaul Distance Estimation

Suppose there are N open terminals, n = 0, 1, . . . , N − 1, located in some region that does not have to include
the locations of all origins and destinations. The center terminal, used by all origins and destinations, is indexed
by 0. This section describes the estimation of the total linehaul distance for given values Q := (Q1, . . . , QN−1)
of the thresholds.

Consider a scenario ω ∈ Ω, and an origin i ∈ O. Suppose that origin i is served by a set Ni of Ni terminals,
including the center terminal. The selection of the Ni − 1 terminals that serve origin i in addition to the center
terminal from the set {1, 2, . . . , N −1} of open terminals besides the center terminal is described later. Similarly,
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consider a destination j ∈ D, and suppose that destination j is served by a set Nj of Nj terminals, also including
the center terminal. The numbers Ni and Nj depend on the thresholds Q and on the scenario ω, but the
dependence is not shown in the notation. Let Nij := Ni ∩Nj denote the set of terminals that serve both origin i

and destination j. The sets Ni, Nj , and Nij depend on the thresholds Q, on the scenario ω, and on the selection
of the terminals, but as before the dependence is not shown in the notation.

Let λi,n,j denote the distance from origin i through terminal n to destination j. Distance λi,n,j depends on
the locations of the terminals, but the dependence is not shown in the notation. Then the minimum distance
from origin i to destination j through a terminal that serves both i and j is given by

Λi,j := min
n∈Nij

λi,n,j . (32)

Distance Λi,j depends on Nij and thus on the thresholds Q, on the scenario ω, and on the selection of the
terminals; and on distances λi,n,j , and thus on the locations of the terminals.

For the given number N of terminals, and the given thresholds Q, the expected total linehaul distance
L(N,Q) is then calculated as follows:

L(N,Q) :=
∑
ω∈Ω

p(ω)
∑
i∈O

∑
j∈D

qij(ω)
Qv

E[Λi,j ] (33)

where E[Λi,j ] denotes the expected value of Λi,j with respect to random parameters involved in the selection of
the terminals.

Next we consider the calculation of E[Λi,j ] in greater detail. Suppose that the locations of the N−1 terminals
{1, 2, . . . , N−1} besides the center terminal are independently and identically distributed in some region. Suppose
that the set Ni \{0} of terminals that serve origin i in addition to the center terminal are selected from terminals
1, 2, . . . , N−1 by making Ni−1 random selections without replacement from {1, 2, . . . , N−1}, each time selecting
each remaining element with equal probability. The set Nj \ {0} of Nj − 1 terminals that serve destination j in
addition to the center terminal are selected in the same way. This selection of terminals is independent for all
origins and destinations.

Note that the linehaul distance Λi,j is decreasing in both Ni and Nj , as it should be. Specifically, let
�i := (�i,1, . . . , �i,N−1) and �j := (�j,1, . . . , �j,N−1) be two independent and identically distributed random
permutations of {1, 2, . . . , N − 1}, with distribution such that each of the (N − 1)! permutations has probability
1/(N−1)!. Consider any ni < N and nj ≤ N . Let Ñi := {0,�i,1, . . . , �i,ni−1}, Ñ+

i := {0,�i,1, . . . , �i,ni
}, Ñj :=

{0,�j,1, . . . , �i,nj−1}, Ñij := Ñi ∩ Ñj , Ñ+
ij := Ñ+

i ∩ Ñj , Λ̃i,j := minn∈Ñij
λi,n,j , and Λ̃+

i,j := minn∈Ñ+
ij

λi,n,j .

Then, Ñi, Ñj , Ñij , and Λ̃i,j have the same distributions as Ni, Nj , Nij , and Λi,j respectively, given that Ni = ni

and Nj = nj . Also, Ñ+
i , Ñ+

ij , and Λ̃+
i,j have the same distributions as Ni, Nij , and Λi,j respectively, given that

Ni = ni + 1 and Nj = nj . Note that, w.p.1, Ñi ⊂ Ñ+
i and Ñij ⊂ Ñ+

ij . Thus Λ̃i,j ≥ Λ̃+
i,j w.p.1. Hence, the

conditional distribution of Λi,j given Ni = ni is stochastically decreasing in ni.
Let N<

ij := {n ∈ Nij : λi,n,j < λi,0,j} denote the set of terminals in Nij that give a distance from i to j

strictly less than the distance from i to j through the center terminal. We calculate E[Λi,j ] by conditioning on
|Nij | and |N<

ij |, where for a set S, |S| denotes its cardinality:

E[Λi,j ] =
Ni∧Nj∑

k=1∨(Ni+Nj−N)

P[|Nij | = k]
k−1∑
�=0

P

[
|N<

ij | = �
∣∣∣ |Nij | = k

]
E

[
Λi,j

∣∣∣ |Nij | = k, |N<
ij | = �

]
(34)

(Note that it always holds that |Nij | ≥ Ni + Nj − N , irrespective of how Ni and Nj are selected.) First, note
that since the terminals in Nj \ {0} are selected without replacement and with equal probabilities from the
terminals 1, 2, . . . , N −1, independently of Ni, it follows that the random variable |Nij | follows a hypergeometric
distribution. Specifically, given any set Ni, the conditional probability P[|Nij | = k | Ni] for any k ∈ {1 ∨ (Ni +
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Nj − N), . . . , Ni ∧ Nj} satisfies

P[|Nij | = k | Ni] =

(
Ni − 1
k − 1

)(
N − Ni

Nj − k

)
(

N − 1
Nj − 1

) =
(Ni − 1)!(Nj − 1)!(N − Ni)!(N − Nj)!

(k − 1)!(Ni − k)!(Nj − k)!(N − Ni − Nj + k)!(N − 1)!

(It is the same as the probability of drawing k − 1 red balls from a jar containing N − 1 balls, Ni − 1 of which
are red, in a sample of size Nj − 1 drawn without replacement.) Since the right side above is the same for all
realizations of Ni, it follows that the probability that exactly k ∈ {1 ∨ (Ni + Nj − N), . . . , Ni ∧ Nj} terminals
serve both i and j is

P[|Nij | = k] =
(Ni − 1)!(Nj − 1)!(N − Ni)!(N − Nj)!

(k − 1)!(Ni − k)!(Nj − k)!(N − Ni − Nj + k)!(N − 1)!

As before, P[|Nij | = k] depends on the thresholds Q and the scenario ω. Next, since the locations of terminals
{1, 2, . . . , N − 1} are independent and identically distributed, and the terminals in Ni \ {0} and Nj \ {0} are
selected independently of the locations of the terminals, it follows that given that |Nij | = k, the number of the
k − 1 terminals n other than the center terminal that have distance λi,n,j strictly less than λi,0,j has a binomial
distribution. Specifically, for � ∈ {0, 1, . . . , k − 1},

P

[
|N<

ij | = �
∣∣∣ |Nij | = k

]
=

(
k − 1

�

)
P[λi,1,j < λi,0,j ]�P[λi,1,j ≥ λi,0,j ]k−1−�

Since Λi,j is a nonnegative random variable, it holds for � ∈ {0, 1, . . . , k − 1} that

E

[
Λi,j

∣∣∣ |Nij | = k, |N<
ij | = �

]
=

∫ ∞

0

P

[
Λi,j > α

∣∣∣ |Nij | = k, |N<
ij | = �

]
dα

=
∫ ∞

0

P

[
min

n∈Nij

λi,n,j > α
∣∣∣ |Nij | = k, |N<

ij | = �

]
dα

=
∫ λi,0,j

0

P

[
min{λi,1,j , . . . , λi,�,j} > α

∣∣∣λi,1,j < λi,0,j , . . . , λi,�,j < λi,0,j

]
dα

=
∫ λi,0,j

0

P

[
λi,1,j > α, . . . , λi,�,j > α

∣∣∣λi,1,j < λi,0,j , . . . , λi,�,j < λi,0,j

]
dα

=
∫ λi,0,j

0

P

[
λi,1,j > α

∣∣∣λi,1,j < λi,0,j

]�

dα

The third and fifth equalities follow from terminals {1, 2, . . . , N−1} being independent and identically distributed,
and the terminals in Ni \ {0} and Nj \ {0} being selected independently of the locations of the terminals. As a
special case, note that it holds for � = 0 that

E

[
Λi,j

∣∣∣ |Nij | = k, |N<
ij | = 0

]
= λi,0,j

In summary, it follows from (34) that

E[Λi,j ] =
Ni∧Nj∑

k=1∨(Ni+Nj−N)

(Ni − 1)!(Nj − 1)!(N − Ni)!(N − Nj)!
(Ni − k)!(Nj − k)!(N − Ni − Nj + k)!(N − 1)!

×
k−1∑
�=0

1
�!(k − 1 − �)!

P[λi,1,j < λi,0,j ]�P[λi,1,j ≥ λi,0,j ]k−1−�

×
∫ λi,0,j

0

P

[
λi,1,j > α

∣∣∣λi,1,j < λi,0,j

]�

dα (35)
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It remains to explain how P[λi,1,j < λi,0,j ] and P [λi,1,j > α |λi,1,j < λi,0,j ] for α ∈ (0, λi,0,j) can be com-
puted. We provide the details of these calculations in the appendix, where it is shown that if the terminals
{1, 2, . . . , N − 1} are uniformly distributed in a rectangular region, and distance λi,1,j is given by the L1-metric,
then P [λi,1,j > α |λi,1,j < λi,0,j ] is a piecewise polynomial in α of degree at most two, and thus∫ λi,0,j

0

P

[
λi,1,j > α

∣∣∣λi,1,j < λi,0,j

]�

dα

is conceptually simple. Thus, for a given number N of terminals, and given thresholds Q, the expected total
linehaul distance L(N,Q) can be calculated quite easily using (33).

5.2.2 Detour Distance Estimation

Beardwood et al. (1959) established the following result that is widely used in the CA literature. Consider an
independent sequence of uniformly distributed points in a set A ⊂ R

k with Lebesque measure µ(A) > 0. Let
Tn denote the shortest tour length, as measured by the L2 Euclidean distance, through the first n points in the
sequence. Then there exists a constant βk, independent of the sequence and of A, such that with probability 1,
limn→∞ n−(k−1)/kTn = βkk1/2[µ(A)]1/k. Specifically, for R

2, there exists a constant β2 ∈ [0.44, 0.65] (the exact
value is not yet known), such that with probability 1, limn→∞ n−1/2Tn = β221/2[µ(A)]1/2. The approximation
Tn ≈ β

√
nµ(A), for some β depending on the distance metric, has been used in many vehicle routing applications,

and in this section we do the same for the purpose of obtaining a tractable approximation of the detour distance
as a function of the number N of terminals and the thresholds Q.

Consider a given number N of terminals, given values Q := (Q1, . . . , QN−1) of the thresholds, and a given
scenario ω ∈ Ω. Assume that the vehicles are fully loaded with goods to be delivered when departing from a
terminal and fully loaded with goods that were picked up when arriving back at the terminal (one can multiply
vehicle capacity Qv with a factor between 0 and 1 to compensate for vehicles not being fully loaded on average).
Then the total number of vehicle routes is equal to

∑
i∈O

∑
j∈D qij(ω)/Qv. Let the total region be denoted by Ā

with area µ(Ā). Suppose that each terminal serves origins and/or destinations in most of Ā (this is the case even
for distribution strategies such as one-terminal-nearest-terminal described in Section 2). The average number
of vehicle routes per terminal is equal to

∑
i∈O

∑
j∈D qij(ω)/(NQv). Thus, if different vehicle routes from the

same terminal do not overlap, then the average area served per vehicle route is equal to

µ(A) =
µ(Ā)NQv∑

i∈O
∑

j∈D qij(ω)

Note that µ(A) depends on N and ω, but the notation does not indicate the dependence.
Next we calculate the average number of delivery stops and the average number of pickup stops on a

vehicle route, as a function of N , Q, and ω. The number of vehicle stops at an origin i ∈ O is at least
max

{
Ni, �

∑
j∈D qij(ω)/Qv

}
, and the number of vehicle stops at a destination j ∈ D is at least max

{
Nj , �

∑
i∈O qij(ω)/Qv

}
(recall that Ni and Nj depend on N , Q, and ω). Thus, the average number of pickup stops per vehicle route is
approximately

np =

∑
i∈O max

{
Ni, �

∑
j∈D qij(ω)/Qv

}
∑

i∈O
∑

j∈D qij(ω)/Qv

and the average number of delivery stops per vehicle route is approximately

nd =

∑
j∈D max

{
Nj , �

∑
i∈O qij(ω)/Qv

}
∑

i∈O
∑

j∈D qij(ω)/Qv

Then, the approximate expected total detour distance D(N,Q) is calculated as follows:

D(N,Q) :=
∑
ω∈Ω

p(ω)

∑
i∈O

∑
j∈D qij(ω)

Qv
β

[√
(np − 1)µ(A) +

√
(nd − 1)µ(A) +

√
µ(A)

]
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The approximation is obtained by substituting expressions for the average number of stops and the average area
of the region served into the tour length approximation Tn ≈ β

√
nµ(A). The reason np − 1 and nd − 1 are used

in the tour length calculations is because the vehicle does not have to return to the first pickup point or the
first delivery point after completing pickups or deliveries. The term β

√
µ(A) approximates the average distance

from the last delivery point to the first pickup point on a vehicle route. Since
√

x is a concave function, it
follows from Jensen’s inequality that this overestimates the average tour length. In numerical experiments, this
overestimation did not seem to have much of an effect on the selection of the optimal number of terminals. In
practice, such overestimation is likely to be dominated by the amount by which actual route lengths on road
networks differ from the lengths according to simple metrics.

Note that np is increasing in the numbers Ni of terminals serving origins i, nd is increasing in the numbers Nj

of terminals serving destinations j, and D(N,Q) is increasing in np and nd. Also, the average area served per
vehicle route µ(A) is increasing in the number N of terminals, and D(N,Q) is increasing in µ(A). Thus the
expected total detour distance D(N,Q) is increasing in the number N of terminals and in the numbers of
terminals serving origins and destinations, as it should be.

5.2.3 Search for Number of Terminals and Thresholds

Recall that we want to construct and solve an approximating problem (31):

min
N∈{1,2,...}

{
f̂(N) := cN + V̄ (N)

}

taking into account the terminal fixed cost cN and the approximate expected transportation cost V̄ (N). Without
loss of generality, suppose that the unit of cost or the unit of distance has been scaled to make transportation
cost per distance equal to 1. The approximate expected transportation cost V̄ (N) is given by minimizing the
sum of the linehaul cost and the detour cost over the thresholds:

V̄ (N) := min
0≤Q1≤···≤QN−1

{L(N,Q) + D(N,Q)} (36)

Note that the larger the value of N , the larger the set of thresholds that can be selected, and thus the smaller
the value of V̄ (N).

Note that if the total flows
∑

j∈D qij(ω) for all i ∈ O and
∑

i∈O qij(ω) for all j ∈ D are sorted, then all values
of a threshold Qk between two successive sorted values of the total flow give the same values of L(N,Q) and
D(N,Q). Thus, if N is small, say N ≤ 4, then problem (36) can easily be solved by enumerating all relevant
values of the N − 1 thresholds. If N is large, then problem (36) can be solved approximately by a neighborhood
search on the set of relevant values of the N − 1 thresholds. In addition, if a threshold Qk is changed from one
interval in the sorted list of total flows to a neighboring interval, the resulting change in the values of L(N,Q)
and D(N,Q) can be computed very quickly, because the value of Ni or Nj for only one origin i or destination j

is affected by the change.
Finally, problem minN∈{1,2,...}

{
cN + V̄ (N)

}
can be solved by enumerating a range of reasonable values of N .

The optimal value N∗ is the number of terminals obtained with the CA method described above.

5.3 Terminal Location

Recall from Section 4 that it is not our purpose to model all the factors that should enter or do enter into the
location of terminals. It is our purpose to test the CA method for selection of the number of terminals described
in Section 5.2 by more detailed calculation of transportation costs. To facilitate such detailed calculation of
vehicle routing costs, we need to calculate locations for the chosen number N of terminals. For that purpose,
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we choose a set X of candidate locations, and solve the following problem:

min
u,ȳ

⎧⎨
⎩
∑

m∈X
cmum +

∑
i∈O

∑
j∈D

∑
m∈X

(dim + dmj) ȳm
ij

⎫⎬
⎭

subject to
∑

m∈X
ȳm

ij = q̄ij for all i ∈ O, j ∈ D

ȳm
ij ≤ q̄ijum for all i ∈ O, j ∈ D, m ∈ X∑

m∈X
um = N

ȳm
ij ≥ 0 for all i ∈ O, j ∈ D, m ∈ X

um ∈ {0, 1} for all m ∈ X

5.4 Choosing the Vehicle Fleet Sizes

The final design decision required to test the CA method for selection of the number of terminals described in
Section 5.2 is to choose the number of vehicles stationed at each terminal. Our approach is simple enumeration,
using the operational decision procedures described in Section 6. First, for every scenario ω, we assign values to
the decision variables zij(ω) that satisfy constraints (5)–(7), and such that the number of terminals that serve
each origin i or destination j does not exceed the numbers Ni or Nj obtained from the thresholds Q and the
flows q(ω) as described in Section 5.2. To do this, we use a simple heuristic described in Section 6.1. A lower
bound on the number of vehicles required at each open terminal m is then given by

Lm := max
ω∈Ω

⌈∑
i∈O

∑
j∈D zm

ij (ω)qij(ω)
Qv

⌉
.

We use the detailed routing cost calculations described in Section 6.2 to calculate the cost of routing Lm, Lm +
1, Lm +2, . . . , Lm +k vehicles from terminal m for some small number k. We then choose the number of vehicles
for terminal m that minimizes the sum of vehicle cost and transportation cost from terminal m over the k+1 fleet
sizes. For each fleet size, the detailed vehicle routing cost calculations for all scenarios described in Section 6.2
take a large amount of time. Therefore, as described in Section 5.2, the CA is based on an assumption of full
vehicles, unlike the more detailed choice of vehicle fleet sizes described in this section.

6 Operational Decisions

Section 5 described how to make the design decisions, namely selection of the number of terminals, location of
the terminals, and choice of the vehicle fleet sizes. In the process thresholds were also selected that control how
many terminals serve an origin or destination, depending on the total flow from/to the origin/destination. In this
section we describe methods for making operational decisions. Specifically, Section 6.1 describes a method for
selecting which terminal to use for each origin-destination flow, and Section 6.2 describes a method for routing
the vehicles from each terminal to do the pickups and deliveries.

6.1 Selection of Terminal for Each Origin-Destination Flow

This section describes how to decide through which terminal to route each origin-destination flow for a given
set of flows q(ω). Ideally, for given open terminals u, vehicle fleet sizes nv, and origin-destination flows q(ω),
one would like to solve the integer linear program (4)–(7). However, solving (4)–(7) exactly does not seem to be
practical. In this section, we describe a heuristic for choosing the decision variables z(ω) that specify through
which terminal each origin-destination flow is routed. The heuristic does not require knowledge of the vehicle
fleet sizes nv, but does require knowledge of the thresholds Q.
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Let Ni(k) and Nj(k) represent the sets of terminals serving origin i and destination j respectively at the
kth iteration of the algorithm. We require that |Ni(k)| ≤ Ni, |Nj(k)| ≤ Nj , and Ni(k) ⊂ U , Nj(k) ⊂ U , where
U := {m ∈ X : um = 1} denotes the set of open terminals. (Recall from Section 5.2 how the thresholds Q and
the origin-destination flows q(ω) are used to determine the maximum numbers Ni and Nj of terminals serving
origin i and destination j respectively.) For each origin i ∈ O, destination j ∈ D, and set N ⊂ U , let

m(i, j,N ) ∈ arg min
m∈N

{dim + dmj}

denote a terminal from the set N that minimizes the distance from the origin i through a terminal in the set N
to the destination j.

Algorithm to Select Terminal for Each Origin-Destination Flow:

(0) Initially, every origin and destination is served by only the center terminal, so that

Ni(0) = Nj(0) := {0} for all i ∈ O and j ∈ D.

(1) For each i ∈ O and j ∈ D,

(a) If |Ni(k)| < Ni and |Nj(k)| < Nj , then set

N+
i (k) := Ni(k) ∪ m(i, j,U) and N+

j (k) := Nj(k) ∪ m(i, j,U);

(b) Else if |Ni(k)| < Ni and |Nj(k)| = Nj , then set

N+
i (k) := Ni(k) ∪ m(i, j,Nj(k)) and N+

j (k) := Nj(k);

(c) Else if |Ni(k)| = Ni and |Nj(k)| < Nj , set

N+
i (k) := Ni(k) and N+

j (k) := Nj(k) ∪ m(i, j,Ni(k));

(d) Else |Ni(k)| = Ni and |Nj(k)| = Nj . Set

N+
i (k) := Ni(k) and N+

j (k) := Nj(k).

(Note that |N+
i (k)| ≤ Ni and |N+

j (k)| ≤ Nj for all i ∈ O and j ∈ D.)
If

N+
i (k) = Ni(k) and N+

j (k) = Nj(k)

for all i ∈ O and j ∈ D, then terminate the algorithm.

(2) Choose

(i′, j′)(k) ∈ arg max
i∈O,j∈D

qij(ω)

[
min

m∈Ni(k)∩Nj(k)
(dim + dmj) − min

m∈N+
i (k)∩N+

j (k)
(dim + dmj)

]
.

Set
Ni′(k + 1) := N+

i′ (k) and Nj′(k + 1) := N+
j′ (k).

For all i ∈ O \ {i′} and j ∈ D \ {j′}, set

Ni(k + 1) := Ni(k) and Nj(k + 1) := Nj(k).

Return to step 1.

At the completion of the algorithm at finite iteration k�, let

zm
ij (ω) = I{m=m(i,j,Ni(k�)∩Nj(k�))}.
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6.2 Vehicle Routing with Backhauls, Split Pickups and Deliveries

In this section we describe a method for routing the vehicles from each terminal to do given pickups and deliveries.
The vehicle routes also provide a more accurate estimate of the transportation cost resulting from a given network
design. The method described in this section is also, as far as we know, the first heuristic proposed for the vehicle
routing problem with backhauls and split pickups and deliveries, and thus may be of interest in itself.

The vehicle routing problem with backhauls and split pickups and deliveries (VRPBS) was given in (8)–(18).
Recall that the problem input is a terminal indexed by 0, a set O′ of origins, a set D′ of destinations, quantities
to be picked up and delivered given by Q′, vehicle movement costs between the origins, destinations, and the
considered terminal given by d′, and n′

v vehicles with capacity Qv each. Note that the origin-destination flows
q(ω) and the output of the methods described in the previous sections provide the input for the vehicle routing
problem, except for the fleet size n′

v, which can be determined by enumeration, as described in Section 5.4.
We describe a cluster-first, route-second heuristic for the VRPBS that uses various ideas of the heuristic for

the vehicle routing problem with backhauls (VRPB) proposed by Toth and Vigo (1999). In both the VRPB
and the VRPBS, deliveries have to be performed before pickups on the same route. The heuristic of Toth and
Vigo (1999) has to be modified for the following reasons. First, as already pointed out, in the VRPBS multiple
vehicles are allowed to visit each origin and destination, whereas in the VRPB exactly one vehicle must visit each
origin and destination. One reason this modification is needed is because it often holds that Q′

i > Qv for some
origins or destinations i ∈ O′ ∪ D′, and thus some origins and destinations must be visited by more than one
vehicle (recall the typical nonuniform distribution of pickup and delivery quantities shown in Figure 6). Second,
in the VRPB considered by Toth and Vigo (1999), each of the n′

v vehicles must visit at least one destination, and
thus no vehicle may travel directly from the terminal to an origin. In the VRPBS, fewer than n′

v vehicles may
visit origins or destinations, and vehicles may travel directly to origins (and thus not visit any destinations).

6.2.1 Initial Splitting Step

As pointed out, for some points i ∈ O′ ∪ D′, it may hold that Q′
i > Qv. If point i has quantity Q′

i > Qv,
then it should be served by multiple vehicles, and all these vehicles except possibly one should carry a full load
associated with this point, and the remaining quantity should be carried by another vehicle which can combine
the remaining quantity with additional loads associated with other points. For example, if a destination j has
Q′

j = 3.5Qv, then each of 3 vehicles should deliver full vehicle loads to j and afterward move to pick-up points,
and one vehicle should deliver a load of size 0.5Qv to j and the rest of the vehicle’s space could be used for other
deliveries on its route. Thus, in the first step each point i and its quantity Q′

i is split, after which each new point
i′ has quantity Q′′

i′ ≤ Qv. Specifically, for each point i ∈ O′ ∪ D′, create �Q′
i/Qv copies of point i, of which

�Q′
i/Qv� new points i′ have quantity Q′′

i′ = Qv, and if �Q′
i/Qv� < �Q′

i/Qv, then the remaining point i′ has
quantity Q′′

i′ = Q′
i − �Q′

i/Qv�Qv. Let O′′ denote the set of new origins, D′′ denote the set of new destinations,
V ′′ := {0} ∪O′′ ∪D′′ denote the new set of nodes, A′′ :=

{
(i, j) ∈ (V ′′)2 \ O′′ ×D′′ : i �= j

}
denote the new set

of arcs, and Q′′
i and Q′′

j denote the new quantities to be picked up and delivered. For (i, j) ∈ A′′, the vehicle
movement costs d′′i,j are obtained from the given vehicle movement costs d in the obvious way, except if i and j

correspond to the same original point, in which case d′′i,j := ε for some chosen ε > 0.
Next one can define the following VRPB with input data O′′, D′′, V ′′, A′′, Q′′, d′′, n′

v, and Qv. The decision
variables are

xij :=
{

1 if a vehicle travels on arc (i, j)
0 otherwise

nO
v := number of vehicles performing pickups

nD
v := number of vehicles performing deliveries

Note that the number of vehicles used is given by max{nO
v , nD

v }. For each set S ⊂ O′′ or S ⊂ D′′, let σ(S)
denote the minimum number of vehicles needed to serve each point in S if exactly one vehicle must visit each
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point, that is, σ(S) is the optimal value of the bin packing problem with item sizes given by Q′′
i for i ∈ S and

bin size Qv. For each combination of nO
v ∈ {⌈∑

i∈O′′ Q′′
i /Qv

⌉
, . . . , n′

v

}
and nD

v ∈
{⌈∑

j∈D′′ Q′′
j /Qv

⌉
, . . . , n′

v

}
,

let

τ ′ (O′′,D′′, Q′′, d′′, nO
v , nD

v

)
:= minx

∑
(i,j)∈A′′

d′′ijxij (37)

subject to
∑

{j : (j,i)∈A′′}
xji = 1 for all i ∈ O′′ ∪ D′′ (38)

∑
{j : (i,j)∈A′′}

xij = 1 for all i ∈ O′′ ∪ D′′ (39)

∑
i∈O′′

xi0 = nO
v (40)

∑
i∈O′′

x0i = max{0, nO
v − nD

v } (41)

∑
j∈D′′

x0j = nD
v (42)

∑
j∈D′′

xj0 = max{0, nD
v − nO

v } (43)

∑
{(i,j)∈A′′ : i∈S,j /∈S}

xij ≥ σ(S) for all S ⊂ O′′, |S| ≥ 2 (44)

∑
{(i,j)∈A′′ : i/∈S,j∈S}

xij ≥ σ(S) for all S ⊂ D′′, |S| ≥ 2 (45)

xij ∈ {0, 1} for all (i, j) ∈ A′′ (46)

denote the optimal value of the VRPB given that exactly nO
v vehicles serve the origins O′′ and exactly nD

v vehicles
serve the destinations D′′. If nO

v or nD
v is too small so that (38)–(46) is infeasible, then τ ′′ (O′′,D′′, Q′′, d′′, nO

v , nD
v

)
:=

∞. Then the VRPB is given by

τ ′′ (O′′,D′′, Q′′, d′′, n′
v) := minnO

v ,nD
v

{
cv max{nO

v , nD
v } + τ ′ (O′′,D′′, Q′′, d′′, nO

v , nD
v

)}
subject to nO

v ∈
{⌈∑

i∈O′′
Q′′

i /Qv

⌉
, . . . , n′

v

}

nD
v ∈

⎧⎨
⎩
⎡
⎢⎢⎢
∑

j∈D′′
Q′′

j /Qv

⎤
⎥⎥⎥ , . . . , n′

v

⎫⎬
⎭

6.2.2 Initial Clustering Step

Note that, for any i ∈ O′′, if Q′′
i = Qv, then (38)–(46) imply that i is visited by exactly one vehicle that does

not visit any other origin. Similarly, for any j ∈ D′′, if Q′′
j = Qv, then j is visited by exactly one vehicle that

does not visit any other destination. Let Õ′′ := {i ∈ O′′ : Q′′
i = Qv} and D̃′′ := {j ∈ D′′ : Q′′

j = Qv}. Then for
all i ∈ Õ′′, (38) can be replaced by

x0i +
∑

j∈D′′
xji = 1 (47)

xji = 0 for all j ∈ O′′ (48)

and for all j ∈ D̃′′, (38) can be replaced by

x0j = 1 (49)

xij = 0 for all i ∈ D′′ (50)
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Also, for all i ∈ Õ′′, (39) can be replaced by

xi0 = 1 (51)

xij = 0 for all j ∈ O′′ (52)

and for all j ∈ D̃′′, (39) can be replaced by

xj0 +
∑

i∈O′′
xji = 1 (53)

xji = 0 for all i ∈ D′′ (54)

Note that, given (51), constraint (40) holds if and only if
∑

i∈O′′\Õ′′ xi0 = nO
v − |Õ′′|. If O′′ \ Õ′′ �= ∅,

then it follows from nO
v ≥ ⌈∑

i∈O′′ Q′′
i /Qv

⌉
that nO

v − |Õ′′| ≥
⌈∑

i∈O′′\Õ′′ Q′′
i /Qv

⌉
≥ 1. Similarly, given (49),

constraint (42) holds if and only if
∑

j∈D′′\D̃′′ x0j = nD
v − |D̃′′|, and if D′′ \ D̃′′ �= ∅, then it follows that

nD
v −|D̃′′| ≥

⌈∑
j∈D′′\D̃′′ Q′′

j /Qv

⌉
≥ 1. Also note that constraints (47) and (51) imply that constraint (44) holds

for all S ⊂ Õ′′. Similarly, constraints (49) and (53) imply that constraint (45) holds for all S ⊂ D̃′′. Furthermore,
constraints (48) and (52) imply that constraint (44) is required only for S ⊂ O′′ \ Õ′′, and not for S ⊂ O′′ such
that S ∩ Õ′′ �= ∅ and S ∩ (O′′ \ Õ′′) �= ∅. Similarly, constraints (50) and (54) imply that constraint (45) is
required only for S ⊂ D′′ \ D̃′′, and not for S ⊂ D′′ such that S ∩ D̃′′ �= ∅ and S ∩ (D′′ \ D̃′′) �= ∅.

Note that it follows from constraints (38)–(43) that
∑

j∈D′′
∑

i∈O′′ xji =
∑

j∈D′′
∑

i/∈D′′ xji −
∑

j∈D′′ xj0 =∑
i/∈D′′

∑
j∈D′′ xij −

∑
j∈D′′ xj0 =

∑
j∈D′′ x0j −

∑
j∈D′′ xj0 = nD

v − max{0, nD
v − nO

v } = min{nO
v , nD

v }. Thus we
can add the following redundant constraint:∑

j∈D′′

∑
i∈O′′

xji = min{nO
v , nD

v } (55)

Next, we add the following redundant constraints that follow from constraints (38) and (39) respectively:

x0i +
∑

j∈D′′
xji ≤ 1 for all i ∈ O′′ \ Õ′′ (56)

xj0 +
∑

i∈O′′
xji ≤ 1 for all j ∈ D′′ \ D̃′′ (57)

Also, we add the following redundant constraints that follow from constraints (44) and (45) respectively:∑
{(i,j)∈A′′ : i∈S,j /∈S}

xij ≥ 1 for all S ⊂ O′′ \ Õ′′, |S| ≥ 2 (58)

∑
{(i,j)∈A′′ : i/∈S,j∈S}

xij ≥ 1 for all S ⊂ D′′ \ D̃′′, |S| ≥ 2 (59)

Next we formulate a Lagrangian relaxation for problem (37)–(59). Let the multipliers associated with con-
straint (38) for i ∈ O′′ \ Õ′′ and associated with constraint (39) for i ∈ D′′ \ D̃′′ be denoted by λi, and let the
multipliers associated with constraint (44) for S ⊂ O′′ \ Õ′′ and associated with constraint (45) for S ⊂ D′′ \ D̃′′
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be denoted by µS ≥ 0. Then the corresponding Lagrangian relaxation is as follows:

L
(O′′,D′′, Q′′, d′′, nO

v , nD
v , λ, µ

)
:= minx

∑
(i,j)∈A′′

d′′ijxij +
∑

i∈O′′\Õ′′

λi

⎛
⎝ ∑

{j : (j,i)∈A′′}
xji − 1

⎞
⎠

+
∑

i∈D′′\D̃′′

λi

⎛
⎝ ∑

{j : (i,j)∈A′′}
xij − 1

⎞
⎠

+
∑

S⊂O′′\Õ′′

µS

⎛
⎝σ(S) −

∑
{(i,j)∈A′′ : i∈S,j /∈S}

xij

⎞
⎠

+
∑

S⊂D′′\D̃′′

µS

⎛
⎝σ(S) −

∑
{(i,j)∈A′′ : i/∈S,j∈S}

xij

⎞
⎠ (60)

subject to x0i +
∑

j∈D′′
xji = 1 for all i ∈ Õ′′ (61)

x0i +
∑

j∈D′′
xji ≤ 1 for all i ∈ O′′ \ Õ′′ (62)

xij = 0 for all i ∈ O′′, j ∈ Õ′′ (63)

x0j = 1 for all j ∈ D̃′′ (64)

xij = 0 for all i ∈ D′′, j ∈ D̃′′ (65)∑
{i : (i,j)∈A′′}

xij = 1 for all j ∈ D′′ \ D̃′′ (66)

xi0 = 1 for all i ∈ Õ′′ (67)

xij = 0 for all i ∈ Õ′′, j ∈ O′′ (68)∑
{j : (i,j)∈A′′}

xij = 1 for all i ∈ O′′ \ Õ′′ (69)

xj0 +
∑

i∈O′′
xji = 1 for all j ∈ D̃′′ (70)

xj0 +
∑

i∈O′′
xji ≤ 1 for all j ∈ D′′ \ D̃′′ (71)

xij = 0 for all i ∈ D̃′′, j ∈ D′′ (72)∑
i∈O′′\Õ′′

xi0 = nO
v −

∣∣∣Õ′′
∣∣∣ (73)

∑
i∈O′′

x0i = max{0, nO
v − nD

v } (74)

∑
j∈D′′\D̃′′

x0j = nD
v −

∣∣∣D̃′′
∣∣∣ (75)

∑
j∈D′′

xj0 = max{0, nD
v − nO

v } (76)

∑
j∈D′′

∑
i∈O′′

xji = min{nO
v , nD

v } (77)

∑
{(i,j)∈A′′ : i∈S,j /∈S}

xij ≥ 1 for all S ⊂ O′′ \ Õ′′, |S| ≥ 2(78)

∑
{(i,j)∈A′′ : i/∈S,j∈S}

xij ≥ 1 for all S ⊂ D′′ \ D̃′′, |S| ≥ 2(79)

xij ∈ {0, 1} for all (i, j) ∈ A′′ (80)
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For each (i, j) ∈ A′′, let

d̄′′ij :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d′′ij if i, j ∈ {0} ∪ Õ′′ ∪ D̃′′

d′′ij + λj if i ∈ {0} ∪ Õ′′ ∪ D̃′′, j ∈ O′′ \ Õ′′

d′′ij −
∑

{S⊂D′′\D̃′′ : j∈S} µS if i ∈ {0} ∪ Õ′′ ∪ D̃′′, j ∈ D′′ \ D̃′′

d′′ij −
∑

{S⊂O′′\Õ′′ : i∈S} µS if i ∈ O′′ \ Õ′′, j ∈ {0} ∪ Õ′′

d′′ij + λi if i ∈ D′′ \ D̃′′, j ∈ {0} ∪ Õ′′ ∪ D̃′′

d′′ij + λj −
∑

{S⊂O′′\Õ′′ : i∈S,j /∈S} µS if i, j ∈ O′′ \ Õ′′

d′′ij + λi −
∑

{S⊂D′′\D̃′′ : i/∈S,j∈S} µS if i, j ∈ D′′ \ D̃′′

d′′ij + λi + λj if i ∈ D′′ \ D̃′′, j ∈ O′′ \ Õ′′

(81)

Then the objective function (60) is equal to∑
(i,j)∈A′′

d̄′′ijxij −
∑

i∈O′′\Õ′′

λi −
∑

i∈D′′\D̃′′

λi +
∑

S⊂O′′\Õ′′

µSσ(S) +
∑

S⊂D′′\D̃′′

µSσ(S)

To interpret feasible solutions of the Lagrangian relaxation (60)–(80), partition the arcs A′′ into the following
subsets:

A′′
1 :=

{
(i, 0) : i ∈ Õ′′

}
∪
{

(0, j) : j ∈ D̃′′
}

A′′
2 :=

{
(i, j) : i ∈ O′′, j ∈ Õ′′

}
∪
{

(i, j) : i ∈ Õ′′, j ∈ O′′
}
∪
{

(i, j) : i ∈ D′′, j ∈ D̃′′
}
∪
{

(i, j) : i ∈ D̃′′, j ∈ D′′
}

A′′
3 :=

{
(i, j) : i ∈ O′′ \ Õ′′, j ∈ {0} ∪ O′′ \ Õ′′

}
A′′

4 :=
{

(i, j) : i ∈ {0} ∪ D′′ \ D̃′′, j ∈ D′′ \ D̃′′
}

A′′
5 := {(i, j) : i ∈ {0} ∪ D′′, j ∈ {0} ∪ O′′}

First, observe that each of the constraints (61)–(79) involves decision variables xij for arcs (i, j) in only one of
the subsets above. Specifically, constraints (64) and (67) involve arcs in A′′

1 only; constraints (63), (65), (68),
and (72) involve arcs in A′′

2 only; constraints (69), (73), and (78) involve arcs in A′′
3 only; constraints (66),

(75), and (79) involve arcs in A′′
4 only; and constraints (61), (62), (70), (71), (74), (76), and (77) involve arcs

in A′′
5 only. Also, clearly each individual constraint in (80) involves an arc in only one of the subsets above.

Thus, the Lagrangian relaxation (60)–(80) decomposes into 5 subproblems, corresponding to the sets of arcs and
constraints identified above. Next we consider each of these 5 subproblems in turn.

For the subproblem involving A′′
1 , it follows from constraints (64) and (67) that xij = 1 for all (i, j) ∈ A′′

1 .
For the subproblem involving A′′

2 , it follows from constraints (63), (65), (68), and (72) that xij = 0 for all
(i, j) ∈ A′′

2 .
For the subproblem involving A′′

3 , it follows from constraint (69) that exactly one arc out of each node
i ∈ O′′ \ Õ′′ must be chosen, it follows from constraint (73) that exactly nO

v −
∣∣∣Õ′′

∣∣∣ arcs from nodes i ∈ O′′ \ Õ′′

to the terminal node 0 must be chosen, and it follows from constraint (78) that for each subset S ⊂ O′′ \ Õ′′,
at least one arc out of the subset must be chosen, and thus it follows from constraints (69), (73), and (78)
that the chosen arcs may not form any cycles in O′′ \ Õ′′. In other words, the chosen arcs in A′′

3 must form a
spanning anti-arborescence on the nodes {0} ∪ O′′ \ Õ′′ with the terminal node 0 being the root node and with
fixed indegree nO

v − |Õ′′| at node 0. Thus the subproblem involving A′′
3 is a shortest spanning anti-arborescence

problem with fixed indegree KO := nO
v − |Õ′′| at the terminal node 0 (KO-SSAA), and with arc costs given by

d̄′′ij .
Similarly, it follows from constraints (66), (75), and (79) that the subproblem involving A′′

4 is a shortest
spanning arborescence problem with fixed outdegree KD := nD

v − |D̃′′| at the terminal node 0 (KD-SSA), and
with arc costs given by d̄′′

ij . Problems KO-SSAA and KD-SSA can be solved in O(|O′′ \ Õ′′|2) and O(|D′′ \ D̃′′|2)
time respectively, for example with the algorithm of Gabow and Tarjan (1984).
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Next we show that the subproblem involving A′′
5 can be represented as a network flow problem. The network

flow problem has a node for each node in V ′′, as well as an additional source node s and sink node t. The supply
at the source node and the demand at the sink node are both equal to max{nO

v , nD
v }. There is an arc (s, j) from

the source node s to each node j ∈ D′′ with cost 0. The lower bound of the flow on each arc (s, j) is 1 if j ∈ D̃′′

and 0 if j ∈ D′′ \ D̃′′. The upper bound of the flow on each arc (s, j) is 1. There is an arc (j, i) from each node
j ∈ D′′ to each node i ∈ O′′ with cost d̄′′

ji. The lower bound of the flow on each such arc (j, i) is 0, and the
upper bound of the flow on each such arc (j, i) is 1. There is an arc (i, t) from each node i ∈ O′′ to the sink
node t with cost 0. The lower bound of the flow on each arc (i, t) is 1 if i ∈ Õ′′ and 0 if i ∈ O′′ \ Õ′′, and the
upper bound of the flow on each arc (i, t) is 1. Suppose that nO

v > nD
v . Then there is an arc (s, 0) with cost 0.

The lower bound and the upper bound of the flow on arc (s, 0) are both equal to nO
v − nD

v . There is also an
arc (0, i) from node 0 to each node i ∈ O′′ with cost d̄′′0i. The lower bound of the flow on each such arc (0, i)
is 0, and the upper bound of the flow on each such arc (0, i) is 1. If nO

v < nD
v , then there is an arc (j, 0) from

each node j ∈ D′′ to node 0 with cost d̄′′j0, lower bound 0, and upper bound 1, and an arc (0, t) with cost 0,
and lower bound and upper bound both equal to nD

v − nO
v . It is easy to see that for every solution that satisfies

constraints (61), (62), (70), (71), (74), (76), (77), and (80) (for (i, j) ∈ A′′
5), there is a feasible integer flow for

the network flow problem described above with the same cost, and vice versa. The network flow problem can be
solved in O(max{nO

v , nD
v }(|O′′| + |D′′|)2) time, for example with a shortest augmenting path algorithm; see, for

example, Ahuja et al. (1993).
Next we briefly address the following two issues. First, the number of subsets S ⊂ O′′ \ Õ′′ and S ⊂ D′′ \ D̃′′

in the Lagrangian objective (60) may be very large. Second, we want to find multipliers λ, µ that solve the
Lagrangian dual problem

max
λ,µ

{
L
(O′′,D′′, Q′′, d′′, nO

v , nD
v , λ, µ

)
: µ ≥ 0

}
We use the same subgradient optimization procedure described in Toth and Vigo (1997) to simultaneously
address both issues. Briefly, instead of enumerating all subsets S ⊂ O′′ \ Õ′′ and S ⊂ D′′ \ D̃′′, at each
major iteration the procedure identifies subtrees in the KO-SSAA and KD-SSA that violate constraints (44)
and (45) respectively, and adds the terms corresponding to the subsets S of nodes in the violating subtrees to
the Lagrangian objective (60). The identification of the violating subtrees can be done in O(|O′′ \ Õ′′|) and
O(|D′′ \ D̃′′|) time respectively. During each major iteration, the multipliers λ and µ are updated by performing
several minor iterations of a subgradient search. For additional details, we refer to Toth and Vigo (1997).

6.2.3 Second Splitting Step

When progress made by the subgradient optimization procedure in solving the Lagrangian dual problem slows
down, the procedure is stopped. The last KO-SSAA and KD-SSA constructed are considered. If there are no
subarborescences in the KO-SSAA and KD-SSA that violate constraints (44) and (45) respectively, then set
Õ′′′ := Õ′′, O′′′ \ Õ′′′ := O′′ \ Õ′′, D̃′′′ := D̃′′, D′′′ \ D̃′′′ := D′′ \ D̃′′, and continue with the assignment-routing
step described in Section 6.2.5. Otherwise, a second round of node splitting is performed, as described in this
section.

Suppose there are subarborescences in the KD-SSA constructed on nodes {0} ∪ D′′ \ D̃′′ that violate con-
straint (45). The set D′′ \ D̃′′ is partitioned into KD := nD

v − |D̃′′| subsets D′′
k , k = 1, . . . , KD, corresponding

to the KD subarborescences in the KD-SSA rooted at node 0. For each j ∈ D′′ \ D̃′′ and k ∈ {1, . . . , KD}, let
d′′jk := min{d′′ji : i ∈ D′′

k} denote the distance between node j and subarborescence k. Note that if j ∈ D′′
k , then

d′′jk = 0. Next the following transportation problem is solved to assign loads to subarborescences in such a way
that the total load assigned to each subarborescence is less than the vehicle capacity, and such that the total
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assignment cost is minimized.

miny

∑
j∈D′′\D̃′′

KD∑
k=1

d′′jkyjk (82)

subject to
KD∑
k=1

yjk = Q′′
j for all j ∈ D′′ \ D̃′′ (83)

∑
j∈D′′\D̃′′

yjk ≤ Qv for all k ∈ {1, . . . , KD} (84)

yjk ≥ 0 for all j ∈ D′′ \ D̃′′, k ∈ {1, . . . , KD} (85)

Let y∗ denote an optimal solution of problem (82)–(85). The new set D′′′ of nodes and their loads Q′′′
i , i ∈ D′′′

are determined as follows: D̃′′′ := D̃′′ and Q′′′
i := Qv for all i ∈ D̃′′′. Also, for each j ∈ D′′ \ D̃′′ and each

k ∈ {1, . . . , KD} such that y∗
jk > 0, there is a node i ∈ D′′′ \ D̃′′′ with load size Q′′′

i := y∗
jk. If there are

no subarborescences in the KD-SSA that violate constraint (45), then D̃′′′ := D̃′′, D′′′ \ D̃′′′ := D′′ \ D̃′′, and
Q′′′

i := Q′′
i for all i ∈ D′′′. The sets Õ′′′, O′′′ \ Õ′′′, and the loads Q′′′

i for i ∈ O′′′, are determined similarly
based on the KO-SSAA. Note that after this second splitting, we are guaranteed to find a feasible solution of
the VRPBS, as long as nO

v ≥ ⌈∑
i∈O′ Q′

i/Qv

⌉
and nD

v ≥
⌈∑

j∈D′ Q′
j/Qv

⌉
.

Let V ′′′ := {0} ∪ O′′′ ∪ D′′′ denote the new set of nodes, and A′′′ :=
{
(i, j) ∈ (V ′′′)2 \ O′′′ ×D′′′ : i �= j

}
denote the new set of arcs. For (i, j) ∈ A′′′, the vehicle movement costs d′′′i,j are obtained from the given vehicle
movement costs d, and as before if i and j correspond to the same original point, then d′′′i,j := ε for some chosen
ε > 0.

6.2.4 Second Clustering Step

After the second splitting step, a second clustering step is performed. The second clustering step is the same
as the initial clustering step described in Section 6.2.2, but with O′′′, D′′′, V ′′′, A′′′, Q′′′, and d′′′ instead of O′′,
D′′, V ′′, A′′, Q′′, and d′′ respectively.

6.2.5 Assignment-Routing Step

Consider the KO-SSAA and KD-SSA constructed in the last clustering step. The set D′′′ is partitioned into
nD

v subsets as follows. First, D̃′′′ is partitioned into its singletons: for each k = 1, . . . , |D̃′′′|, choose without
replacement i ∈ D̃′′′ and set D′′′

k := {i}. Second, the set D′′′ \ D̃′′′ is partitioned into KD := nD
v − |D̃′′′|

subsets D′′′
k , k = |D̃′′′| + 1, . . . , nD

v , corresponding to the KD subarborescences in the KD-SSA rooted at
node 0. Similarly, set O′′′ is partitioned into nO

v subsets O′′′
l , l = 1, . . . , nO

v . For each k ∈ {1, . . . , nD
v } and

l ∈ {1, . . . , nO
v }, consider the traveling salesman problem (TSP) with node set V ′′′

kl := {0} ∪ D′′′
k ∪ O′′′

l , arc
set A′′′

kl :=
{
(i, j) ∈ (V ′′′

kl )
2 \ O′′′

l ×D′′′
k : i �= j

}
, and arc costs d′′′

ij , (i, j) ∈ A′′′
kl. Note that by construction the

TSP has the precedence constraint that after 0, all nodes in D′′′
k must be visited before any nodes in O′′′

l are
visited, and is thus called the traveling salesman problem with backhauls (TSPB). Let d′′′

kl denote the optimal
objective value, or an estimate of the optimal objective value, of the TSPB. Similar to Toth and Vigo (1999),
we use the farthest insertion heuristic to obtain a solution of the TSPB, and set d′′′kl equal to the objective
value of the solution produced by the heuristic. In addition, for each k ∈ {1, . . . , nD

v }, consider the TSP with
node set V ′′′

k0 := {0} ∪ D′′′
k , arc set A′′′

k0 :=
{
(i, j) ∈ (V ′′′

k0)
2 : i �= j

}
, and arc costs d′′′ij , (i, j) ∈ A′′′

k0. Let d′′′k0

denote the optimal objective value, or an estimate of the optimal objective value, of the TSP. Similarly, for each
l ∈ {1, . . . , nO

v }, consider the TSP with node set V ′′′
0l := {0} ∪ O′′′

l , arc set A′′′
0l :=

{
(i, j) ∈ (V ′′′

0l )
2 : i �= j

}
, and

arc costs d′′′ij , (i, j) ∈ A′′′
0l . Let d′′′0l denote the optimal objective value, or an estimate of the optimal objective

value, of the TSP.
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Next the following assignment problem is solved to combine subsets of D′′′ and O′′′ into vehicle routes.

minz

nD
v∑

k=1

d′′′k0zk0 +
nO

v∑
l=1

d′′′0lz0l +
nD

v∑
k=1

nO
v∑

l=1

d′′′klzkl (86)

subject to zk0 +
nO

v∑
l=1

zkl = 1 for all k ∈ {1, . . . , nD
v } (87)

z0l +
nD

v∑
k=1

zkl = 1 for all l ∈ {1, . . . , nO
v } (88)

zk0, z0l, zkl ∈ {0, 1} for all k ∈ {1, . . . , nD
v }, l ∈ {1, . . . , nO

v } (89)

Let z∗ denote an optimal solution of problem (86)–(89). If z∗kl = 1, then the nodes in {0}, D′′′
k and O′′′

l are
included in a vehicle route given by the TSPB discussed above. Similarly, if z∗k0 = 1, then the nodes in {0}
and D′′′

k are included in a vehicle route, and if z∗0l = 1, then the nodes in {0} and O′′′
l are included in a vehicle

route, given by the TSP. The resulting routes may violate vehicle capacity constraints. The improvement step
discussed in the next section attempts to modify routes to eliminate violations of capacity constraints.

6.2.6 Improvement Heuristic

After construction of the vehicle routes as described in the previous section, an improvement heuristic is applied
to modify routes to eliminate violations of capacity constraints, and to reduce the costs. (Note that another
reasonable option is to first obtain a feasible solution by applying the assignment-routing step in Section 6.2.5
to the feasible solution obtained in the second splitting step in Section 6.2.3, and to then use an improvement
heuristic to find a solution with a better objective value.) The improvement heuristic is the same as the post-
optimization procedure described in Toth and Vigo (1999). Briefly, intra-route 2-exchanges and 3-exchanges
are performed in each route to reduce the cost of the route. Also, inter-route 1-exchanges and 2-exchanges are
performed to reduce the amount by which capacity constraints are violated, and to reduce the costs of the routes.
We refer to Toth and Vigo (1999) for additional details.

Let τ̃
(O′,D′, Q′, d′, nO

v , nD
v

)
denote the total cost of the resulting solution of the VRPBS, given that exactly

nO
v vehicles serve the origins O′ and exactly nD

v vehicles serve the destinations D′. (Note that O′′′, D′′′, V ′′′,
A′′′, Q′′′, and d′′′ are determined by O′, D′, Q′, and d′, and thus we may denote τ̃ as a function of O′, D′, Q′,
and d′.) Then let

τ̂ (O′,D′, Q′, d′, n′
v) := minnO

v ,nD
v

{
cv max{nO

v , nD
v } + τ̃

(O′,D′, Q′, d′, nO
v , nD

v

)}
subject to nO

v ∈
{⌈∑

i∈O′
Q′

i/Qv

⌉
, . . . , n′

v

}

nD
v ∈

⎧⎨
⎩
⎡
⎢⎢⎢
∑
j∈D′

Q′
j/Qv

⎤
⎥⎥⎥ , . . . , n′

v

⎫⎬
⎭

denote the total cost of the resulting solution of the VRPBS.
Recall that, as referred to in Section 5.4, the number nm

v of vehicles for each terminal m can be chosen by
solving

minnm
v

{
Cvnm

v +
∑
ω∈Ω

p(ω)τ̂ (Om(zm(ω)),Dm(zm(ω)), Qm(zm(ω), ω), dm(zm(ω)), nm
v )

}

subject to nm
v ∈ {Lm, Lm + 1, Lm + 2, . . . , Lm + k}

where zm(ω) can be chosen as described in Section 6.1, and Om(zm(ω)), Dm(zm(ω)), Qm(zm(ω), ω), and
dm(zm(ω)) are defined in Section 3.
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7 Evaluation of the Proposed CA Solutions

To evaluate our solutions, we considered eight combinations of small and large datasets, with origins and desti-
nations uniformly and nonuniformly distributed, and with origin-destination flows correlated and uncorrelated,
as described in more detail below. For each set of origin and destination locations, we generated ten flow sce-
narios according to a specified distribution as described below, and used these ten design scenarios to make
the design decisions, namely selection of the number of terminals and the thresholds, and the location of the
terminals, using the method described in Section 5. We also solved the TEMC problem (24)–(28) using the same
ten design scenarios, which provided a design for comparison. We selected the same vehicle fleet sizes, namely
Lm + 2, to evaluate both the CA solution and the TEMC solution. Using the same flow distribution, we then
generated flow scenarios for evaluation, independent of the design scenarios, and calculated the cost for each
evaluation scenario using the approach described in Section 6 to make the operational decisions. Specifically,
for each evaluation scenario we selected which terminal served each origin-destination flow and how to route
the vehicles from each terminal to do the pickups and deliveries. Because the time involved in performing the
detailed routing calculations described in Section 6.2 was large, it was not practical to generate a huge number
of evaluation scenarios and calculate the cost associated with each one. Therefore, we only generated enough
scenarios (around 35) to ensure that the sample standard deviation of the sample average cost difference was
less than half the sample average cost difference. Specifically, let

{ω1, . . . , ωM} := set of evaluation scenarios

cCA(ωm) := cost of the CA design for scenario ωm

cTEMC(ωm) := cost of the TEMC design for scenario ωm.

Then, the evaluation sample size M is chosen large enough so that√√√√√√ 1
M

1
(M − 1)

⎡
⎢⎣ M∑

m=1

(cCA(ωm) − cTEMC(ωm))2 −
(∑M

m=1 (cCA(ωm) − cTEMC(ωm))
)2

M

⎤
⎥⎦

<
1
2

∣∣∣∣∣
∑M

m=1 (cCA(ωm) − cTEMC(ωm))
M

∣∣∣∣∣ . (90)

The origin and destination locations. The industry dataset with 148 origins and 36 destinations, shown
in Figure 5, provided a set of origins and destinations for evaluation, namely for the two cases (correlated and
uncorrelated flows) with small datasets and nonuniform distributions of origins and destinations. To generate
origin and destination locations “uniformly”, we selected 1097 cities roughly uniformly distributed across the
USA. For the two cases with small datasets and uniform distributions of origins and destinations, we sampled
148 of these 1097 cities without replacement to be origins, and 41 of these 1097 cities without replacement to
be destinations. For the two cases with large datasets and uniform distributions of origins and destinations,
the numbers of origins and destinations chosen were 243 and 105 respectively. Finally, for the two cases with
large datasets and nonuniform distributions of origins and destinations, we used only the 788 of the 1097 cities
that were approximately west of Colorado and east of Illinois, and then chose 248 origins and 134 destinations
from the 788 cities without replacement. The reason for having more origins than destinations was to mimic the
observed situations in the motivating industrial datasets.

Flow generation. Next we describe how we generated flows between origins and destinations for each of
the eight cases. We first decided which origin-destination pairs would have positive flow. Because long distance
positive flows tend to be less frequent than positive flows between origin-destination pairs located closer together,
we selected each origin-destination pair with the origin located approximately west of Colorado (east of Illinois)
and with the destination located approximately east of Illinois (west of Colorado) with probability 0.15 to have
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Uncorrelated Demands
Origins and Destinations Number of Terminals Cost
Total number Location Distribution TEMC CA TEMC CA STD % Decrease
Small Uniform 2 1 644,489 631,008 5150 2.09%

Nonuniform (Industry dataset) 3 1 382,792 353,982 5688 7.53%
Large Uniform 2 3 873,348 858,519 5288 1.70%

Nonuniform 3 4 1,018,598 990,303 8890 2.78%

Correlated Demands
Origins and Destinations Number of Terminals Cost
Total number Location Distribution TEMC CA TEMC CA STD % Decrease
Small Uniform 2 1 688,519 673,474 5124 2.19%

Nonuniform (Industry dataset) 3 1 616,531 589,997 5333 4.30%
Large Uniform 3 1 675,098 599,387 5383 11.21%

Nonuniform 3 4 989,678 965,099 9691 2.48%

Table 2: Numbers of terminals chosen and resulting costs.

zero flow, independently for all origin-destination pairs. In addition, for the four large cases, each remaining
origin-destination pair, including the above mentioned “cross-country” pairs as well as pairs closer to each other,
was assigned zero flow with probability 0.5, again independently for all origin-destination pairs. The remaining
origin-destination pairs were assigned positive flows as described below. The expected number of positive flows
was thus

1
2

I(“large” case) ×
(

total number of origin-destination pairs
−0.15 × the number of “cross-country” origin-destination pairs

)
,

which yielded approximately 5000 positive flows for the small cases and 10,000 positive flows for the large cases.
For the origin-destination pairs having positive flow, we generated the size of the flow according to a uniform

distribution between 0 and an origin-specific upper bound that follows approximately an exponential distribution
among origins. Recall from Figure 6 that the industrial dataset shows that a small fraction of the origin-
destination pairs accounts for a large fraction of the total flow. Similarly, a small fraction of the origins, mostly
the origins of bulky goods, accounts for a large fraction of the total flow. To mimic this skewed flow distribution,
we generated the flow upper bounds of the origins as follows. We first generated a random permutation of the
origins to label the origins from 1 to |O|. Then the flow from each origin i to any destination with positive
origin-destination flow was distributed uniformly on [0, 1500 exp (−µ(i − 1))] , for i ∈ {1, . . . , |O|}. Here, µ was
chosen as 0.06 for the small uniform cases, 0.055 for the small nonuniform cases, 0.045 for the large uniform
cases, and 0.043 for the large nonuniform cases.

Finally, for the four cases with uncorrelated flows, we generated independent random variables with uniform
distributions as described above for every origin-destination pair with positive flow. For the four cases with
correlated flows, we first generated independent uniform random variables as described above, and then multiplied
all these independently generated flows by a single realization of a uniform (0.7, 1.3) random variable. It was of
interest to also test our approach with correlated flow distributions because in practice flows are often correlated.
For example, for home improvement retailers, shipments between origins and destinations tend to be relatively
large during spring and summer.

Results. Table 2 displays the number of terminals chosen in both the CA and TEMC solutions, the average
cost of both solutions, the sample standard deviation of the sample average cost difference given in (90), and

35



the percentage cost improvement of the CA solution over the TEMC solution. All the cases investigated showed
cost improvement of at least 1%, with one case showing a cost improvement of more than 10%. Observe that
the cases with the largest percentage improvements (4.30%, 7.53%, and 11.21%) are also the cases in which the
number of terminals chosen by the CA vs. the TEMC solution differs by more than 1.
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8 Appendix

For a given origin i and destination j, we show how to calculate the probability

P[λi,1,j < λi,0,j ] (91)

and the conditional probability

P [λi,1,j > α |λi,1,j < λi,0,j ] for α ∈ (0, λi,0,j), (92)

which is the key to completing the calculation of the expected linehaul distance E[Λi,j ] in (35).
Recall that the N − 1 terminals besides the center terminal are independent and identically distributed

in a region. To facilitate the calculation of E[Λi,j ], we use the uniform distribution on a rectangular region
[−a, a] × [−b, b] ⊂ R

2, with a > 0 and b > 0. Specifically, terminal n = 1, 2, . . . , N − 1 has coordinates Un ∈ R
2,

where Un is uniformly distributed in [−a, a]× [−b, b], and U1, . . . , UN−1 are independent. The center terminal is
located at (0, 0).
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We use the L1-norm
‖(x, y)‖1 := |x| + |y|

and the associated metric, as in Hall (1984), Daganzo (1987), Hall (1987), Campbell (1990b), and Campbell
(1993a). The L1-norm is used for simplicity; for example, calculations using the L1-norm are much simpler
than when using the L2-norm ‖(x, y)‖2 :=

√
x2 + y2. Furthermore, the ratios between the L1 and L2-metrics

between pairs of points do not vary much. To illustrate this, we show the results of the following simple
experiment. We generate 10,000 pairs of points independently and uniformly distributed in the unit square,
(x1(i), y1(i)), (x2(i), y2(i))), i ∈ {1, . . . , 10, 000}, and calculate the L1 and L2-metrics between every pair of points.
Figure 7 shows the cumulative distribution function of the ratio ‖(x2(i), y2(i))− (x1(i), y1(i))‖2/‖(x2(i), y2(i))−
(x1(i), y1(i))‖1. Note that the ratio varies between 1/

√
2 and 1, and that 0.8 is a pretty good overall approxi-

mation for the ratio.
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Figure 7: Cumulative distribution function of ratio (‖x2, y2‖1)−1‖x1, y1‖2.

Let (x1, y1) denote the coordinates of origin i, and let (x2, y2) denote the coordinates of destination j. Then,
for any terminal n,

λi,n,j := ‖Un − (x1, y1)‖1 + ‖(x2, y2) − Un‖1

The triangle inequality holds for any terminal n, i.e.,

λi,n,j ≥ ‖(x2, y2) − (x1, y1)‖1 = |x2 − x1| + |y2 − y1|

and λi,n,j = |x2 − x1| + |y2 − y1| when terminal n is located within the rectangle with sides parallel with the
coordinate axes and having opposite corners (x1, y1) and (x2, y2). Note that travel through the center terminal
results in a total distance

λi,0,j = |x1| + |x2| + |y1| + |y2|.
Thus, the random variable Λi,j defined in (32) satisfies

|x2 − x1| + |y2 − y1| ≤ Λi,j ≤ |x1| + |x2| + |y1| + |y2|.

To calculate the probabilities in (91) and (92), we consider the following three cases separately:

1. Origin i and destination j are located in opposite quadrants.

2. Origin i and destination j are located in the same quadrant.

3. Origin i and destination j are located in adjacent quadrants.

If origin i and destination j are located in opposite quadrants, then

|x2 − x1| + |y2 − y1| = |x1| + |x2| + |y1| + |y2|
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and thus
Λi,j = λi,0,j = |x1| + |x2| + |y1| + |y2|

for all selections of Ni and Nj . Thus E[Λi,j ] = |x1| + |x2| + |y1| + |y2|.
It remains to consider the cases in which origin i and destination j are not located in opposite quadrants.

Note that since the distribution of Λi,j has support on [|x2 − x1| + |y2 − y1|, |x1| + |x2| + |y1| + |y2|], it follows
that the integral in the expression for E [Λi,j ] in (35) can be written as follows:

∫ λi,0,j

0

P

[
λi,1,j > α

∣∣∣λi,1,j < λi,0,j

]�

dα

= |x2 − x1| + |y2 − y1| +
∫ |x1|+|x2|+|y1|+|y2|

|x2−x1|+|y2−y1|
P

[
λi,1,j > α

∣∣∣λi,1,j < λi,0,j

]�

dα (93)

Note that, because terminals 1, 2, . . . , N − 1 are uniformly distributed in the rectangle [−a, a] × [−b, b], the
probabilities in (91) and (92) can be expressed as

P [λi,1,j < λi,0,j ]

=
Area ({(x, y) ∈ [−a, a] × [−b, b] : ‖(x, y) − (x1, y1)‖1 + ‖(x2, y2) − (x, y)‖1 < |x1| + |x2| + |y1| + |y2|})

4ab
(94)

and

P

[
λi,1,j > α

∣∣∣λi,1,j < λi,0,j

]
=

Area ({(x, y) ∈ [−a, a] × [−b, b] : α < ‖(x, y) − (x1, y1)‖1 + ‖(x2, y2) − (x, y)‖1 < |x1| + |x2| + |y1| + |y2|})
Area ({(x, y) ∈ [−a, a] × [−b, b] : ‖(x, y) − (x1, y1)‖1 + ‖(x2, y2) − (x, y)‖1 < |x1| + |x2| + |y1| + |y2|}) (95)

for α ∈ (0, λi,0,j). The areas in the right side of (94) and (95) are straightforward to calculate. Figures 8
and 9 show the regions, with origin i and destination j located in the same quadrant and in adjacent quadrants
respectively, in which location of terminal n provides a linehaul distance λi,n,j that satisfies λi,n,j ≤ α for
α ∈ (|x2−x1|+|y2−y1|, |x1|+|x2|+|y1|+|y2|). In particular, if terminal n is located on the boundary of the eight-
sided region, then λi,n,j = α, and if terminal n is located in the interior of the eight-sided region, then λi,n,j < α.
Setting α = λi,0,j = |x1| + |x2| + |y1| + |y2| gives the region in which location of a terminal provides a smaller
linehaul distance than through the center terminal. We show that P [λi,1,j > α |λi,1,j < λi,0,j ] is a piecewise
polynomial in α of degree at most two, from which the calculation of

∫ λi,0,j

0
P [λi,1,j > α |λi,1,j < λi,0,j ]

�
dα

follows in a straightforward manner (although it is numerically dangerous due to catastrophic cancellation).
The remainder of the appendix is organized as follows. We provide the detailed calculations for the case in

which the rectangle [−a, a] × [−b, b] contains (x1, y1) and (x2, y2). The calculations for the case in which the
rectangle does not contain (x1, y1) and (x2, y2) are similar, but involve more subcases. Section 8.1 shows the
calculations for the case in which the origin and destination are located in the same quadrant, and Section 8.2
for the case in which they are located in adjacent quadrants.
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8.1 Origin and Destination Located in the Same Quadrant

First, suppose that 0 ≤ x1 ≤ x2 and 0 ≤ y1 ≤ y2. Then i and j are both in quadrant I. For α ∈ (|x2 − x1| +
|y2 − y1|, |x1| + |x2| + |y1| + |y2|), let

RS
1 (α) := Area

({
(x, y) : −a ≤ x ≤ a and − b ≤ y ≤ −α − x1 + x2 + y1 + y2

2

})

RS
2 (α) := Area

({
(x, y) :

−a ≤ x ≤ −α+x1+x2−y1+y2
2

and −α−x1+x2+y1+y2
2 ≤ y ≤ α+x1−x2+y1+y2

2

})

RS
3 (α) := Area

({
(x, y) : −a ≤ x ≤ a and

α + x1 − x2 + y1 + y2

2
≤ y ≤ b

})

RS
4 (α) := Area

({
(x, y) :

α+x1+x2+y1−y2
2 ≤ x ≤ a

and −α−x1+x2+y1+y2
2 ≤ y ≤ α+x1−x2+y1+y2

2

})

RS
5 (α) := Area

({
(x, y) :

2(x − y) ≥ α + x1 + x2 − y1 − y2 and x2 ≤ x ≤ α+x1+x2+y1−y2
2

and −α−x1+x2+y1+y2
2 ≤ y ≤ y1

})

RS
6 (α) := Area

({
(x, y) :

−2(x + y) ≥ α − x1 − x2 − y1 − y2 and −α+x1+x2−y1+y2
2 ≤ x ≤ x1

and −α−x1+x2+y1+y2
2 ≤ y ≤ y1

})

RS
7 (α) := Area

({
(x, y) :

2(y − x) ≥ α − x1 − x2 + y1 + y2 and −α+x1+x2−y1+y2
2 ≤ x ≤ x1

and y2 ≤ y ≤ α+x1−x2+y1+y2
2

})

RS
8 (α) := Area

({
(x, y) :

2(x + y) ≥ α + x1 + x2 + y1 + y2 and x2 ≤ x ≤ α+x1+x2+y1−y2
2

and y2 ≤ y ≤ α+x1−x2+y1+y2
2

})
.

Figure 8 shows the regions defining RS
1 (α), . . . , RS

8 (α) for a value of α ∈ (|x2−x1|+|y2−y1|, |x1|+|x2|+|y1|+|y2|).
The lines 1–8 in Figure 8 form the boundaries of the regions defining RS

1 (α), . . . , RS
8 (α), and it will be convenient

to refer to the line numbers in the figure.
For the special case with α = λi,0,j = |x1| + |x2| + |y1| + |y2|), let

RS
k := RS

k (λi,0,j).

Then, the probabilities in (94) and (95) are given by

P [λi,1,j < λi,0,j ] =
4ab −∑8

k=1 RS
k

4ab

and

P [λi,1,j > α | λi,1,j < λi,0,j ] =
∑8

k=1 RS
k (α) −∑8

k=1 RS
k

4ab −∑8
k=1 RS

k

(96)

Next, we allow i and j to be in any quadrant (as long as i and j are in the same quadrant), and we allow
x1 > x2 or y1 > y2. Using Figure 8, it is easy to observe that regardless of the quadrant in which i and j are,
the areas RS

1 (α), . . . , RS
8 (α) depend only on the minimum and maximum of the distances of i and j from the x

and y axes. Hence, let

x := |x1| ∧ |x2|, x := |x1| ∨ |x2|, y := |y1| ∧ |y2|, and y := |y1| ∨ |y2| (97)
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Figure 8: Example of the region in which location of a terminal provides a smaller linehaul distance than α ∈
(|x2 − x1| + |y2 − y1|, |x1| + |x2| + |y1| + |y2|) if (x1, y1) and (x2, y2) are in the same quadrant.

Then, in general, with i and j in the same quadrant, it follows that

RS
1 (α) = 2a

(−α − x + x + y + y

2
+ b

)
I{α<2b−x+x+y+y}

RS
2 (α) =

(−α + x + x − y + y

2
+ a

)((
b ∧ α + x − x + y + y

2

)
−
(

(−b) ∨ −α − x + x + y + y

2

))
×I{α<2a+x+x−y+y}

RS
3 (α) = 2a

(
b − α + x − x + y + y

2

)
I{α<2b−x+x−y−y}

RS
4 (α) =

(
a − α + x + x + y − y

2

)((
b ∧ α + x − x + y + y

2

)
−
(

(−b) ∨ −α − x + x + y + y

2

))
×I{α<2a−x−x−y+y}

RS
5 (α) =

1
2

((
a ∧ α + x + x + y − y

2

)
−
(

x ∨
(

α + x + x − y − y

2
− b

)))2

×I{α<2(a+b)−x−x+y+y}

RS
6 (α) =

1
2

((
x ∧

(
b +

−α + x + x + y + y

2

))
−
(

(−a) ∨ −α + x + x − y + y

2

))2

RS
7 (α) =

1
2

((
x1 ∧

(
b − α − x − x + y + y

2

))
−
(

(−a) ∨ −α + x + x − y + y

2

))2

×I{α<2(a+b)+x+x−y−y}

RS
8 (α) =

1
2

((
a ∧ α + x + x + y − y

2

)
−
(

x ∨
(

α + x + x + y + y

2
− b

)))2

×I{α<2(a+b)−x−x−y−y}.
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Note that in these area calculations one must keep in mind that part of the boundary of the eight-sided region
in Figure 8 may be outside the rectangle [−a, a] × [−b, b]. Thus, depending on the boundary of the eight-sided
region, some of the areas RS

1 (α), . . . , RS
8 (α) may be 0. In the expressions for RS

1 (α), . . . , RS
8 (α) above, this

is accomplished with the indicator functions (except for RS
6 (α), because a > 0, b > 0, and x + y > 0 imply

RS
6 (α) > 0).

To finish the expected linehaul distance calculations, it follows from (93) and (96) that we must calculate

∫ |x1|+|x2|+|y1|+|y2|

|x2−x1|+|y2−y1|
P [λi,1,j > α | λi,1,j < λi,0,j ]

�
dα

=
∫ |x1|+|x2|+|y1|+|y2|

|x2−x1|+|y2−y1|

[∑8
k=1 RS

k (α) −∑8
k=1 RS

k

4ab −∑8
k=1 RS

k

]�

dα. (98)

To calculate (98), we write
∑8

k=1 RS
k (α) as a piecewise polynomial in α of degree at most two. We will choose

A(α), B(α), C1(α), and C2 such that

A(α)α2 + B(α)α + C1(α) =
8∑

k=1

RS
k (α) and C2 =

8∑
k=1

RS
k .

Considering the interval over which each indicator function in the expressions for RS
1 (α), . . . , RS

8 (α), is 0, the
interval [|x2 − x1| + |y2 − y1|, |x1| + |x2| + |y1| + |y2|] can be partitioned into intervals over which A(α), B(α),
and C1(α) are constant. Also, for C(α) := C1(α) − C2,[

8∑
k=1

RS
k (α) −

8∑
k=1

RS
k

]�

=
[
A(α)α2 + B(α)α + C(α)

]�
=

∑
{

�1,�2,�3 :
�1+�2+�3=�

}
�!

�1!�2!�3!
[
A(α)α2

]�1 [B(α)α]�2 [C(α)]�3

=
∑

{
�1,�2,�3 :

�1+�2+�3=�

}
�!

�1!�2!�3!
A(α)�1B(α)�2C(α)�3α2�1+�2 ,

and thus it follows from (98) that

∫ |x1|+|x2|+|y1|+|y2|

|x2−x1|+|y2−y1|
P [λi,1,j > α | λi,1,j < λi,0,j ]

�
dα

=

[
1

4ab −∑8
k=1 RS

k

]� ∫ |x1|+|x2|+|y1|+|y2|

|x2−x1|+|y2−y1|

∑
{

�1,�2,�3 :
�1+�2+�3=�

}
�!

�1!�2!�3!
A(α)�1B(α)�2C(α)�3α2�1+�2 dα. (99)

Calculating (99) is easy when the shaded region in Figure 8 is inside the rectangle [−a, a] × [−b, b] for all
α ∈ (|x2 − x1| + |y2 − y1|, |x1| + |x2| + |y1| + |y2|). In this case, A(α), B(α), and C1(α) are constant for all
α ∈ (|x2 − x1| + |y2 − y1|, |x1| + |x2| + |y1| + |y2|). For example, suppose that a = b and

(x1, y1) =
(

1
4
a,

1
4
a

)
and (x2, y2) =

(
1
2
a,

1
2
a

)
.

Then, |x2 − x1| + |y2 − y1| = a/2 and |x1| + |x2| + |y1| + |y2| = 3a/2, and, for all α ∈ (a/2, 3a/2),

A(α) = −1
2
, B(α) = 0, and C1(α) =

65
16

a2.
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Furthermore,
∑8

k=1 RS
k = 25a2/8. Suppose, for example, that � = 1. Then, (99) is easily calculated as

∫ 3a/2

a/2

P [λi,1,j > α | λi,1,j < λi,0,j ] dα =
1

4a2 − 25
8 a2

∫ 3a/2

a/2

[
A(α)α2 + B(α)α + C(α)

]
dα

=
1

7
8a2

∫ 3a/2

a/2

[
−1

2
α2 +

(
65
16

a2 − 25
8

a2

)]
dα

=
2
21

a.

Note that when α = 3a/2, then RS
3 (α) = RS

4 (α) = 0. In particular, when α = 3a/2, the lines 5 and 3 are
exactly on the boundary of the rectangle [−a, a]× [−a, a]. Consider a different choice of (x1, y1) and (x2, y2), for
example,

(x1, y1) =
(

1
4
a,

1
4
a

)
and (x2, y2) =

(
3
4
a,

3
4
a

)
.

Then RS
3 (α) = RS

4 (α) = 0 for α in a nonempty portion of the interval

(|x2 − x1| + |y2 − y1|, |x1| + |x2| + |y1| + |y2|) = (a, 2a) ,

which causes A(α), B(α), and C1(α) to be piecewise constant with multiple pieces (rather than constant) over the
interval (|x2 − x1| + |y2 − y1|, |x1| + |x2| + |y1| + |y2|). Specifically, RS

3 (α) = RS
4 (α) = 0 for all α ∈ [3a/2, 2a).

Furthermore,

A(α) =
{ − 1

2 if a < α < 3
2a

0 if 3
2a ≤ α < 2a

B(α) =
{

0 if a < α < 3
2a

−a if 3
2a ≤ α < 2a

C1(α) =
{

17
4 a2 if a < α < 3

2a
37
8 a2 if 3

2a ≤ α < 2a
,

and
∑8

k=1 RS
k = 21a2/8. When � = 1, (99) becomes

∫ 2a

a

P [λi,1,j > α | λi,1,j < λi,0,j ] dα

=
1

4a2 − 21
8 a2

∫ 2a

a

[
A(α)α2 + B(α)α + C(α)

]
dα

=
8
11

1
a2

(∫ 3a/2

a

[
−1

2
α2 +

(
17
4

a2 − 21
8

a2

)]
dα +

∫ 2a

3a/2

[
−aα +

(
37
8

a2 − 21
8

a2

)]
dα

)

=
13
33

a.

In general, integrating (99) requires partitioning the interval (|x2 − x1| + |y2 − y1|, |x1| + |x2| + |y1| + |y2|)
into the subintervals over which A(α), B(α), and C(α) are constant. The intervals of α-values over which lines
1–8 are inside or outside the rectangle [−a, a]×[−b, b], determine the intervals of α-values over which the triangles
RS

5 (α), RS
7 (α), and RS

8 (α) have positive areas, and the intervals of α-values over which A(α), B(α), and C1(α)
are constant, from which the calculation of (99) follows directly. We first consider the cases determined by which
of the lines 1, 3, 5, and 7 in Figure 8 are outside the rectangle [−a, a] × [−b, b], and then, if required, consider
further subcases determined by which triangles have positive area. Fortunately, dependencies imply that many
of the 24 × 23 conceivable cases cannot occur. For example, examination of Figure 8 shows that if line 3 is inside
the rectangle so that (α + x1 + x2 + y1 − y2)/2 < a, then α < 2a − x1 − x2 − y1 + y2 ≤ 2a + x1 + x2 − y1 + y2,
which implies that line 7 is also inside the rectangle. We show only the cases that can occur.
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8.1.1 Calculating the piecewise constant functions A(α), B(α), and C(α)

For easy reference to Figure 8, and without loss of generality, assume that x1 = x, x2 = x, y1 = y, and y2 = y.
Note that in this case RS

6 (α) > 0 for all α ∈ (|x2 − x1| + |y2 − y1|, |x1| + |x2| + |y1| + |y2|). The following cases
can occur:

1. Lines 1, 3, 5, and 7 are inside the rectangle, that is,

α ∈ [|x2 − x1| + |y2 − y1|, (2a + x1 + x2 − y1 + y2) ∧ (2a − x1 − x2 − y1 + y2)

∧(2b − x1 + x2 + y1 + y2) ∧ (2b − x1 + x2 − y1 − y2) ∧ (|x1| + |x2| + |y1| + |y2|))
which implies that RS

5 (α) > 0, RS
7 (α) > 0, and RS

8 (α) > 0. Then,

A(α) = −1
2

B(α) = 0

C1(α) = 4ab +
1
2

(x2 − x1)
2 +

1
2

(y2 − y1)
2
.

2. Lines 1, 5, and 7 are inside the rectangle, but line 3 is outside, that is,

α ∈ [(|x2 − x1| + |y2 − y1|) ∨ (2a − x1 − x2 − y1 + y2),

(2a + x1 + x2 − y1 + y2) ∧ (2b − x1 + x2 + y1 + y2) ∧ (2b − x1 + x2 − y1 − y2) ∧ (|x1| + |x2| + |y1| + |y2|))
which implies that RS

5 (α) > 0, RS
7 (α) > 0, and RS

8 (α) > 0. Then,

A(α) = −1
4

B(α) =
1
2
(x1 + x2) − a

C1(α) = a(a + 4b − x1 − x2) +
1
2
(x2

1 + x2
2) +

1
4
(x2 − x1)2 +

1
4
(y2 − y1)2

3. Lines 1, 3, and 7 are inside the rectangle, but line 5 is outside, that is,

α ∈ [(|x2 − x1| + |y2 − y1|) ∨ (2b − x1 + x2 − y1 − y2),

(2a + x1 + x2 − y1 + y2) ∧ (2a − x1 − x2 − y1 + y2) ∧ (2b − x1 + x2 + y1 + y2) ∧ (|x1| + |x2| + |y1| + |y2|))
which implies that RS

5 (α) > 0, RS
7 (α) > 0, and RS

8 (α) > 0. Then,

A(α) = −1
4

B(α) =
1
2
(y1 + y2) − b

C1(α) = b(4a + b − y1 − y2) +
1
4
(x2 − x1)2 +

1
4
(y2 − y1)2 +

1
2
(y2

1 + y2
2)

4. Lines 1 and 7 are inside the rectangle, but lines 3 and 5 are outside, that is,

α ∈ [(|x2 − x1| + |y2 − y1|) ∨ (2a − x1 − x2 − y1 + y2) ∨ (2b − x1 + x2 − y1 − y2),

(2a + x1 + x2 − y1 + y2) ∧ (2b − x1 + x2 + y1 + y2) ∧ (|x1| + |x2| + |y1| + |y2|))
which implies that RS

5 (α) > 0 and RS
7 (α) > 0. The following two subcases can occur:

(a) Part of line 4 is inside the rectangle, that is,

α ∈ [(|x2 − x1| + |y2 − y1|) ∨ (2a − x1 − x2 − y1 + y2) ∨ (2b − x1 + x2 − y1 − y2),

(2a + x1 + x2 − y1 + y2) ∧ (2b − x1 + x2 + y1 + y2) ∧ (2(a + b) − x1 − x2 − y1 − y2) ∧ (|x1| + |x2| + |y1| + |y2|))

45



which implies that RS
8 (α) > 0. Then,

A(α) = 0

B(α) = −(a + b) +
1
2
(x1 + x2 + y1 + y2)

C1(α) = (a + b)2 + 2ab − a(x1 + x2) − b(y1 + y2) +
1
2
(
x2

1 + x2
2 + y2

1 + y2
2

)
.

(b) Line 4 is outside the rectangle, that is,

α ∈ [(|x2 − x1| + |y2 − y1|) ∨ (2a − x1 − x2 − y1 + y2) ∨ (2b − x1 + x2 − y1 − y2) ∨ (2(a + b) − x1 − x2 − y1 − y2),

(2a + x1 + x2 − y1 + y2) ∧ (2b − x1 + x2 + y1 + y2) ∧ (|x1| + |x2| + |y1| + |y2|))

which implies that RS
8 (α) = 0. Then,

A(α) = −1
8

B(α) = −1
2
(a + b) +

1
4
(x1 + x2 + y1 + y2)

C1(α) =
1
2
(a + b)2 + 2ab +

1
2
(b − a)(x1 + x2 − y1 − y2).

5. Lines 1 and 5 are inside the rectangle, but lines 3 and 7 are outside, that is,

α ∈ [(|x2 − x1| + |y2 − y1|) ∨ (2a + x1 + x2 − y1 + y2) ∨ (2a − x1 − x2 − y1 + y2),

(2b − x1 + x2 + y1 + y2) ∧ (2b − x1 + x2 − y1 − y2) ∧ (|x1| + |x2| + |y1| + |y2|))

which implies that RS
5 (α) > 0, RS

7 (α) > 0, and RS
8 (α) > 0. Then,

A(α) = 0

B(α) = −2a

C1(α) = 2a(a + 2b) + x2
1 + x2

2.

6. Lines 3 and 7 are inside the rectangle, but lines 1 and 5 are outside, that is,

α ∈ [(|x2 − x1| + |y2 − y1|) ∨ (2b − x1 + x2 + y1 + y2) ∨ (2b − x1 + x2 − y1 − y2),

(2a + x1 + x2 − y1 + y2) ∧ (2a − x1 − x2 − y1 + y2) ∧ (|x1| + |x2| + |y1| + |y2|))

which implies that RS
5 (α) > 0, RS

7 (α) > 0, and RS
8 (α) > 0. Then,

A(α) = 0

B(α) = −2b

C1(α) = 2b(2a + b) + y2
1 + y2

2 .

7. Line 7 is inside the rectangle, but lines 1, 3, and 5 are outside, that is,

α ∈ [(|x2 − x1| + |y2 − y1|) ∨ (2a − x1 − x2 − y1 + y2) ∨ (2b − x1 + x2 + y1 + y2) ∨ (2b − x1 + x2 − y1 − y2),

(2a + x1 + x2 − y1 + y2) ∧ (|x1| + |x2| + |y1| + |y2|))

which implies that RS
7 (α) > 0. The following three subcases can occur:

(a) Parts of lines 2 and 4 are inside the rectangle, that is,

α ∈ [(|x2 − x1| + |y2 − y1|) ∨ (2a − x1 − x2 − y1 + y2) ∨ (2b − x1 + x2 + y1 + y2) ∨ (2b − x1 + x2 − y1 − y2),

(2a + x1 + x2 − y1 + y2) ∧ (2(a + b) − x1 − x2 − y1 − y2) ∧ (|x1| + |x2| + |y1| + |y2|))
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which implies that RS
5 (α) > 0 and RS

8 (α) > 0. Then,

A(α) =
1
4

B(α) = −3
2
a − 2b +

1
2
(x1 + x2) − 1

4
(y1 + y2)

C1(α) = a2 + 4ab + 2b2 − a(x1 + x2) +
1
4

(x1 + x2)
2 +

3
4

(y1 + y2)
2 − y1y2.

(b) Part of line 2 is inside the rectangle and line 4 is outside the rectangle, that is,

α ∈ [(|x2 − x1| + |y2 − y1|) ∨ (2a − x1 − x2 − y1 + y2) ∨ (2b − x1 + x2 + y1 + y2)

∨(2b − x1 + x2 − y1 − y2) ∨ (2(a + b) − x1 − x2 − y1 − y2),

(2a + x1 + x2 − y1 + y2) ∧ (2(a + b) − x1 − x2 + y1 + y2) ∧ (|x1| + |x2| + |y1| + |y2|))
which implies that RS

5 (α) > 0 and RS
8 (α) = 0. Then,

A(α) =
1
8

B(α) = −1
2
a − 3

2
b +

1
4
(x1 + x2 − y1 − y2)

C1(α) = (a + b)2 + 2ab − a(x1 + x2) + (a + b)(y1 + y2) − 3
4
(x2

1 + x2
2) −

1
4
(y2

1 + y2
2)

+(x1 + x2 − y1 − y2)2.

(c) Lines 2 and 4 are outside the rectangle, that is,

α ∈ [(|x2 − x1| + |y2 − y1|) ∨ (2a − x1 − x2 − y1 + y2) ∨ (2b − x1 + x2 + y1 + y2)

∨(2b − x1 + x2 − y1 − y2) ∨ (2(a + b) − x1 − x2 + y1 + y2),

(2a + x1 + x2 − y1 + y2) ∧ (|x1| + |x2| + |y1| + |y2|))
which implies that RS

5 (α) = RS
8 (α) = 0. Then,

A(α) = 0

B(α) = −b

C1(α) = b(2a + b + x1 + x2) +
1
2
(y2

1 + y2
2).

8. Line 1 is inside the rectangle, but lines 3, 5 and 7 are outside, that is,

α ∈ [(|x2 − x1| + |y2 − y1|) ∨ (2a + x1 + x2 − y1 + y2) ∨ (2a − x1 − x2 − y1 + y2) ∨ (2b − x1 + x2 − y1 − y2),

(2b − x1 + x2 + y1 + y2) ∧ (|x1| + |x2| + |y1| + |y2|))
which implies that RS

5 (α) > 0. The following three subcases can occur:

(a) Parts of lines 4 and 6 are inside the rectangle, that is,

α ∈ [(|x2 − x1| + |y2 − y1|) ∨ (2a + x1 + x2 − y1 + y2) ∨ (2a − x1 − x2 − y1 + y2) ∨ (2b − x1 + x2 − y1 − y2),

(2b − x1 + x2 + y1 + y2) ∧ (2(a + b) − x1 − x2 − y1 − y2) ∧ (|x1| + |x2| + |y1| + |y2|))
which implies that RS

7 (α) > 0 and RS
8 (α) > 0. Then,

A(α) =
1
4

B(α) = −2a − b +
1
2
(y1 + y2)

C1(α) = 2a2 + 4ab + b2 − b(y1 + y2) +
3
4

(x1 + x2)
2 +

1
4

(y1 + y2)
2 +

1
2
x1x2.
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(b) Part of line 6 is inside the rectangle and line 4 is outside the rectangle, that is,

α ∈ [(|x2 − x1| + |y2 − y1|) ∨ (2a + x1 + x2 − y1 + y2) ∨ (2a − x1 − x2 − y1 + y2)

∨(2b − x1 + x2 − y1 − y2) ∨ (2(a + b) − x1 − x2 − y1 − y2),

(2b − x1 + x2 + y1 + y2) ∧ (2(a + b) + x1 + x2 − y1 − y2) ∧ (|x1| + |x2| + |y1| + |y2|))
which implies that RS

7 (α) > 0 and RS
8 (α) = 0. Then,

A(α) =
1
8

B(α) = −3
2
a − 1

2
b +

1
4
(−x1 − x2 + y1 + y2)

C1(α) =
3
2
a2 + 3ab +

1
2
b2 +

1
2
(a + b)(x1 + x2) +

1
2
(a − b)(y1 + y2)

+
1
2
(
x2

1 + x2
2

)
+

1
8

(x1 + x2 − y1 − y2)
2
.

(c) Lines 4 and 6 are outside the rectangle, that is,

α ∈ [(|x2 − x1| + |y2 − y1|) ∨ (2a + x1 + x2 − y1 + y2) ∨ (2a − x1 − x2 − y1 + y2)

∨(2b − x1 + x2 − y1 − y2) ∨ (2(a + b) + x1 + x2 − y1 − y2),

(2b − x1 + x2 + y1 + y2) ∧ (|x1| + |x2| + |y1| + |y2|))
which implies that RS

7 (α) = RS
8 (α) = 0. Then,

A(α) = 0

B(α) = −a

C1(α) = a(a + 2b + y1 + y2) +
1
2
(x2

1 + x2
2).

9. Lines 1, 3, 5, and 7 are outside the rectangle, that is,

α ∈ [(|x2 − x1| + |y2 − y1|) ∨ (2a + x1 + x2 − y1 + y2) ∨ (2a − x1 − x2 − y1 + y2)

∨(2b − x1 + x2 + y1 + y2) ∨ (2b − x1 + x2 − y1 − y2), |x1| + |x2| + |y1| + |y2|)
The following five subcases can occur:

(a) Parts of lines 2, 4, and 6 are inside the rectangle, that is,

α ∈ [(|x2 − x1| + |y2 − y1|) ∨ (2a + x1 + x2 − y1 + y2) ∨ (2a − x1 − x2 − y1 + y2)

∨(2b − x1 + x2 + y1 + y2) ∨ (2b − x1 + x2 − y1 − y2),

(2(a + b) − x1 − x2 − y1 − y2) ∧ (|x1| + |x2| + |y1| + |y2|))
which implies that RS

5 (α) > 0, RS
7 (α) > 0, and RS

8 (α) > 0. Then,

A(α) =
1
2

B(α) = −2(a + b)

C1(α) = 2(a + b)2 +
1
2
(
x2

1 + x2
2 + y2

1 + y2
2

)
+ x1x2 + y1y2.

(b) Parts of lines 2 and 6 are inside the rectangle and line 4 is outside the rectangle, that is,

α ∈ [(|x2 − x1| + |y2 − y1|) ∨ (2a + x1 + x2 − y1 + y2) ∨ (2a − x1 − x2 − y1 + y2)

∨(2b − x1 + x2 + y1 + y2) ∨ (2b − x1 + x2 − y1 − y2) ∨ (2(a + b) − x1 − x2 − y1 − y2),

(2(a + b) + x1 + x2 − y1 − y2) ∧ (2(a + b) − x1 − x2 + y1 + y2) ∧ (|x1| + |x2| + |y1| + |y2|))
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which implies that RS
5 (α) > 0, RS

7 (α) > 0, and RS
8 (α) = 0. Then,

A(α) =
3
8

B(α) = −3
2
a − 3

2
b − 1

4
(x1 + x2 + y1 + y2)

C1(α) =
3
2

(a + b) +
3
4

(x1 + x2 + y1 + y2) .

(c) Part of line 6 is inside the rectangle and lines 2 and 4 are outside the rectangle, that is,

α ∈ [(|x2 − x1| + |y2 − y1|) ∨ (2a + x1 + x2 − y1 + y2) ∨ (2a − x1 − x2 − y1 + y2)

∨(2b − x1 + x2 + y1 + y2) ∨ (2b − x1 + x2 − y1 − y2) ∨ (2(a + b) − x1 − x2 + y1 + y2),

(2(a + b) + x1 + x2 − y1 − y2) ∧ (|x1| + |x2| + |y1| + |y2|))

which implies that RS
7 (α) > 0 and RS

5 (α) = RS
8 (α) = 0. Then,

A(α) =
1
4

B(α) = −a − b − 1
2
x1 − 1

2
x2

C1(α) =
(

a + b +
1
2
(x1 + x2)

)2

+
1
4

(y1 + y2)
2
.

(d) Part of line 2 is inside the rectangle and lines 4 and 6 are outside the rectangle, that is,

α ∈ [(|x2 − x1| + |y2 − y1|) ∨ (2a + x1 + x2 − y1 + y2) ∨ (2a − x1 − x2 − y1 + y2)

∨(2b − x1 + x2 + y1 + y2) ∨ (2b − x1 + x2 − y1 − y2) ∨ (2(a + b) + x1 + x2 − y1 − y2),

(2(a + b) − x1 − x2 + y1 + y2) ∧ (|x1| + |x2| + |y1| + |y2|))

which implies that RS
5 (α) > 0 and RS

7 (α) = RS
8 (α) = 0. Then,

A(α) =
1
4

B(α) = −a − b − 1
2
y1 − 1

2
y2

C1(α) =
(

a + b +
1
2
(y1 + y2)

)2

+
1
4

(x1 + x2)
2
.

(e) Lines 2, 4, and 6 are outside the rectangle, that is,

α ∈ [(|x2 − x1| + |y2 − y1|) ∨ (2a + x1 + x2 − y1 + y2) ∨ (2a − x1 − x2 − y1 + y2)

∨(2b − x1 + x2 + y1 + y2) ∨ (2b − x1 + x2 − y1 − y2) ∨ (2(a + b) + x1 + x2 − y1 − y2)

∨(2(a + b) − x1 − x2 + y1 + y2), |x1| + |x2| + |y1| + |y2|)

which implies that RS
5 (α) = RS

7 (α) = RS
8 (α) = 0. Then,

A(α) =
1
8

B(α) = −1
2

(a + b) − 1
4

(x1 + x2 + y1 + y2)

C1(α) =
1
2
(a + b) (a + b + x1 + x2 + y1 + y2)

+
1
8

(x1 + x2 + y1 + y2)
2
.
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8.2 Origin and Destination Located in Adjacent Quadrants

First, suppose that x1 ≤ 0 ≤ x2 and 0 ≤ y1 ≤ y2. Then i is in quadrant II and j is in quadrant I, as in Figure 9.
For α ∈ (|x2 − x1| + |y2 − y1|, |x1| + |x2| + |y1| + |y2|), let

RA
1 (α) := Area

({
(x, y) : −a ≤ x ≤ a and − b ≤ y ≤ −α − x1 + x2 + y1 + y2

2

})

RA
2 (α) := Area

({
(x, y) :

−a ≤ x ≤ −α+x1+x2−y1+y2
2

and −α−x1+x2+y1+y2
2 ≤ y ≤ α+x1−x2+y1+y2

2

})

RA
3 (α) := Area

({
(x, y) : −a ≤ x ≤ a and

α + x1 − x2 + y1 + y2

2
≤ y ≤ b

})

RA
4 (α) := Area

({
(x, y) :

α+x1+x2+y1−y2
2 ≤ x ≤ a

and −α−x1+x2+y1+y2
2 ≤ y ≤ α+x1−x2+y1+y2

2

})

RA
5 (α) := Area

({
(x, y) :

2(x − y) ≥ α + x1 + x2 − y1 − y2 and x2 ≤ x ≤ α+x1+x2+y1−y2
2

and −α−x1+x2+y1+y2
2 ≤ y ≤ y1

})

RA
6 (α) := Area

({
(x, y) :

2(x + y) ≥ −α + x1 + x2 + y1 + y2 and −α+x1+x2−y1+y2
2 ≤ x ≤ x1

and −α−x1+x2+y1+y2
2 ≤ y ≤ y1

})

RA
7 (α) := Area

({
(x, y) :

2(y − x) ≥ α − x1 − x2 + y1 + y2 and −α+x1+x2−y1+y2
2 ≤ x ≤ x1

and y2 ≤ y ≤ α+x1−x2+y1+y2
2

})

RA
8 (α) := Area

({
(x, y) :

2(x + y) ≥ α + x1 + x2 + y1 + y2 and x2 ≤ x ≤ α+x1+x2+y1−y2
2

and y2 ≤ y ≤ α+x1−x2+y1+y2
2

})
.

Figure 9 shows the regions defining RA
1 (α), . . . , RA

8 (α) for a value of α ∈ (|x2−x1|+|y2−y1|, |x1|+|x2|+|y1|+|y2|).
The lines 1–8 in Figure 9 form the boundaries of the regions defining RA

1 (α), . . . , RA
8 (α).

For the special case with α = λi,0,j = |x1| + |x2| + |y1| + |y2|), let

RA
k := RA

k (λi,0,j).

Then, the probabilities in (94) and (95) are given by

P [λi,1,j < λi,0,j ] =
4ab −∑8

k=1 RA
k

4ab

and

P [λi,1,j > α | λi,1,j < λi,0,j ] =
∑8

k=1 RA
k (α) −∑8

k=1 RA
k

4ab −∑8
k=1 RA

k

(100)

Next, we allow i and j to be in any adjacent quadrants, and we allow x1 > x2 or y1 > y2. It is easy to see
how to choose a new coordinate system with the same origin and scale as the original coordinate system and
with axes coinciding with the axes of the original coordinate system, so that j will be in the new quadrant I and
i will be in the new quadrant II. Furthermore, using Figure 9, it is easy to observe that in the new coordinate
system, the areas RA

1 (α), . . . , RA
8 (α) depend only on the minimum and maximum of the distances of i and j

from the new x axis. Hence, if x1 and x2 have opposite signs and y1 and y2 have the same sign, then let

x := −|x1|, x := |x2|, y := |y1| ∧ |y2|, y := |y1| ∨ |y2|, a′ := a, and b′ := b (101)

Otherwise, if x1 and x2 have the same sign and y1 and y2 have opposite signs, then let

x := −|y1|, x := |y2|, y := |x1| ∧ |x2|, y := |x1| ∨ |x2|, a′ := b, and b′ := a (102)
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Figure 9: Example of the region in which location of a terminal provides a smaller L1 linehaul distance than
α ∈ (|x2 − x1| + |y2 − y1|, |x1| + |x2| + |y1| + |y2|) if (x1, y1) and (x2, y2) are in adjacent quadrants.

Then

RA
1 (α) = −a′α + a′(−x + x + y + y) + 2a′b′

RA
2 (α) =

((
b′ ∧ α + x − x + y + y

2

)
− −α − x + x + y + y

2

)(
a′ +

−α + x + x − y + y

2

)
×I{α<2a′+x+x−y+y}

RA
3 (α) = 2a′

(
b′ − α + x − x + y + y

2

)
I{α<2b′−x+x−y−y}

RA
4 (α) =

(
a′ − α + x + x + y − y

2

)((
b′ ∧ α + x − x + y + y

2

)
− −α − x + x + y + y

2

)
×I{α<2a′−x−x−y+y}

RA
5 (α) =

1
2

((
a′ ∧ α + x + x + y − y

2

)
− x

)2

RA
6 (α) =

1
2

(
x −

(
(−a′) ∨ −α + x + x − y + y

2

))2

RA
7 (α) =

1
2

((
x ∧

(
b′ − α − x − x + y + y

2

))
−
(

(−a′) ∨ −α + x + x − y + y

2

))2

×I{α<2(a′+b′)+x+x−y−y}

RA
8 (α) =

1
2

((
a′ ∧ α + x + x + y − y

2

)
−
(

x ∨
(

α + x + x + y + y

2
− b′

)))2

×I{α<2(a′+b′)−x−x−y−y}
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Similar to Section 8.1, we write
∑8

k=1 RA
k (α) as a piecewise polynomial in α of degree at most two, and we

choose A(α), B(α), C1(α), and C2 such that

A(α)α2 + B(α)α + C1(α) =
8∑

k=1

RA
k (α) and C2 =

8∑
k=1

RA
k .

8.2.1 Calculating the piecewise constant functions A(α), B(α), and C(α)

For easy reference to Figure 9, and without loss of generality, assume that x1 = x, x2 = x, y1 = y, y2 = y, a = a′,
and b = b′. Note that in this case RA

5 (α) > 0 and RA
6 (α) > 0 for all α ∈ (|x2 − x1| + |y2 − y1|, |x1| + |x2| + |y1| + |y2|).

As in Section 8.1, when partitioning the interval (|x2 − x1| + |y2 − y1|, |x1| + |x2| + |y1| + |y2|) into the subinter-
vals over which A(α), B(α), and C(α) are constant, we show only the cases that can occur, namely the following
cases:

1. Lines 2, 4, and 6 are inside the rectangle, that is,

α ∈ [|x2 − x1| + |y2 − y1|,
(2a + x1 + x2 − y1 + y2) ∧ (2b − x1 + x2 − y1 − y2) ∧ (2a − x1 − x2 − y1 + y2) ∧ (|x1| + |x2| + |y1| + |y2|))

which implies that RA
7 (α) > 0 and RA

8 (α) > 0. Then,

A(α) = −1
2

B(α) = 0

C1(α) = 4ab +
1
2
(
x2

1 + x2
2 + y2

1 + y2
2

)− x1x2 − y1y2.

2. Lines 2 and 4 are inside the rectangle, but line 6 is outside, that is,

α ∈ [(|x2 − x1| + |y2 − y1|) ∨ (2a + x1 + x2 − y1 + y2),

(2b − x1 + x2 − y1 − y2) ∧ (2a − x1 − x2 − y1 + y2) ∧ (|x1| + |x2| + |y1| + |y2|))

which implies that RA
7 (α) > 0 and RA

8 (α) > 0. Then,

A(α) = −1
4

B(α) = −a − 1
2
(x1 + x2)

C1(α) = a(a + 4b + x1 + x2) +
3
4
(
x2

1 + x2
2

)
+

1
4

(y2 − y1)
2 − 1

2
x1x2.

3. Lines 4 and 6 are inside the rectangle, but line 2 is outside, that is,

α ∈ [(|x2 − x1| + |y2 − y1|) ∨ (2a − x1 − x2 − y1 + y2),

(2a + x1 + x2 − y1 + y2) ∧ (2b − x1 + x2 − y1 − y2) ∧ (|x1| + |x2| + |y1| + |y2|))

which implies that RA
7 (α) > 0 and RA

8 (α) > 0. Then,

A(α) = −1
4

B(α) = −a +
1
2
(x1 + x2)

C1(α) = a(a + 4b − x1 − x2) +
3
4
(
x2

1 + x2
2

)
+

1
4

(y2 − y1)
2 − 1

2
x1x2.
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4. Lines 2 and 6 are inside the rectangle, but line 4 is outside, that is,

α ∈ [(|x2 − x1| + |y2 − y1|) ∨ (2b − x1 + x2 − y1 − y2),

(2a + x1 + x2 − y1 + y2) ∧ (2a − x1 − x2 − y1 + y2) ∧ (|x1| + |x2| + |y1| + |y2|))

which implies that RA
7 (α) > 0 and RA

8 (α) > 0. Then,

A(α) = −1
4

B(α) = −b +
1
2
(y1 + y2)

C1(α) = b(4a + b − y1 − y2) +
1
4

(x2 − x1)
2 +

3
4
(
y2
1 + y2

2

)− 1
2
y1y2.

5. Line 2 is inside the rectangle, but lines 4 and 6 are outside, that is,

α ∈ [(|x2 − x1| + |y2 − y1|) ∨ (2a + x1 + x2 − y1 + y2) ∨ (2b − x1 + x2 − y1 − y2),

(2a − x1 − x2 − y1 + y2) ∧ (|x1| + |x2| + |y1| + |y2|))

which implies that R8(α) > 0. The following two subcases can occur:

(a) Part of line 5 is inside the rectangle, that is,

α ∈ [(|x2 − x1| + |y2 − y1|) ∨ (2a + x1 + x2 − y1 + y2) ∨ (2b − x1 + x2 − y1 − y2),

(2a − x1 − x2 − y1 + y2) ∧ (2(a + b) + x1 + x2 − y1 − y2) ∧ (|x1| + |x2| + |y1| + |y2|))

which implies that R7(α) > 0. Then,

A(α) = 0

B(α) = −(a + b) − 1
2
(x1 + x2) +

1
2
(y1 + y2)

C1(α) = a2 + b2 + 4ab + a(x1 + x2) − b(y1 + y2) +
1
2
(
x2

1 + x2
2 + y2

1 + y2
2

)
.

(b) Line 5 is outside the rectangle, that is,

α ∈ [(|x2 − x1| + |y2 − y1|) ∨ (2a + x1 + x2 − y1 + y2)

∨(2b − x1 + x2 − y1 − y2) ∨ (2(a + b) + x1 + x2 − y1 − y2),

(2a − x1 − x2 − y1 + y2) ∧ (|x1| + |x2| + |y1| + |y2|))

which implies that R7(α) = 0. Then,

A(α) = −1
8

B(α) = −1
2
(a + b) − 1

4
(x1 + x2) +

1
4
(y1 + y2)

C1(α) =
1
2
(
a2 + b2

)
+ 3ab +

1
2
(a − b)(x1 + x2 + y1 + y2)

+
3
8
(
x2

1 + x2
2 + y2

1 + y2
2

)
+

1
4

(−x1x2 + x1y1 + x1y2 + x2y1 + x2y2 − y1y2) .

6. Line 6 is inside the rectangle, but lines 2 and 4 are outside, that is,

α ∈ [(|x2 − x1| + |y2 − y1|) ∨ (2a − x1 − x2 − y1 + y2) ∨ (2b − x1 + x2 − y1 − y2),

(2a + x1 + x2 − y1 + y2) ∧ (|x1| + |x2| + |y1| + |y2|))

which implies that R7(α) > 0. The following two subcases can occur:
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(a) Part of line 3 is inside the rectangle, that is,

α ∈ [(|x2 − x1| + |y2 − y1|) ∨ (2a − x1 − x2 − y1 + y2) ∨ (2b − x1 + x2 − y1 − y2),

(2a + x1 + x2 − y1 + y2) ∧ (2(a + b) − x1 − x2 − y1 − y2) ∧ (|x1| + |x2| + |y1| + |y2|))

which implies that R8(α) > 0. Then,

A(α) = 0

B(α) = −(a + b) +
1
2
(x1 + x2 + y1 + y2)

C1(α) = 4ab + a2 + b2 − a(x1 + x2) − b(y1 + y2) +
1
2
(x2

1 + x2
2 + y2

1 + y2
2).

(b) Line 3 is outside the rectangle, that is,

α ∈ [(|x2 − x1| + |y2 − y1|) ∨ (2a − x1 − x2 − y1 + y2)

∨(2b − x1 + x2 − y1 − y2) ∨ (2(a + b) − x1 − x2 − y1 − y2),

(2a + x1 + x2 − y1 + y2) ∧ (|x1| + |x2| + |y1| + |y2|))

which implies that R8(α) = 0. Then,

A(α) = −1
8

B(α) = −1
2
(a + b) +

1
4
(x1 + x2) +

1
4
(y1 + y2)

C1(α) = 3ab +
1
2
(a2 + b2) +

1
2
(b − a)(x1 + x2 − y1 − y2)

+
1
2
(x2

1 + x2
2 + y2

1 + y2
2) − 1

8
(x1 + x2 + y1 + y2)2.

7. Line 4 is inside the rectangle, but lines 2 and 6 are outside, that is,

α ∈ [(|x2 − x1| + |y2 − y1|) ∨ (2a − x1 − x2 − y1 + y2) ∨ (2a + x1 + x2 − y1 + y2),

(2b − x1 + x2 − y1 − y2) ∧ (|x1| + |x2| + |y1| + |y2|))

which implies that R7(α) > 0 and R8(α) > 0. Then,

A(α) = 0

B(α) = −2a

C1(α) = 4ab + 2a2 + x2
1 + x2

2.

8. Lines 2, 4, and 6 are outside the rectangle, that is,

α ∈ [(|x2 − x1| + |y2 − y1|) ∨ (2a − x1 − x2 − y1 + y2) ∨ (2a + x1 + x2 − y1 + y2) ∨ (2b − x1 + x2 − y1 − y2),

|x1| + |x2| + |y1| + |y2|)

The following four subcases can occur:

(a) Parts of lines 3 and 5 are inside the rectangle, that is,

α ∈ [(|x2 − x1| + |y2 − y1|) ∨ (2a − x1 − x2 − y1 + y2) ∨ (2a + x1 + x2 − y1 + y2) ∨ (2b − x1 + x2 − y1 − y2),

(2(a + b) + x1 + x2 − y1 − y2) ∧ (2(a + b) − x1 − x2 − y1 − y2) ∧ (|x1| + |x2| + |y1| + |y2|))
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which implies that R7(α) > 0 and R8(α) > 0. Then,

A(α) =
1
4

B(α) = −2a − b +
1
2

(y1 + y2)

C1(α) = 2a2 + b2 + 4ab − b (y1 + y2) +
1
2
(
x2

1 + x2
2

)
+

1
4

(x1 + x2)
2 +

1
4

(y1 + y2)
2

(b) Part of line 5 is inside the rectangle and line 3 is outside the rectangle, that is,

α ∈ [(|x2 − x1| + |y2 − y1|) ∨ (2a − x1 − x2 − y1 + y2) ∨ (2a + x1 + x2 − y1 + y2)

∨(2b − x1 + x2 − y1 − y2) ∨ (2(a + b) − x1 − x2 − y1 − y2),

(2(a + b) + x1 + x2 − y1 − y2) ∧ (|x1| + |x2| + |y1| + |y2|))
which implies that R7(α) > 0 and R8(α) = 0. Then,

A(α) =
1
8

B(α) = −3
2
a − 1

2
b − 1

4
(x1 + x2 − y1 − y2)

C1(α) =
3
2
a2 +

1
2
b2 + 3ab +

1
2
a (x1 + x2 + y1 + y2) +

1
2
b (x1 + x2 − y1 − y2)

+
1
2
(
x2

1 + x2
2

)
+

1
8

(x1 + x2 − y1 − y2)
2
.

(c) Part of line 3 is inside the rectangle and line 5 is outside the rectangle, that is,

α ∈ [(|x2 − x1| + |y2 − y1|) ∨ (2a − x1 − x2 − y1 + y2) ∨ (2a + x1 + x2 − y1 + y2)

∨(2b − x1 + x2 − y1 − y2) ∨ (2(a + b) + x1 + x2 − y1 − y2),

(2(a + b) − x1 − x2 − y1 − y2) ∧ (|x1| + |x2| + |y1| + |y2|))
which implies that R7(α) = 0 and R8(α) > 0. Then,

A(α) =
1
8

B(α) = −3
2
a − 1

2
b +

1
4

(x1 + x2 + y1 + y2)

C1(α) =
3
2
a2 +

1
2
b2 + 3ab − 1

2
a (x1 + x2 − y1 − y2) − 1

2
b (x1 + x2 + y1 + y2)

+
1
2
(
x2

1 + x2
2

)
+

1
8

(x1 + x2 + y1 + y2)
2
.

(d) Lines 3 and 5 are outside the rectangle, that is,

α ∈ [(|x2 − x1| + |y2 − y1|) ∨ (2a − x1 − x2 − y1 + y2) ∨ (2a + x1 + x2 − y1 + y2)

∨(2b − x1 + x2 − y1 − y2) ∨ (2(a + b) + x1 + x2 − y1 − y2) ∨ (2(a + b) − x1 − x2 − y1 − y2),

|x1| + |x2| + |y1| + |y2|)
which implies that R7(α) = 0 and R8(α) = 0. Then,

A(α) = 0

B(α) = −a

C1(α) = a2 + 2ab + a(y1 + y2) +
1
2
(
x2

1 + x2
2

)
.
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9 Online Appendix

9.1 Computational Results for MILP formulation

For very small problem instances, the mixed integer linear program (3) can be solved with available software.
Table 3 shows CPU times for some small instances obtained with CPlex 9.0. All instances were randomly
generated, with a single scenario each.

Number of Origins 4 5 6
Number of Destinations 4 5 6

Number of Candidate Terminals 3 3 3
Instance 1 62.62 182.23 43164.04
Instance 2 308.35 36895.92 22475.01
Instance 3 31.65 692.00 Stop after 187643.12
Instance 4 184.23 5002.46 Stop after 115830.61
Instance 5 490.47 1873.43 Stop after 379172.34

Mean 215.46 8929.21 N/A
Standard Deviation 188.67 15745.65 N/A

Table 3: CPU time in seconds for MILP formulation

9.2 Data Sets

The data sets used for the results reported in Sections 7 and 9.1 can be found at
http://www.scl.gatech.edu/research/casestudies/. The distances dij between pairs of points i and j

were given by the least great-circle distances in miles between the pairs of points. Also, for the purpose of
the continuous approximation, (latitude, longitude) coordinates were converted to Cartesian (x, y) coordinates
according to the Albers Equal Area Conic Projection Method. The L1 metric between pairs of (x, y) coordinates
were multiplied with a factor of 3150, which gives approximately the least great-circle distance in miles between
the pair of points. All scenarios were assigned equal weights p(ω). In addition, the following parameters were
used:
Fixed cost per terminal per time period cm = $10000.
Transportation cost per vehicle-mile = $1.
Cost per time period for each vehicle based at each terminal Cv = $100.
Cost for each vehicle that is used during a time period cv = $100.
Vehicle capacity used in detailed vehicle routing calculations Qv = 3000ft3.
Vehicle capacity used in continuous approximation calculations Qv = 2900ft3.
β-coefficient for approximating detour distance β = 2.
The rectangle [−a, a]× [−b, b] containing the terminals was chosen as follows: Let (xi, yi) denote the coordinates
of origin or destination i. Let x := maxi∈O∪D xi, x := mini∈O∪D xi, y := maxi∈O∪D yi, y := mini∈O∪D yi. Then
a := (x − x)/2 and b := (y − y)/2.
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