
How to Make Smartcards Resistant
to Hackers’ Lightsabers?

Philippe Teuwen

NXP Semiconductors - Research, Leuven, Belgium,
philippe.teuwen@nxp.com

Abstract. Cracking smartcards has always been a prized hobby, for the
academic glory, for fun (ha, breaking the self-claimed unbreakable...) and
for profit (ask the organized crime). State-of-the-art techniques include
laser blasts that inject various transient or permanent faults in a program
execution, potentially making the smartcard do whatever the attacker
wants. After a brief recap of the attack tools and their effects, this article
describes how the programmer can protect his/her code using software
techniques ranging from cookbook recipes to tool chain automation and
how (s)he can evaluate the robustness of his/her code by means of fault
injection simulators.

1 Introduction

Today powerful attacks can be mounted against chips protecting security-related
secret data, e.g. set-top box chips or bank smartcards hiding cryptographic keys
and PINs. In passive attacks, the attacker collects information leaking from the
chip and can reconstruct the program structure by power analysis [1] or electro-
magnetic analysis. Even with a chip filtering its power consumption, power an-
alysis can reveal main consuming operations such as EEPROM writing or the
activity of a cryptographic coprocessor. Those passive attacks unveiling parts of
the black box can then leverage active attacks where the attacker injects hard-
ware faults e.g. by means of power glitches, active probing or light attacks [2].
Light attacks require the removal of the coating of the chip and consist in blast-
ing photons globally with a white flash or locally with a laser beam on the chip.
When a photon is absorbed, it creates a pair of electron-hole, so a local cur-
rent interpreted e.g. as a logical 1 where there was a 0. Those bit-flips can lead
to code or data corruption, ultimately breaking security barriers or introducing
errors in cryptographic components. For example, introducing a single error in
RSA computation can be enough for the attacker to retrieve the private key
if the wrong signature leaks to the output [2]. A laser attack can have several
consequences and can be disastrous [3], even if the induced modifications are not
fully under attacker’s control:

– Corrupting the data (one or several bytes) during its transfer between mem-
ory and registers can affect the program flow or the results; e.g. increasing a
loop counter in a serial port output routine allows to see more of the memory

Dagstuhl Seminar Proceedings 09282 
Foundations for Forgery-Resilient Cryptographic Hardware 
http://drops.dagstuhl.de/opus/volltexte/2010/2401

1



than the intended output and reducing a loop counter in an iterative cipher
function degrades it into an easy to break single-round variant [4].

– Corrupting one or several opcodes as they’re fetched from the memory can
corrupt the data operations or prevent critical tests, jumps or calls to be
properly executed.

– Corrupting permanently a memory cell is also feasible but harder [5].

Beside hardware protections such as metalization meshes, light detectors,
duplication of hardware components or watchdogs, there are also software tech-
niques to detect malicious hardware faults gathered under the term Secure Code
Execution (SCE). A first layer of defense consists of a set of cookbook recipes
providing a local hardening of the code such as [3]:

– Detection of corrupted data by checksums, variable redundancy or execution
redundancy.

– Execution randomization to defeat differential power analysis and to impede
the determination of the right moment to perform the injection.

– Ratification counters and baits: small extra operations are introduced and
their result checked. After one or several attacks are detected the smartcard
ceases to function.

The core cryptographic functions are usually well protected against fault injec-
tion and side-channel analysis by countermeasures very tight to the functions
themselves such as replaying some specific rounds of DES or verifying a RSA
signature after its generation. This is not sufficient; any security related code
is to be protected against fault attacks. To achieve this, it is highly desirable
to have a generic model encompassing those recipes such that it can be imple-
mented in a compiler with some new pragmas for the developer to identify the
secure elements to be protected. In order to evaluate the effectiveness of the
recipes and ultimately of such a security-enhanced compiler, it is important to
be able to test them as soon as possible in the development chain. This means
developing a simulator capable of reproducing the logical effect of a hardware
attack and analyzing its impact.
Note that there is also a wide category of fault-injection techniques described in
the security domain but it’s usually limited to the fuzzing of the environment
of a software: its I/Os, environment variables, system calls, network connec-
tions etc. and it doesn’t assume that the fault can appear in the software’s own
instructions flow.

The results presented in this paper are organized as follows. Section 2 tries
to bring Software Fault Tolerance and Secure Code Execution together while
highlighting their differences. Section 3 presents a brief overview of existing
Software Fault Tolerance fault-injection techniques. Section 4 explains how a
fault-injection tool currently in development and targeted for Secure Code Ex-
ecution is designed. Section 5 gives more details on the models of faults to be
injected. Section 6 sketches conclusions.

2



2 A Comparison With Software Fault Tolerance

Fighting hardware faults by software means is nowadays a very well studied
field called Software Implemented Hardware Fault Tolerance (SIHFT) or just
Software Fault Tolerance. But it is presented as a quality and safety problem
against natural bit-flips, very rarely as a security problem against malicious
fault injections [6]. Indeed SIHFT techniques are primarily developed for e.g.
spacecrafts strafed by cosmic rays or equipments close to radioactive elements.
Under those environments the hardware is also prone to transient errors and
numerous hardware, software or hybrid techniques are studied to mitigate those
errors. Given the numerous developments in SIHFT, it is very tempting to apply
some fault-tolerance study techniques and frameworks to the field of malicious
attacks against smartcards for developing hardening compilers as well as for
developing fault-injection simulators.

But one must understand the differences and the limitations of such an at-
tempt to bring those two disciplines together before going further:
The goals: the detection of errors is a common milestone but the finality is
different.
On one side Software Fault Tolerance is focusing on the reliability of a sys-
tem, either by detecting and discarding erroneous results (as e.g. with double-
redundancy) or by recovering from errors (as e.g. with triple-redundancy).
On the other side when a smartcard is under attack, there is no need to recover
gracefully from errors. But security items (such as the private key or the PIN)
must be protected from an exploitation of those errors.
The faults: Software Fault Tolerance is almost always considering a very sim-
ple model of the physical transient faults caused by radioactivity or cosmic rays:
single bit-flip errors, referred as the SEU (Single Event Upset) model. This is a
perfectly suitable model given their working hypothesis that flipping a single bit
is indeed the most probable logical effect of a physical interaction between the
hardware and low-energy ions or electro-magnetic or nuclear radiation interfer-
ences.
But a voltage glitch or a light blast on a chip induces a much stronger effect as it
usually affects the whole memory bus or other large parts of the circuit and can
be applied or repeated during more than a single instruction cycle. Therefore
modelling such attacks must perform more manipulations than a simple SEU.
Their occurrences: Software Fault Tolerance success is expressed in terms of
statistics and probability, typically: given random SEU injections over the whole
system, what are the percentage of SEU faults leading to errors and the per-
centage of errors being detected.
In malicious fault injection, the attacks are not randomly distributed but are
educated guesses based on some side-channel information. As seen before, even
without knowing the source code, the attacker is not in front of a completely
black box. Some code structures can be recognized and specifically targeted such
as DES rounds or EEPROM writing. As a consequence, the countermeasures will
not be evenly distributed either but will concentrate on the protection of the se-
curity items.

3



Their processing: once an error is detected in Software Fault Tolerance, the
system is designed to recover nicely by discarding the erroneous values, possibly
by repeating the operation or in extreme cases by a reboot.
If the error is malicious, one must take care of not disclosing any information
about the error that occurred, neither on the output nor by side-channels. There-
fore the error must be detected soon enough. But detecting and reacting too soon
can also leak information. For example if the code is comparing two buffers and
stops abruptly as soon as there is a mismatch, it’s a timing information avail-
able to the attacker and very useful to guess a data buffer byte per byte. So the
comparison must always take the same time, no matter if and where there are
mismatches. The branch in execution once an error is detected can also be a
privileged target for a second injection if not designed properly.
The footprints: Software Fault Tolerance techniques easily doubles the mem-
ory, execution time and power consumption footprints.
In a smartcard, resources are quite scarce and doubling them is typically not
affordable.
The evaluation: to evaluate the effectiveness of software-implemented tech-
niques against hardware errors, both fields can benefit from a framework offering
a software-based simulation of transient or permanent faults. Given the level of
achievement of SIHFT, it is interesting to explore the different simulation frame-
works developed for SEU and adapt them to the malicious injection cases. This
subject is covered in the following chapter.

3 Related Work in Software-Implemented Hardware
Fault Injection

Hopefully when it comes to simulating hardware faults by software means, the
differences between Software Fault Tolerance and Secure Code Execution are
more superficial and one can find inspiration in the first field for the second
one. Indeed both approaches require the same kind of framework: a hardware
simulator with hooks to inject faults and observe their effect, sometimes referred
as Software-Implemented Hardware Fault Injection (SWIFI) tool [7].

Some SWIFI tools providing runtime injection (but limited to SEU) are quite
appealing, among others:

– ReSP: a simulation platform accepting a SystemC description of a Multi-
Processor System-On-Chip (MPSoC) [7].
ReSP is written in Python and therefore allows all the imaginable hooks and
runtime manipulations of internal objects. The analysis of error propagation
is done by comparison with a golden model i.e. a non disturbed copy of the
architecture. It is worth to note that ReSP is an open-source project [8].

– A JTAG-based fault injection system [9].
To provide a very fast platform (2ms/fault at 4MHz), the authors were
controlling a LPC2129 (an ARM7TDMI µP of NXP) by its JTAG interface;
the control part being implemented in a dedicated FPGA. The counterpart

4



is the loss of flexibility: the faults list must be fixed in advance as well as the
golden outputs.

– Tools controlling GDB, the GNU Debugger: initially FIESTA (Fault In-
jection for Embedded System Target Application) [10] but also others like
FAUST (FAUlt-injection Script-based Tool) [11]. The advantage of those so-
lutions is that they can deal with any language and target supported by
GDB, which helps keeping focused on the design of the injection process
itself.

4 A Tool for Fault Injection Attack Simulation

It was chosen to work on a setup similar to the FIESTA and FAUST frameworks:
interacting directly with GDB to inject the faults. To have a more realistic setup
of fault injection on small embedded µPs, GDB is combined with Skyeye [12],
an opensource tool capable of simulating the ARM7TDMI µP. Skyeye supports
the RDI (remote debug interface) protocol of GDB over TCP/IP so it can be
controlled by a debugger instance supporting the target, in our case a gdb-arm-
linux-gnueabi. Globally a SWIFI framework or pattern system [13] foreseen for
Software Fault Tolerance can be applied to Secure Code Execution evaluation
but there are still a number of minor differences to keep in mind.

– If building statistics out of a few hundreds random injections makes sense
for Fault Tolerance, a more systematic approach is needed for a security
evaluation in order to have a better coverage of the code.

– Injections must be repeatable to understand what happened. Therefore a
time base trigger is not sufficient and is to be replaced by cycle accurate
interrupts to guarantee that a successful injection can be replayed identically
later.

– SEU model must be replaced by new classes of code or data manipulations
mimicking the logical effects of power glitches or light blasts. This will be
detailed in the next section.

– Characterization of the impact of an injection in Software Fault Tolerance is
limited to observing the proper termination of the program and comparing
the output with a golden output. But the goals are different in a smartcard
attack so watchpoints will be placed on the secure elements in memory and
breakpoints on the secure code areas to catch when an error gives access to
a restricted data or code when it shouldn’t and the output is compared with
a golden reference when the cryptographic functions are justifiably used.

Because of all those differences, it is essential to work with a very flexi-
ble framework nevertheless still fast. The original FAUST approach to generate
static scripts and to launch GDB for every single injection is quite slow and
lacks flexibility. There are several promising approaches to bypass those limita-
tions: the ability of GDB to load C functions aside the target code and execute
them from GDB expressions, the Expect-like capabilities of Python to simu-
late an interactive session with GDB and a very recent project to integrate

5



Python scripting directly into GDB [14] where all GDB internals are accessible
in Python. Ideally the injections could then be performed repetitively without
leaving GDB.

5 Beyond the SEU Model

As said before, the SEU model is far from being sufficient for evaluating Secure
Code Execution hardening techniques. On the other hand, performing a full
coverage of SEU injections requires already N · (R + C + D) ·W simulations
for a code executed in N cycles on a core with R registers and C + D words
of code and data memory of the supposedly same W -bit width. And any other
more complex model will lead to an exponentially larger number of simulations:
1 7→ (2Z − 1) to modify Z bits at once, 1 7→ Z to pursue the attack during Z
cycles, N 7→ NZ to perform Z attacks during the same execution, etc.

Therefore, it is preferable to reduce the space of possible injections to a set
of carefully chosen ones, favoring those with greater chances of success to reveal
a security problem. For example, it makes more sense to evaluate attacks on
opcodes as the avoidance of the original operation rather than the injection of a
new meaningful instruction. When an opcode is modified into another one, most
of the time, it will generate the same logical error as if it was replaced by a nop.
Considering separately the mutation of an opcode into every single other value
is a loss of time and will lead to unrealistic situations such as the injection of a
jump to the secure assets, a situation that would be hard to defeat but which
requires hopefully a level of control the attacker cannot reach.

The simplest attack on opcode can therefore be modelled by the replacement
of the current opcode by one or several nops up to the opcode length. To model
longer attacks, one can replace more than a single opcode. The changes must
be transient to simulate an attack on the bus so if the changes are done in
the memory they must be reverted at the next simulation cycle. Note that in a
simulator incrementing the Program Counter is very easy and will have the same
effect as substituting opcodes with nops. One can also consider arbitrary nop
substitution on a part of the opcode which will lead to a re-interpretation of the
next bytes on-the-fly as new opcodes but, if very close to what could happen in
a real attack, it will probably not lead to security issues.

Here are some other examples of opcode attacks chosen for their high proba-
bility in a real context and their high potential on security: interpret the current
opcode and alter its data part (if any) with 0x00 or 0xFF while keeping the
operative part; interpret the current opcode and alter its operative part while
keeping the data (an inc for a dec, a store for a load, a push for a pop,
etc). Attacks on data memory can be limited to occurrences of load and store
opcodes. An attack will then replace (part of) the data by 0x00 or 0xFF. To
make a transient error on a read operation the fault-injection tool will save the
current data value, alter it, execute the load instruction and restore the value
in memory. For a permanent error on a write operation it will execute the store
instruction then alter it in memory. Permanent errors on read are also possible

6



to simulate attacks on RAM but don’t make sense on EEPROM. Note that a
permanent error in RAM is actually permanent up to the next power cycle.

6 Conclusions and Open Problems

The hardening of security sensible code in smartcards against malicious hardware
fault injections is today still an artwork exercise left in the hands of developers.
Their work would be greatly enhanced if this task was for a part automated
in the toolchain. As a first step in this direction, the provisioning of a fault
injection simulator tweaked for mimicking active attacks such as light attacks
by laser would be of great help. This is the aim of our current project, using
the capabilities of GDB to inject faults into an ARM7TDMI simulator. One
limitation of the current approach is the absence of prediction of the side-channel
leakages caused by a hardware injection.

7 Acknowledgments

I would like to thank my colleagues who offered me their help, especially Ventzislav
Nikov, Mathias Wagner and Marc Vauclair for their thorough review and useful
suggestions.

References

1. S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks: Revealing the Se-
crets of Smart Cards, 1st ed. Springer, Mar. 2007.

2. H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan, “The sorcerer’s
apprentice guide to fault attacks,” Cryptology ePrint Archive, Report 2004/100,
2004.

3. K. Markantonakis, K. Mayes, M. Tunstall, D. Sauveron, and F. Piper, Smart Card
Security, 2007, pp. 201–233.

4. H. Choukri and M. Tunstall, “Round reduction using faults,” in L. Breveglieri and
I. Koren Eds., FDTC 2005, 2005, pp. 13–24.

5. S. P. Skorobogatov and R. J. Anderson, “Optical fault induction attacks,” in Re-
vised Papers from the 4th International Workshop on Cryptographic Hardware and
Embedded Systems. Springer-Verlag, 2003, pp. 2–12.

6. P. Ammann and S. Jajodia, “Computer security, fault tolerance, and software
assurance,” Concurrency, IEEE [see also IEEE Parallel & Distributed Technology],
vol. 7, no. 1, pp. 4–6, 1999.

7. G. Beltrame, C. Bolchini, L. Fossati, A. Miele, and D. Sciuto, “A framework for reli-
ability assessment and enhancement in multi-processor systems-on-chip,” in Defect
and Fault-Tolerance in VLSI Systems, 2007. DFT ’07. 22nd IEEE International
Symposium on, 2007, pp. 132–142.

8. “Resp: a reflective simulation platform, open-source mpsoc design.” [Online].
Available: http://www.resp-sim.org/

7



9. M. Portela-Garcia, C. Lopez-Ongil, M. Garcia-Valderas, and L. Entrena, “A rapid
fault injection approach for measuring seu sensitivity in complex processors,” in
On-Line Testing Symposium, 2007. IOLTS 07. 13th IEEE International, 2007, pp.
101–106.

10. N. Krishnamurthy, V. Jhaveri, and J. A. Abraham, “A design methodology for
software fault injection in embedded systems,” in Proc. IFIP Int’l Workshop De-
pendable Computing and Its Applications (DCIA-98), 1998, pp. 237–248.

11. A. Benso, S. D. Carlo, G. D. Natale, P. Prinetto, I. Solcia, and L. Tagliaferri,
“Faust: fault-injection script-based tool,” in On-Line Testing Symposium, 2003.
IOLTS 2003. 9th IEEE, 2003, p. 160.

12. “Skyeye open source simulator.” [Online]. Available: http://www.skyeye.org/
index.shtml

13. N. G. M. Leme and E. Martins, “A software fault injection pattern system,” in
Proceedings of the IX Brazilian Symposium on Fault-Tolerant Computing, 2001.

14. T. Tromey, T. J. Bauermann, and V. Prus, “gdb-python: gdb including python
scripting,” (Archived by WebCite at http://www.webcitation.org/5ZQUcBv6x),
july 2008. [Online]. Available: http://gitorious.org/projects/gdb-python

8




