
Branch-and-Price Solving in G12

Jakob Puchinger1, Peter J. Stuckey2, Mark Wallace3, and Sebastian Brand2

1 Austrian Institute of Technology
Vienna, Austria

jakob.puchinger@ait.ac.at
2 NICTA Victoria Research Laboratory

Department of Computer Science & Software Engineering
University of Melbourne, Australia

{pjs,sbrand}@csse.unimelb.edu.au
3 School of Computer Science and Software Engineering

Monash University, Melbourne, Australia
mgw@mail.csse.monash.edu.au

1 Introduction

Combinatorial optimisation problems are easy to state but hard to solve, and
they arise in a huge variety of applications. Branch-and-price is one of many
powerful methods for solving them. This paper describes how Dantzig-Wolfe
decomposition, column generation and branch-and-price are integrated into the
hybrid optimisation platform G12 [13]. The G12 project is developing a software
environment for stating and solving combinatorial problems by mapping a high-
level model of the problem to an efficient combination of solving methods.

The G12 platform consists of three major components, the modelling lan-
guage Zinc [5], the model transformation language Cadmium [3], and several
internal and external solvers written and/or interfaced using the general-purpose
programming language Mercury [12]. All solvers and solver instances are spec-
ified in terms of their specific capabilities, i.e. the type of problems they can
solve, the type of information they can return, and how they solve a problem.
The branch-and-price solving in G12 was first described in detail in [9].

The practical usefulness of column generation and branch-and-price has been
well-established over the last 20 years [2, 1]. More recently it has emerged that
column generation provides an ideal method for combining approaches, such as
constraint programming, local search, and integer/linear programming [7, 11, 8].

Systems such as ABACUS [6] and COIN/BCP [10] and others offer facilities
to support the implementation of branch-and-price. However, these systems re-
quire the user to understand the technical details of branch-and-price, supporting
algorithm implementation rather than problem modelling. The first attempt to
provide a column generation library was in ECLiPSe [4]. This system introduced
the idea of an aggregate variable appearing in the master problem to represent
a set of values returned as columns from multiple solutions to identical subprob-
lems. However this library assumes a fixed set of variables in each subproblem,
and precludes search choices which break some of the subproblem symmetries.

Dagstuhl Seminar Proceedings 09261 
Models and Algorithms for Optimization in Logistics 
http://drops.dagstuhl.de/opus/volltexte/2009/2164

1



2 G12 Branch-and-Price Solving

We present the different aspects of G12 branch-and-price solving using three
examples. All of these examples are accompanied by extensive computational
experiments showing the effectiveness of our system.

The first example, a trucking problem, is used to show how high-level models
are mapped to a standard column generation approach with branch-and-price on
the original variables. In order to use Dantzig-Wolfe decomposition and column
generation on a high-level model in G12, annotations describing what parts
define the sub-problems, which solver is to be used for each subproblem, and
which solver is to be used for the master problem are introduced. The annotation
of the original model is done by the user. In a second step an automatic Cadmium

transformation is applied. It performs a Dantzig-Wolfe decomposition on the
model and separates original, master and subproblem variables. It further adds
constraints linking these variables, informing the underlying column generation
module about the specific structure of the model. The model is then solved by
column generation and branching on the original variables.

The second example, the cutting stock problem, is used to demonstrate the
variable aggregation facilities of the system. The main purpose of variable aggre-
gation is to avoid problem symmetries and thus significantly reduce the required
search effort. The variable aggregation is controlled by annotations specified
by the user, informing the underlying system which subproblems should be ag-
gregated. A Cadmium transformation is then applied to create an aggregated
version of the variables and constraints. The column generation module man-
ages the disaggregation of variables required in the branching phase, so that
branching on the original problem variables is still possible.

In the third example, the two-dimensional bin packing problem, the use of
specialised branching rules on subproblem variables is shown. Such branching
rules are very effective in reducing symmetry, since they do not require variable
disaggregation. However, in contrast to branching on original variables, they
introduce modifications of the subproblems. In the current system the branching
rules have to be developed at the Mercury level, but they are selected at the
modelling level using annotations.

3 Conclusion

The presented system allows one to specify column generation and branch-and-
price on high-level models without the need to implement the technical details.
This allows users to experiment with different variants of this specific way of
hybrid solving and to compare it to other solver mappings in G12.

One interesting challenge arising out of this work is how to automatically
detect identical subproblems. This is a completely novel form of automated sym-
metry detection, which is of significant practical value.

2



Acknowledgements

We would like to thank the members of the G12 team at NICTA VRL for helpful
discussions and implementation work.

NICTA is funded by the Australian Government as represented by the De-
partment of Broadband, Communications and the Digital Economy and the
Australian Research Council through the ICT Centre of Excellence program.

References

1. C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H.
Vance. Branch-and-price: Column generation for solving huge integer programs.
Operations Research, 46(3):316–329, 1998.

2. G. Desaulniers, J. Desrosiers, and M. Solomon, editors. Column Generation.
GERAD 25th Anniversary Series. Springer, 2005.

3. G. J. Duck, P. J. Stuckey, and S. Brand. ACD term rewriting. In S. Etalle and
M. Truszczynski, editors, Logic Programming (ICLP 2006), volume 4079 of LNCS,
pages 117–131. Springer, 2006.

4. A. Eremin. Using Dual Values to Integrate Row and Column Generation into
Constraint Logic Programming. PhD thesis, Imperial College London, 2003.

5. M. J. Garcia de la Banda, K. Marriott, R. Rafeh, and M. Wallace. The modelling
language Zinc. In F. Benhamou, editor, Principles and Practice of Constraint
Programming (CP’06), volume 4204 of LNCS, pages 700–705. Springer, 2006.

6. M. Jünger and S. Thienel. The ABACUS system for branch-and-cut-and-price algo-
rithms in integer programming and combinatorial optimization. Software: Practice
and Experience, 30(11):1325–1352, 2000.

7. U. Junker, S. E. Karisch, N. Kohl, B. Vaaben, T. Fahle, and M. Sellmann. A
framework for constraint programming based column generation. In J. Jaffar,
editor, Principles and Practice of Constraint Programming (CP’99), volume 1713
of LNCS, pages 261–274. Springer, 1999.

8. J. Puchinger and G. R. Raidl. Models and algorithms for three-stage two-
dimensional bin packing. European Journal of Operational Research, 183(3):1304–
1327, 2007.

9. J. Puchinger, P. J. Stuckey, M.Wallace, and S. Brand. From high-level model to
branch-and-price solution in G12. In L. Perron and M. A. Trick, editors, CPAIOR
2008, volume 5015 of LNCS, pages 218–232. Springer, 2008.

10. T. Ralphs and L. Ladanyi. COIN/BCP user’s manual, 2001.
11. L.-M. Rousseau, M. Gendreau, G. Pesant, and F. Focacci. Solving VRPTWs with

constraint programming based column generation. Annals of Operations Research,
130(1):199–216, 2004.

12. Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury,
an efficient purely declarative logic programming language. Journal of Logic Pro-
gramming, 29(1-3):17–64, 1996.

13. P. J. Stuckey, M. J. G. de la Banda, M. J. Maher, K. Marriott, J. K. Slaney, Z. So-
mogyi, M. Wallace, and T. Walsh. The G12 project: Mapping solver independent
models to efficient solutions. In P. van Beek, editor, Principles and Practice of
Constraint Programming (CP’05), volume 3709 of LNCS, pages 13–16. Springer,
2005.

3




