
Geometry of abstraction
in quantum computation

Dusko Pavlovic
Oxford University and Kestrel Institute

Abstract

Quantum algorithms are sequences of abstract operations, performed on non-existent computers. They are in obvious need
of categorical semantics. We present some steps in this direction, following earlier contributions of Abramsky, Coecke and
Selinger. In particular, we analyze function abstraction in quantum computation, which turns out to characterize its classical
interfaces.

Some quantum algorithms provide feasible solutions of important hard problems, such as factoring and discrete log (which
are the building blocks of modern cryptography). It is of a great practical interest to precisely characterize the computational
resources needed to execute such quantum algorithms. There are many ideas how to build a quantum computer. Can we prove
some necessary conditions? Categorical semantics help with such questions. We show how to implement an important family
of quantum algorithms using just abelian groups and relations.

1 Introduction

What do quantum programmers do? They do a variety of things, but there is a ”design pattern” that they often follow,
based on theHidden Subgroup Problem (HSP)[26, 28, sec. 5.4]. Shor’s factoring and discrete log algorithms [37] are
examples of this pattern, as well as Hallgren’s algorithm for the Pell equation [15]. They all provide an exponential speedup
with respect to the best known classical algorithms. The simplest member of the family is Simon’s algorithm for period
finding [38], which we use as the running example. The other HSP algorithms only differ in ”domain specific” details, but
yield to the same semantics.

The input for Simon’s algorithm is an arbitrary functionf : Zm
2 → Zn

2 , where(Z2,⊕, 0) is the group with two elements,
and⊕ is the ”exclusive or” operation. The task is to find the period off , if it exists, i.e. a bitstringc ∈ Zm

2 such that
f(x⊕ c) = f(x) for all x ∈ Zm

2 . For simplicity, let us assume that there is exactly one suchc, as the discussion of the other
cases does not bring in anything essential.

Sincef is arbitrary, one cannot ascertain that a bitstringc is a solution without computing the value off(x) for everyx ∈ Zm
2 .

But a quantum computer can compute all such values at once! This is calledquantum parallelism, and is one of the first things
explained to quantum programmers’ apprentices [28, sec. 1.4.2].

Mathematically speaking, the main capability of a quantum computer is that it can evaluate unitary operators. If the inputs
of a function are represented as the basis vectors of a Hilbert space, and the function itself is captured as a unitary operator
over it, then the quantum computer can compute all values of the function at once, by evaluating this unitary over a suitably
generated combination of the basis vectors. Simon’s algorithm shows how to extract the information about the period of the
function from the projections of the resulting mixture.

But how do we represent a functionf : Zm
2 → Zn

2 by a unitary operator? For an involutive functiong : B → B, the answer
is easy: defineUg : CB −→ CB by settingUg|b〉 = |g(b)〉, where|b〉 ∈ CB are the basis vectors indexed byb ∈ B. The fact

1
Dagstuhl Seminar Proceedings 09311 
Classical and Quantum Information Assurance Foundations and Practice 
http://drops.dagstuhl.de/opus/volltexte/2010/2362



thatUg is unitary follows fromg ◦ g = idB. For a generalf : Zm
2 → Zn

2 , first define a corresponding involutionf ′, and then
extract the unitaryUf :

f : Z
m
2 −→ Z

n
2 : x 7→ f(x)

f ′ : Z
m+n
2 −→ Z

m+n
2 : x, y 7→ x, y ⊕ f(x)

Uf : C
Z

m+n
2 −→ C

Z
m+n
2 : |x, y〉 7→ |x, y ⊕ f(x)〉

where the basis vectors|x, y〉 of CZ
m+n
2 are indexed by the bitstringsx of lengthm concatenated with the bitstringsy of

lengthn. The values of the functionf are recovered fromUf |x, 0〉 = |x, f(x)〉.

The other conceptual component of Simon’s algorithm, and of all HSP-algorithms, is a standard application of transform
theory [39]: transform the inputs into another domain, where the computation is easier, compute the outputs there, and then
transform them back1. In our special case,Uf is thus precomposed and postcomposed with a suitable version of the Fourrier
transform, which forZ2 boils down to the Hadamard-Walsh tranformH⊗m|z〉 =

∑
x∈Z

m
2

(−1)x·z|x〉. Herex · z denotes the

inner product inZm
2 , and we ignore the renormalizing factor2−

m
2 . This transform is applied to the firstm arguments ofUf ,

to generate the desired superposition of all inputs off . The quantum computer thus computes the followsing vector2:

Simon = (H⊗m ⊗ id)Uf (H⊗m ⊗ id) |0, 0〉

=
∑

z,x∈Z
m
2

(−1)x·z|z, f(x)〉

When we measure the first component of this vector, it collapses to a single|z〉, i.e. we getγz = |z〉⊗
∑

x∈Z
m
2

(−1)x·z |f(x)〉.
By assumption, there is exactly onec ∈ Zm

2 such thatf(x ⊕ c) = f(x) holds for allx. The coefficient of each of the
basis vectors|z, f(x)〉 = |z, f(x ⊕ c〉 is thusγx

z = (−1)x·z + (−1)(x⊕c)·z = (−1)x·z (1 + (−1)c·z). It follows that
(∀x ∈ Z

m
2 . γ

x
z 6= 0) ⇐⇒ c · z = 0. Each time that we run the algorithm, we can thus extract a linear equation inc. After

m runs, we can thus computec. (The probability that at some stepk ≤ m we may get an equation dependent on the previous
ones is 0, becausez are chosen randomly, and the measure of every proper linear subspace ofZm

2 is 0.) On the other hand, in
order to convince ourselves classically thatc is the period off , we should to compute all valuesf , which requires2m steps,
sincef is an arbitrary function.

The core of Shor’s factoring algorithm follows the same pattern, adapted forf : Zk → Zk, wheref(x) = ax mod k. The
factored integer isk, anda is randomly selected to be tested for common factors with it, which can be derived by finding a
period off .

Summary of the paper. A program generally describes a family of computations over a family of input data. The various
input data to be computed with are denoted by variables. E.g., the polynomialx2 + x + 2 can be construed as a program,
describing the family of computations that can be performed for the various values ofx. It is tacitly assumed that the possible
values ofx can be copied, so that one copy can be substituted for each occurrence ofx in the polynomialx2 + x; and that
these data can also be deleted, if the polynomial is just2, andx does not occur in it.

The first problem with quantum programming is that quantum data cannot be manipulated in this way: it is a fundamental
property of quantum states that they generally cannot be copied [41, 11], or even deleted [29, 2]. So how do we write quantum
programs? In particular, given a programf(x) for a functionf , what kind of a program transformation leads to the quantum
programUf |x, y〉, that we used to specify the unitaryUf above? This question is analyzed and answered in sections 3 and 4.
It turns out that the needed copying and deleting operations are closely related with the abstraction.

On the other hand, copying, deleting and abstraction capabilities can be viewed as the characteristics of classical computation.
In a quantum computer, a structure that supports copying, deleting and abstraction can be construed as its classical interface.
This is what we call aclassical structure. An early analysis of this structure was in [7]. In the meantime, there are several
versions, and many applications [8, 31, 12]. In recent work, Coecke [9] uses the termbasis structuresfor the same concept,
because a classical structure over a finitely dimensional Hilbert space precisely correspond to a choice of a basis [10], and can
be viewed as a purely categorical, element-free version of this notion. While the simple basis intuitions are attractive, I stick

1E.g., Laplace’s transform maps a differential equation into a polynomial equation over the field, generated by the convolution ring in which the original
equation was stated [32]. The solutions of the polynomial equation are then mapped back by the inverse Laplace transform.

2We ignore the renormalizing factors throughout.

2



here with the original terminology. One reason is that the correspondence of classical structures and the induced bases is not
always as simple as it is in the category of finitely dimensional Hilbert spaces [31], and it is useful to keep the distinction.
A more important reason is that classical structures express the fact thatclassicality is relativeas an algebraic structure. The
fact that classical data with respect to one classical structure may be entangled with respect to another one is the fundamental
feature of quantum computation. This is usually captured through change of basis. Classical structures provide an algebraic
framework for such transforms. This is summarized in section 5.

The final step of the described algorithm pattern, measurement, is modeled in section 6. The resulting categorical semantics
is supported not only by the standard Hilbert space model, but also by non-standard models. We spell out a relational
interpretation, based on [9, 31]. In particular, Simon’s algorithm turns out to have an effective relational implementation,
using an abelian group as the computational resource supplying the power of a quantum computer.

Section 2 provides a brief summary of the basic semantical prerequisites, notations and terminology.

2 Preliminaries

2.1 Monoidal categories

We assume that the reader has some understanding of the basic categorical concepts and terminology [27], and work with
symmetric monoidal categories(C,⊗, I) [17, 16].

Strictness. For simplicity, and without loss of generality, we tacitly assume that each of our monoidal categories isstrictly
associative and unitary, i.e. that the objects form a monoid in the usual sense. This causes no loss of generality because every
monoidal category is equivalent to a strictly associative and unitary one, along a monoidal equivalence. But note that the
tensor symmetry cannot be ”strictified” without essentially changing the category; the canonical isomorphismsA ⊗ B

c
−→

B ⊗A are thus generallynot identities.

On the other hand, just like the tensors, we strictify functors: amonoidalfunctorF is always assumed to be strict, i.e. it
preserves the monoidal structure on the nose:F (A⊗B) = FA⊗ FB andFI = I.

The arrows fromI are sometimes calledvectors, orelements. The abstract ”vector spaces” are thus writtenC(X) = C(I,X).
When confusion is unlikely, we elide the tensor symbol and writeXAf instead ofX ⊗A⊗ f .

2.1.1 String diagrams

Calculations in monoidal categories are supported by a simple and intuitive graphical language: the string diagrams. This
language has its roots in Penrose’s diagrammatic notation [33], and it has been formally developed in categoricalcoherence
theory, and in particular in Joyal and Street’sgeometry of tensor calculus[16]. The objects are drawn as strings, and the
morphisms as boxes attached on these strings. One can think that the information flows through the strings, and is processed
in the boxes. A direction of this flow is chosen by convenience. We shall assume that the information flows up, so that
the strings at the bottom of a box denote the domain of the corresponding morphism; the threads at the top the codomain.
Drawing the stringsA andB next to each other representsA⊗B; similarly with the boxes. Drawing a thread from one box
to another is denotes the composition of the corresponding morphisms.

3



h

X XA

g

f

X

B X C

c

D D

B

B

D

I⊗I⊗D⊗D⊗I

X⊗A⊗B⊗D⊗D⊗X

X⊗A⊗B⊗D

X⊗A⊗D⊗B⊗I

B⊗X⊗C

X⊗A⊗c⊗r

x⊗a⊗D⊗D⊗x

b
B⊗X

B⊗X⊗b

X⊗A⊗B⊗g

X⊗A⊗D⊗B⊗X

id⊗x

h⊗f

a

One of the salient features if this notation is that the associativity is implicit, and automatic, both of the tensor and of the
composition. The tensor symmetryc : B ⊗ D −→ D ⊗ B is denoted above by a circle. The circle is usually omitted, so
that symmetry boils down to crossing the strings. The identity morphisms are the ”invisible boxes”, that can be placed on
any thread. The tensor unitI is the ”invisible thread”, that can be added to any diagram. This means that a box representing
a vectora ∈ C(I, AB) does not have any visible threads coming in from below. This is often emphasized by reducing
the bottom of such a box to a point: e.g., the vectorI

a
−→ AB is denoted by a triangle. The box representing a covector

b ∈ C(C, I) does not have any visible threads coming out, and boils down to a triangle pointing up. The black triangles
denote the vector indeterminatesI

x
−→ X , freely adjointed to monoidal categories to form polynomials. Such polynomial

constructions will be discussed in Sec. 3.

2.1.2 Monoids and comonoids

A monoid in a monoidal category is a pair of arrowsX ⊗X
∇
→ X

⊥
← I such that

∇ ◦ (∇⊗X) = ∇(X ⊗ ∇)

∇ ◦ (⊥⊗X) = ∇ ◦ (X ⊗ ⊥) = idX

When the tensor is the cartesian product, this captures the usual notion of monoid.

A comonoid in a monoidal category is dual to a monoid: it is a pair of arrowsX ⊗X
∆
←− X

⊤
−→ I such that

(∆⊗X) ◦ ∆ = (X ⊗ ∆) ◦ ∆

(⊤⊗X) ◦ ∆ = (X ⊗ ⊤) ◦ ∆ = idX

In string diagrams, we draw the monoid evaluations as trapezoids pointing up, whereas their units are little triangles pointing
down. The comonoids are represented by the trapezoids and the little triangles in the opposite directions. E.g., the comonoid
laws correspond to the following graph transformations

= =

=
=

∆

∆

∆

∆

∆∆

⊤ ⊤

∆

A monoid iscommutativeif ∇ ◦ cXX = ∇. A comonoid is commutative ifcXX ◦ ∆ = ∆. In string diagrams, this means that
the value of the output of∇ does not change if the strings that come into it cross; and that the output of∆ does not change if
the strings coming out of it cross.

4



2.1.3 Cartesian categories

A monoidal category(C,⊗, I) is cartesianwhen it comes with natural transformations

X ⊗X
δX←− X

!X−→ I

which make every objectX into a comonoid. The naturality of this structure means that every morphismX
f
−→ Y in C is

a comonoid homomorphism. It is easy to see that this makes the tensorX ⊗ Y into a productX ⊗ Y , such that any pair of

arrowsA
g
−→ X andA

h
−→ Y corresponds to a unique arrowA

〈g,h〉
−→ A × B, and the tensor unitI into the final object1,

with a unique arrow from each object. Cartesian structure is thus written in the form(C,×, 1).

2.1.4 Monads and comonads

A monadon a categoryC can be defined as a functorT : C −→ C together with a monoid structureTT
m
−→ T

h
←− Id in

the category of endofunctors onC. With the corresponding monoid homomorphisms, monads form a category on their own
[3]. Dually, comonadson C can be defined as comonoids in the category of endofunctors overC, and accomodate similar
developments.

The categories of algebras for a monad and coalgebras for a comonad, and in particular the Kleisli and the Eilenberg-Moore
constructions that will be used below, are presented in detail in [27, 3], and in many other books.

The following observation is the starting point for most of the constructions in this paper. The proof is left as an easy exercise.

Proposition 2.1 Every (co)monoidX in a monoidal categoryC induces a (co)monadX⊗(−) : C −→ C. The corresponding
Kleisli categoryC[X] is monoidal if and only if the (co)monoidX is commutative.

More precisely, the category of monoids in a monoidal categoryC is equivalent with the category of monadsT onC such that
T (A⊗ B) = T (A)⊗ B and moreoverhB = hI ⊗ B andmB = mI ⊗B hold for allA,B ∈ C. The dual statement holds
for comonoids and comonads.

2.1.5 Convolution and representation

Any monoid(X,∇,⊥) in a monoidal category(C,⊗, I) induces the ordinary monoid(C(X), •,⊥), whose operation

a • b = ∇ ◦ (a⊗ b) (1)

is often calledconvolution. A Cayley representation (or Yoneda embedding) of the monoid(X,∇,⊥) is a map

(̂−) : C(X) −→ C(X,X) (2)(
I

a
→ X

)
7−→

(
X

a⊗X
−→ X ⊗X

∇
→ X

)

furthermore represents the vectorsa ∈ C(X) as endomorphismŝa ∈ C(X,X).

Lemma 2.2 (Cayley, Yoneda) The Cayley representation is a monoid isomorphism between the convolution monoid(C(X), •,⊥)
and the monoid(Nat(X,X), ◦, idX) of naturalendomorphisms

Nat(X,X) = {f ∈ C(X,X) | ∀ab ∈ C(X). f ◦ (a • b) = (f ◦ a) • b}

A comonoid structure onX induces a convolution monoid onC(X, I), with c • d = (c ⊗ d) ◦ ∆, and with a similar Cayley
representation. In general, a convolution monoid can be defined over any hom-setC(X,Y ), whereX is a comonoid andY a
monoid, by settingf • g = ∇Y ◦ (f ⊗ g) ◦ ∆X .

5



Scalars. The canonical isomorphismI⊗ I ∼= I makes the tensor unitI of C into a commutative monoid and comonoid; the
tensor associativity is the associativity law of this (co)monoid; the tensor commutativity makes the (co)monoid commutative;
the coherence conditions tell that this is the only (co)monoid structure onI. The convolution monoid(C(I, I), •, idI) is the
abstractscalar algebraof the monoidal categoryC. The coherence conditions imply that there is only one monoid structure
onI, hences • t = s ◦ t = s⊗ t holds for all scalarss, t ∈ C(I, I).

Abusing notation, the scalar action• : C(I, I)×C(A,B) −→ C(A,B) is defined bys • f = s⊗ f . If the tensor unitI is not
strict, thens⊗ f needs to be precomposed byA ∼= I ⊗ A and postcomposed byI ⊗B ∼= B.

2.2 Duals with daggers

2.2.1 Dualities

A duality structure in a monoidal categoryC consists of two objectsX andX∗ and two arrows, the pairingX ⊗X∗ ε
−→ I

and the copairingI
η
−→ X∗ ⊗X , such that

(ε⊗X)(X ⊗ η) = X (X∗ ⊗ ε)(η ⊗X∗) = X∗

=

X

εε

η

X

=

X∗

X∗

X∗X

η

X∗ X

A duality structure is written(η, ε) : X ⊣ X∗. Note thatX∗∗ = X , because(cη, εc) : X∗ ⊣ X is also a duality structure.
If every objectX ∈ C has a chosen duality structure, then such choices induce aduality functor∗ : Cop −→ C, which maps

A
f
−→ B to

f∗ : B∗ ηB∗

−−−→ A∗AB∗ AfB∗

−−−−→ A∗BB∗ A∗ε
−−→ A∗

εA∗

η B∗

f

A

B

Using a duality(η, ε) : X ⊣ X∗, the abstract trace operatorsTrAB
X : C(XA,XB) −→ C(A,B) can be defined as follows:

TrAB
X g : A

ηXA
−−−→ X∗XA

X∗g
−−−→ X∗XB

εX∗B
−−−−→ B

ε

X∗

η

g

A

B

X

X

2.2.2 Dagger-monoidal categories

A daggerover a categoryC is an involutive ioof‡ : Cop −→ C. In other words, it satisfiesA‡ = A on the objects andf ‡‡ = f
on the arrows. This very basic structure turns out to suffice for some crucial concepts.

6



Definition 2.3 A morphismu ∈ C(A,B) unitary if u‡ ◦ u = idA andu ◦ u‡ = idB. An endomorphismp ∈ C(A,A) is a
projectorif p = p‡ = p ◦ p. A projector ispureif moreoverTrII

A (p) = idI .

Remarks. Note that the abstract trace operators, given above, require a monoidal structure inC. The interactions between
the dagger with the monoidal structure, and in particular with the duals, has been recognized and analyzed in [1, 35, 36]. A
dagger-monoidalcategory(C,⊗, I, ‡) is a dagger-category with a monoidal structure where all canonical isomorphisms, that
form the monoidal structure, are unitary. When the monoidal structure is strict, this boils down to the requirement that the
symmetryc : A⊗B → B ⊗A is unitary.

In the string diagrams, the morphismf ‡ is represented by flipping the boxf around its horizontal axis. The morphism
boxes thus need to be made asymmetric to record this flipping: in [35], a corner of the box is filled; in [7], a corner is cut off.

2.2.3 Abstract conjugates and reals

Since the dagger and the duality functors(−)‡, (−)∗ : Cop −→ C commute, their composite defines theconjugationioof
(−)∗ : Cop −→ C, which mapsf to f∗ = f∗‡ = f ‡∗. In the category of complex Hilbert spaces, the conjugation ioof
corresponds is induced by the conjugation of the complex numbers. In the category of real Hilbert spaces, it degenerates into
the identity functor.

Definition 2.4 A morphismf is said to bereal if f = f∗ (or equivalentlyf ‡ = f∗).

Remarks. Pursuing the Hilbert space intuitions, the arrowsf andf ‡ are sometimes thought of as each other’s adjoints. On
the other hand, in a completely different sense, the dual objectsA andA∗ are each other’s adjoints, if the monoidal category
is vewed as a bicategory with one object.

2.2.4 Inner products and entanglement

The dagger-monoidal structure has been proposed as a framework for categorical semantics of quantum computation [1, 35].
It turns out that this modes structure suffices for deriving many important notions:

• inner product

〈−|−〉A : C(A)× C(A) −→ C(I) (3)

(I
a,b
−−→ A) 7−→

(
I

a
→ A

b‡

→ I

)

• partial inner product

〈−|−〉BA : C(A)× C(AB) −→ C(B) (4)
(
I

a
→ A, I

b
→ AB

)
7−→

(
I

a
→ AB

b‡⊗B
−−−→ B

)

• weakly entangled vectorsη ∈ C(A⊗A), such that for alla ∈ C(A) holds

〈a∗ | η〉
A
A = a (5)

Furthermore, an abstract version of strong entanglement can be defined as self-duality.

Definition 2.5 A vectorη ∈ C(X ⊗ X) is said to be (strongly) entangled if(η, η‡) : X ⊣ X is a duality, i.e. satisfies
(η‡ ⊗X)(X ⊗ η) = X = (X ⊗ η‡)(η ⊗X), and thusX∗ = X .

Proposition 2.6 For every objectX in a dagger-monoidal categoryC holds (a)⇐⇒ (b)⇐= (c), where

7



(a) η ∈ C(X ⊗X) is weakly entangled

(b) η‡ ∈ C(X ⊗X, I) internalizes the inner product, as〈a|b〉 = η‡ ◦ (a∗ ⊗ b)

(c) η ∈ C(X ⊗X) is strongly entangled.

The three conditions are equivalent ifI generatesC, in the sense that wheneverfa = ga for all a ∈ C(X), thenf = g.

A proof can be conveniently built from transformations among the string diagrams of the conditions:

= =
η‡

X

η‡

ηη
=

η‡

b b

a‡

=
a‡

η a

⇐⇒ ⇐=

a∗

2.3 Notation and terminology

To describe relations on finite sets, we often find it convenient to use von Neumann’s representation of ordinals, where0 = ∅
is the empty set, andn = {0, 1, . . . , n− 1}. Moreover, the pairs〈i, j〉 ∈ n× n are often abbreviated toij ∈ n× n.

When space is constrained and confusion unlikely, we often elide the tensors and writeAfXX instead ofA⊗ f ⊗X ⊗X .

Ioofs and embeddings. Many categorical constructions lead to functors where the object part is the identity. They are often
called Identity-Onthe-Objects-Functors. I call themioofs. If the reader finds this abbreviation objectionable, she is welcome
to unfold each of its occurrences, and read out the full phrase .

In a similar development, the functors that are full and faithful are often called Full-and-Faithful-Functors. I call them
embeddings. The reader may notice that every functor can be factored into an ioof followed by an embedding.

3 Polynomials and abstraction

In this section we formalize the program transformations needed to implement a classical function in a quantum computer. If
a program is an arrow in a category, a program transformation is simply a functor out of it. But the problem with transforming
a classical program into a quantum program is that classical data can be copied and deleted, whereas quantum data cannot.
So the program transformation must map classical data to classical data, distinguished within a quantum universe. What does
this mean? When the classical programf ′(x, y) was transformed into the corresponding quantum programUf |x, y〉 in the
Introduction, the classical inputs were denoted by the variablesx, y, and mapped to the basis vector variables|x, y〉. The fact
that the classical inputs can be copied and deleted was captured as a syntactical property of the variables.

If the data over which a program will compute are denoted by variables, then the program itself is a polynomial in some
suitable algebraic theory. More precisely, a program is anabstractionover the as-yet-undetermined input data, and a com-
putation is anapplicationof the program. More generally, a program transformation can be viewed as asubstitutioninto a
polynomial. So we need functorial semantics of polynomial constructions, and of the abstraction and substitution operations.
In the framework of cartesian (closed) categories, such a treatment goes back to Lambek and Scott’s seminal work [22, 23].
It was extended to monoidal categories in [30]. Here we extend it to dagger-monoidal categories.

3.1 Polynomial constructions

Adjoining an indeterminatex to a ringR leads to the ring of polynomialsR[x]. Its universal property is that every ring
homomorphismf : R −→ S extends to a unique ring homomorphismfa : R[x] −→ S for each choice ofa ∈ S to whichx
is mapped.

8



S
f

x

a

fa

adx
R[x]

R

The same construction applies to other algebraic theories: e.g., one could form polynomial groups, or polynomial lattices.
Categorically, for an arbitrary algebraic theoryT , a polynomialT -algebraA[x] can be viewed as the coproduct in the category
of T -algebras of theT -algebraA and the freeT -algebra over one generator, denotedx.

The polynomial construction also applies to algebraic structures over categories, such as cartesian, monoidal, or∗-autonomous;
polynomial categories can be built for any algebraic theoryT over the category of categories. The polynomial categoryS[x]
is then the freeT -category obtained by freely adjoining a single generatorx to theT -categoryS; i.e. as the coproduct ofS
and the freeT -category generated byx. However, categories are generated over graphs, rather than sets, so the question is
what kind of a graph shouldx be. There seem to be two minimal choices:

(a) x is an object: a graph with one node and no edges; or

(b) x is an arrow: a graph with two nodes and an edge between them.

While case (a) leads to the constructions which do not involve the arrows, and thus largely boil down to the polynomial con-
structions of universal algebra, case (b) involves genuinely categorical aspects. These new aspects are isolated by assuming
thatonlynew arrows are adjoined toS, andnonew objects. More precisely, an indeterminate arrowA

x
→ B is freely adjoined

between the extant objectsA,B of S. In other words,S[A
x
→ B] can be viewed as the following pushout

bc bc

A B

bc bc

A B

xS

S[A
x
→ B]

in the category ofT -categories.

Lambek was the first to use polynomial categories in his interpretation of typedλ-calculus in cartesian closed categories [22].
The approach was elaborated in the book [23], from which categorical semantics branched in many directions. The terms
containing a variablex of typeX were represented as the arrows of the polynomial categoryS[x:X ], built by adjoining to a
cartesian closed categoryS an indeterminate arrow1

x
→ X , whereX is an object ofS. The universal property ofS[x :X ]

is the same as before: every structure preserving functorF : S −→ L extends to a unique structure-preserving functor
Fa : S[x] −→ L by mapping1

x
→ X to 1

a
→ FX in L.

adx
1

x
−→ X

1
a
−→ FX

S

S[x]

F

Fa

C

Just like a polynomial ring, the categoryS[x :X ] can be constructed syntactically. However, the cartesian closed structure
allows a more effective and more familiar presentation ofS[x:X ].

Theorem 3.1 [22, 23]LetS be a cartesian category,X ∈ S an object andS[x:X ] the free cartesian category generated by
S and1

x
→ X . Then the inclusion functorad : S −→ S[x :X ] has a left adjoint, theabstractionfunctorab : S[x :X ] −→

S : A 7→ X ×A

9



S
(
ab(A), B

)

S[x:X ]
(
A, ad(B)

)
A

ϕ(x)
−→B

X×A
κx.ϕ(x)
−−−−−→B

A
〈x,id〉
−→ X×A

f
→B

X×A
f

−→B

andS[x:X ] is equivalent with the Kleisli category for the comonadX × (−) : S −→ S.

WhenS is cartesian closed, thenS[x :X ] is cartesian closed too. The Kleisli category for the comonadX × (−) : S −→ S
is isomorphic with the Kleisli category for the monad(−)X : S −→ S. The abstraction functor can now be viewed as aright
adjoint of the inclusionad : S −→ S[x:X ]

S
(
A, ab(B)

)

S[x:X ]
(
ad(A), B

)
A

ϕ(x)
−→B

A
λx.ϕ(x)
−−−−−→BX

A
〈f,x〉
−→ BX×X

ε
→B

A
f

−→BX

This latter adjunction provides a categorical model of simply typed lambda-calculus.

Notion of abstraction. Function abstraction is what makes programming possible. The first example of program ab-
straction were probably Gödel’s numberings of primitive recursive functions [14]. Gödel’s construction demonstrated that
recursive programs, specifying entire families of computations (of the values of a function for all its inputs), can be stored
as data. Von Neumann later explicated this as the fundamental principle of computer architecture. Kleene, on the other side,
refined the idea of program abstraction into the fundamental lemma of recursion theory: the s-m-n theorem [19]. Church,
finally3 proposed the formal operations of function abstraction and data application as the driving force of all computation
[6]. This proposal became the foundation of functional programming. Lawvere’s observation that Church’sλ-abstraction
could be interpreted as an adjunction transposition [24] was a critical step towards categorical semantics of computation.
Theorem 3.1 spells out this observation in terms of polynomial categories. Besides the familiarλ-abstraction, which uses the
right adjoint of the inclusionad : S −→ S[x:X ] to transpose a polynomial into a function which outputs functions

ϕ(x) : A→ B

λx.ϕ(x) : A→ BX

the theorem points to an analogous abstraction operation which uses theleft adjoint to the inclusionad : S −→ S[x:X ], and
transposes polynomials intoindexedfamilies of functions

ϕ(x) : A→ B

κx.ϕ(x) : X ×A→ B

This form of abstraction does not require higher-order types, and lifts from cartesian to monoidal categories [30]. In the
present paper, we extend such abstraction operations to monoidal categories with enough structure to support the basic
forms of quantum programming. — In this way, the usual quantum programming constructions can be viewed as a form of
functional programming in Hilbert spaces.

But what kind of functional programming is it?

The fundamental assumption of functional programming is that all data can be copied and deleted. Theorem 3.1 shows that
this implies a canonical abstraction operation.

The fundamental assumption of quantum programming is that some data —the quantum data— cannot be copied or deleted;
but they can be entangled. Entanglement is then developed into a powerful computational resource. In-between the data that
can be copied and deleted, and the data that can be entangled, there is a rich structure of diverse abstraction operations, that
we shall now explore. The idea is that quantum programming can be ”semantically reconstructed” a set of techniques for
combining and interfacing quantum entanglement and classical abstractions.

3Although Church’s paper appeared three years earlier than Kleene’s, Church’s proposal is the final step in the conceptual development of function
abstraction as the foundation of computation.

10



3.2 Abstraction in monoidal categories

Given a monoidal categoryC and a chosen objectA in it, we want to freely adjoin a variable arrowI
x
→ A and build the

polynomial monoidal categoryC[x :X ]. Like before,C[x:X ] can be built syntactically, as the free symmetric monoidal
category over the graph spanned byC andI

x
→ A, factored by the equations between the arrows ofC. Although this is

not a very effective description, it does show that the polynomial categoryC[x:X] can in this case be quite complicated4.
Moreover, in contrast with the cartesian (closed) case, the inclusionad : C −→ C[x:X] does not have an adjoint in general,
and thus does not support abstraction. The task is now to extend the polynomial construction to support abstraction. We
follow, refine and strengthen the results from [30].

Definition 3.2 Let C be a monoidal category, andE a set of well typed equations between some polynomial arrows in
C[x:X]. A monoidal extensionis the monoidal categoryC[x:X;E] = C[x:X]/E obtained by imposing the equationsE on
C[x:X], together with all equations that make it into a monoidal category. Every monoidal extension comes with the obvious
ioof ad : C −→ C[x:X;E].

A substitution functorbetween monoidal extensions is a (strict) monoidal ioofF : C[x:X;E] −→ C[y :Y ;D].

We denote byExtC the category of monoidal extensions ofC, with the substitution functors between them.

Definition 3.3 A (monoidal) abstractionover a monoidal extensionad : C −→ C[x:X;E] is the adjunctionab ⊣ ad such
thatab(A ⊗ B) = ab(A) ⊗ B, and the unit of the adjunctionh : Id −→ ad ◦ ab satisfieshA = x ⊗ A. We denote byAbsC

the subcategory ofExtC spanned by the monoidal extensions that support abstraction.

Notation and terminology. Since the abstraction notationab ⊣ ad : C −→ C[x:X;E] is generic, we often elide the
structure and refer to an abstraction asC[x:X ;E].

Theorem 3.4 The categoryAbsC of monoidal abstractions is equivalent with the categoryC× of commutative comonoids in
C. Each abstraction is isomorphic with the Kleisli adjunction for the comonad induced by the corresponding comonoid.

Proof (sketch). Given a commutative comonoid(X,∆,⊤) in C, we construct the abstractionab ⊣ ad : C −→ C[x :X ;E] as
follows. Let

E = E(∆,⊤)

be the set of equations

x⊗ x⊗ · · · ⊗ x︸ ︷︷ ︸
n times

= ∆
n ◦ x for n = 0, 1, 2 . . .

where∆
n : X −→ X⊗n is defined inductively:

∆
0 = ⊤ ∆

1 = idX ∆
2 = ∆

∆
i+1 = (∆×X⊗i−1) ◦ ∆

i

This determines the extensionad : C −→ C[x :X ;E]. Using the symmetry, it follows that every polynomialϕ(x) ∈ C[x :
X ;E] must satisfy the equation

4E.g.,Rel[x] is not a locally small category.

11



h

g

f h

g

f

∆

=ϕ(x) ϕ ◦ (x ⊗A)

Settingκx.ϕ(x) = ϕ, define

ab : C[x:X ;E] −→ C

A 7−→ X ⊗A

ϕ(x) 7−→ (X ⊗ κx.ϕ(x)) ◦ (∆⊗A) (6)

The adjunction correspondence, withad(B) = B, is now

C
(
ab(A), B

)
C[x:X ;E]

(
A, ad(B)

)

(
κx. ϕ(x)

)
◦

(
x⊗A) = ϕ(x)

κx.
(
f ◦ (x⊗ A)

)
= f

κx.

(−)◦(x⊗A)

(η-rule
(β-rule

∼=

The other way around, given an abstractionab ⊣ ad : C −→ C[x:X ;E], the conditions from Def. 3.3 imply thath(A) = x⊗A
andab(A) = X ⊗A. With the transpositionκx as above, the comonoid structure must be

⊤

∆ =

=

κx.

κx.

X X

idI

The arrow part of the claimed equivalenceAbsC ≃ C× follows in one direction from the fact that any comonoid homomor-
phismf : Y → X induces a unique ioofF : C[x:X] −→ C[y :Y ], mappingϕ(x) to Fϕ(x) = ϕ(f ◦ y). Since every
structure-preserving functorF is easily seen to be induced by the comonoid homomorphismf = κy. Fx in this way, the
bijective correspondenceAbs (C[x:X], C[y :Y ]) ∼= C×(X,Y ) is established.

The isomorphismC[x : X ] ∼= C[X], whereC[X] is the Kleisli category for the comonoidX , is obtained by viewing the
transpositionsκx.(−) and(−) ◦ (x⊗A) as functors. More precisely, this isomorphism is realized by the following ioofs:

K : C[x:X ] −→ C[X] H : C[X] −→ C[x:X ]

ϕ(x) 7−→ κx. ϕ(x) f 7−→ f ◦ (x⊗A)

The fact thatH ◦ K = id is just theβ-rule; the fact thatK ◦ H = id is theη-rule. Proving the functoriality ofK and
H , and the fact that they commute with the abstraction structureab ⊣ ad : C −→ C[x :X ;E] and the Kleisli adjunction
V ⊣ G : C −→ C[X] is an instructive exercise. �

Remarks. (a) The upshot of the preceding theorem is that the set of equationsE in C[x :X ;E] determines the comonoid
structure(∆,⊤) overX ; andvice versa: the comonoid structure(∆,⊤) determines the equationsE = E(∆,⊤), as in the above
proof. Just like we often speak of a ”comonoidX” and leave the actual structure(∆,⊤) implicit, we shall often elideE, and
write C[x :X ], or evenC[x], whenever the rest of the structure is clear from the context. We shall also blur the distinction
between the comonoid(X,∆,⊤) and the corresponding comonad, and denote both byX , writing C[X] for theX-Kleisli
category, theC[X] for theX-Eilenberg-Moore category.

12



(b) The extension process can be iterated to constructC[x:X, y :Y ] = C[x:X ][y :Y ] ∼= C[X⊗Y ], orC[x, y :X ∼= C[X⊗X].

(c) The categoryC× of commutative comonoids is the cofree cartesian category over the monoidal categoryC [13]. The
equivalence of categories established in 3.4 can be extended to an equivalence of 2-categories. The 2-cells ofAbsC are the
monoidal natural transformations. The 2-cells ofC× can be obtained by dualizing the notion of natural transformations
between the monoid homomorphisms. And the monoid homomorphisms are functors between categories with one object, so
the usual notion of natural transformation just needs to be internalized. The reader may find it interesting to work this out.

(d) Recall (or see 2.1.2) that the tensor unitI carries a canonical structure of a commutative comonoid. Adjoining a variable
I

y
→ I leads toC[y :I] ∼= C, because∆y = y ⊗ y and the coherence conditions implyy = idI .

Corollary 3.5 In every extensionC[x:X ] that supports monoidal abstraction holds∆x = x⊗ x and⊤x = idI .

Proof. The first equation follows by postcomposing withx the equation∆ = κx. x ⊗ x, which is the definition of∆ in
C[x:X ], and applying theβ-rule. The second one is obtained by precomposing⊤ = κx. idI with x and applyng theβ-rule.�

Corollary 3.6 If the extensionC[x:X] supports abstraction, thenX is generated by the tensor unitI. As a consequence, a
weakly entangled vectorη ∈ C[x:X ](X ⊗X) is always strongly entangled.

Proof. By definition,I generatesX in C if wheneverfa = ga for all a ∈ C(X), thenf = g, for anyf, g ∈ C(X,Y ). But
the η-rule implies thatfx = gx implies f = g. Hence the first claim. Furthermore, the same fact can be used to show
that condition (a) implies condition (c) in Prop. 2.6. E.g., going back to the proof of 2.6, condition (c) can be obtained by
composing the diagram for condition (a) and its dagger, after instantiatinga to x. Condition (c) then follows by abstracting
overx. �

3.2.1 Substitutions

But what does the variablex in the extensionC[x] actually represent? What kind of vectors can besubstitutedfor it?

Definition 3.7 A Substitutionfor x in C[x:X] is a monoidal functorC[x:X] −→ C.

Corollary 3.8 SubstitutionsC[x:X] −→ C are in one-to-one correspondence with the comonoid homomorphismsI → X ,
whereX is the comonoid that induces the abstraction inC[x:X] as in Thm. 3.4.

Remark. Only the vectorsa ∈ C(X) that happen to be comonoid homomorphisms can thus be substituted forx ∈ C[x :
X ](X), leading to. In the categoryFHilb of finitely-dimensional Hilbert spaces, such vectors turn out to form a basis of the
spaceX .

3.2.2 Bases

Definition 3.9 A basis vectorwith respect to a comonoid(X,∆,⊤) in C is a comonoid homomorphism fromI, i.e. an arrow
β : I → X satisfying∆β = β ⊗ β and⊤β = idI .

=

=

β ββ

β

idI

∆

⊤

Thebasisof a comonoid is the set of its basis vectors.

In Hopf algebra theory, our basis vectors are sometimes calledset-like elements. We shall see in the next section that, for
a special family of comonoids that we call classical structures, the bases tend to form categories equivalent to the category

13



of sets. The basis vectors of a typeX in a monoidal categoryC are just the data that can be copied and deleted by a given
comonoid structure onX .

Examples. Consider the monoidal category(Rel,×, 1) of sets and relations. Every setX has a standard comonoid structure
X1 = (X,∆,⊤), induced by the cartesian structure of sets:

∆(x) = {xx} ⊤(x) = {0}

On the other hand, any monoid(X,+, o) over the same underlying set induces a nonstandard comonoidX2 = (X, +̃, õ),
wherer̃ : B → A denotes the converse relation ofr : A→ B, and thus

+̃(u) = {vw | u = v + w} õ(u) = {o}

These different comonoids induce different monoidal extensionsRel[x :X ;E1] andRel[x :X ;E2], with different abstraction
operations. Both extensions have the same objects, and even the same arrows, but these arrows compose in different ways.
Viewed in the Kleisli form, both categories consist of relations in the formX ×A −→ B. But the compositesX ×A

r;s
−−→ C

of X ×A
r
−→ B andX ×B

s
−→ will respectively be

(r; s)1(u, a, c) ⇐⇒ ∃b. r(u, a, b) ∧ s(u, b, c)

(r; s)2(u, a, c) ⇐⇒ ∃bvw. r(w, a, b) ∧ s(v, b, c)

∧ u = v + w

As a consequence, each case allows substitution of different basis vectors. With respect to the standard comonoidX1 =
(X,∆,⊤), the basis vectors are just the singleton relations{u} ∈ Rel(X). The variablex in Rel[x :X ;E1] thus denotes an
indeterminate element of the setX . On the other hand, with respect to the comonoidX2 = (X, +̃, õ), there is only one basis
vectorβ ∈ Rel(X), which is the subset ofX consisting of the invertible elements with respect to the monoid(X,+, o). The
variablex in Rel[x:X ;E2] thus denotes this one vectorβ ∈ Rel(X), since there is nothing else that can be substituted forx.

4 Daggers and classical structures

This section adds the dagger functor, and the dualities to the monoidal framework of abstraction (cf. 2.2.2). The abstraction
now leads to classical structures, which were introduced in [7]5 asclassical structures.

4.1 Dagger-monoidal abstraction

Definition 4.1 LetC be a dagger-monoidal category, andE a set of equations between some parallel arrows in the dagger-
monoidal polynomial categoryC[x:X]. Adagger-monoidalextensionis the dagger-monoidal categoryC[x:X;E] = C[x:X]/E,
obtained by imposing the equationsE onC[x:X], together with all equations that make it into a dagger-monoidal category.
As all such constructions, it comes with the obvious ioofad : C −→ C[x:X;E].

A substitution functorbetween the dagger-monoidal extensions is a monoidal ioofF : C[x:X;E] −→ C[y :Y ;D] which
preserves the dagger, i.e.F (ψ‡) = (Fψ)‡.

We denote by‡-ExtC the category of dagger-monoidal extensions ofC, with the substitution functors between them.

Definition 4.2 A dagger monoidal abstractionover a dagger monoidal extensionad : C −→ C[x:X;E] is the adjunction
ab ⊣ ad, which satisfies the requirements of Definition 3.3, and moreover preserves the dagger, in the sense thatab.ϕ(x)‡ =

(ab.ϕ(x))
‡.

We denote by‡-AbsC the subcategory of‡-ExtC where the abstraction is supported. Its objects are often called abstractions.

5Their origin in the abstraction operations was not addressed there.

14



Thm. 3.4 established the correspondence between monoidal abstractions overX and the comonoid structures carried byX .
The next theorem extends this correspondence to dagger monoidal categories: a monoidal abstraction corresponding to a
comonoid structure preserves the dagger if and only if the Kleisli category, induced by the comonoid, is (equivalent with) the
dagger monoidal extension itself.

Theorem 4.3 Let C be a dagger-monoidal category andad : C −→ C[x:X;E] a dagger-monoidal extension. Suppose that
it admits a monoidal abstractionab ⊣ ad (as in Def. 3.3), with the induced comonoid(X,∆,⊤) (as in Thm. 3.4) . Then the
following statements are equivalent:

(a) ab ⊣ ad : C −→ C[x:X ;E] is a dagger-abstraction, i.e.ab.ϕ(x)‡ = (ab.ϕ(x))
‡

(b) x is real, i.e.x∗ = x‡

∇

=

⊤ x‡

x

(c) ab ⊣ ad : C −→ C[x:X ;E] is isomorphic with the Kleisli adjunctionV ⊣ G : C −→ C[X]

The following conditions provide further equivalent characterizations of (a-c), this time expressed in terms of the properties
of the comonoid(X,∆,⊤) and its dual monoid(X,∇, unt), where∇ = ∆

‡ and⊥ = ⊤
‡.

(i) η = ∆ ◦ ⊥ andε = ⊤ ◦ ∇ makeX = X∗ self-dual

∇

∆

=
∇

∆

=

⊥ ⊥

⊤⊤

(ii) (X ⊗ ∇) ◦ (η ⊗X) = ∆ = (∇⊗X) ◦ (X ⊗ η)

∇

∆

∆=
∇

∆

=

⊥ ⊥

(iii) (X ⊗ ∇) ◦ (∆⊗X) = ∆ ◦ ∇ = (∇⊗X) ◦ (X ⊗ ∆)

∇

∆ ∇

∆

=
∇

∆

=

15



Remark. Condition (iii) is theFrobenius condition, analyzed in [5, 4, 20, 7]. Condition (ii) is Lawvere’s earlier version of
the same [25]. In each of the last three conditions, the commutativity assumption makes one of the equations redundant. The
equivalence of (i-iii), however, holds without this commutativity.

Proof. (a⇒b) Using the definition (6) ofab, condition (a) implies that∇ = (ab.x)
‡

= ab.x‡ = (X ⊗ κx.x‡) ◦ (∆⊗X),
or graphically

∇ = ∆

from which (b) follows by precomposing both sides with(x⊗X) and postcomposing with⊤.

(b⇒i) Dualizing (b) givesx = x∗ = x‡∗, i.e.

∆

=
⊥x

x‡

Combining (b) and its dual gives

= =

from which (i) follows, because theη-rule implies thatf ◦ (x⊗A) = g ◦ (x ⊗A) =⇒ f = g

(i⇒ii) On one hand, ifX is self-dual, thenX ⊗X is self-dual too, because

= =
ε

X

ε

ηη

then

if

= =
ε

X η

ε

η

ε

η

ε

η

X

On the other hand, (i) also implies that∇
‡ = ∇

∗, and since∆ = ∇
‡ holds by definition, we have

=
η

η

∆ = ∇

ε

η

η

∇

ε

=

=
η

∇

(ii⇒iii) Using (ii) to expand∆ at the first step, and to collapse it at the last step, we get

16



∇

∆

∇

∆

=

=

∇

∆

∇

⊥

= ∇

∆

∇

⊥

=

(iii⇒i) follows in a way obvious from the diagrams, by precomposing the first equation of (iii) with⊥⊗X and postcomposing
it with X ⊗ ⊤; and by precomposing the second equation withX ⊗ ⊥ and postcomposing it with⊤⊗X .

(i⇒c) Using the self-duality ofX , the dagger onC[X] is defined by

=f ‡

ε

f‡

A

B

X X

X

A

B

Since this impliesκx. ϕ(x)‡ = (κx. ϕ(x))
‡, it follows that the isomorphismC[x : X ] ∼= C[X], defined in the proof of

Thm. 3.4, preserves the dagger.

(c⇒a) Since the dagger preservation under the isomorphismC[x:X ] ∼= C[X] means that the dagger inC[X] must be as above,
it follows

By (6), the left-hand side isab. ϕ(x)‡, whereas the right-hand side is(ab. ϕ(x))‡. Hence (a). �

Definition 4.4 A Frobenius algebrain a monoidal categoryC is a structure(X,∇,∆,⊥,⊤) such that

• (X,∇,⊥) is a monoid,

• (X,∆,⊤) is a comonoid, and

• the equivalent conditions (i-iii) of Thm. 4.3 are satisfied.

A dagger-Frobenius algebrain a dagger-monoidal categoryC is a Frobenius algebra where∇ = ∆
‡ and⊥ = ⊤

‡.

Thm. 4.3 can now be summarized as follows.

Corollary 4.5 The category of dagger-monoidal abstractions‡-AbsC is equivalent with the categoryC∆ of commutative
dagger-Frobenius algebras and comonoid homomorphisms inC.

Summary. The upshot of Thm. 4.3 is thus that a monoidal extensionC[x :X ], induced by a commutative comonoidX
which also happens to be a dagger-Frobenius algebra, is necessarily a dagger-monoidal extension. The immediate corollary
is the following.

Corollary 4.6 The substitutionsC[x:X ] −→ C of the basis vectors with respect to a Frobenius algebraX preserve not only
the tensors and their unit, but also the daggers.

Furthermore, since the basis vectors of the Frobenius algebraX are substituted for the variablex, which must be real, it is
natural to expect, and easy to prove that

Corollary 4.7 The basis vectors with respect to a dagger-Frobenius algebra are always real.

Remark. This last statement may sound curious. There are many complex vectors in a complex Hilbert space, and each of
them may participate some basis. However, after a change of basis they may become real; and some vectors that were real will
cease to be real. The notion of reality depends on the choice of basis. However, just like people, the basis vectors themselves

17



always satisfy their own notion of reality: they are in the form β1 = (1, 0, 0, . . . , 0), β2 = (0, 1, 0, . . . , 0), . . . , βn =
(0, 0, . . . , 0, 1).

4.2 Classical structures

It turns out that Frobenius algebras with additional properties provide a purely algebraic characterization of the choice of a
basis, e.g. in a Hilbert space. More generally, in an abstract quantum universe, we can thus distinguish classical data types,
by means of algebraic operations. We begin by describing the additional property needed for this.

Lemma 4.8 Let C[x, y :X ] be a dagger-monoidal extension induced by the Frobenius algebra(X,∇,∆,⊥,⊤). Then the
following conditions are equivalent:

(a) ∇ ◦ ∆ = idX

(b) ∇(x ⊗ x) = x

(c) 〈x|y〉2 = 〈x|y〉

and they imply

(d) 〈x|x〉 = idI

The equivalence of (a) and (b) is also valid for monoidal categories, with no dagger.

Proof. (a⇒b) ∇(x⊗ x) = ∇∆x = x, using Cor. 3.5.

(b⇒c) 〈x|y〉 = x‡ ◦ y = x‡ ◦ ∇ ◦ (y ⊗ y) = x‡ ◦ ∆
‡ ◦ (y ⊗ y) = (x‡ ⊗ x‡)(y ⊗ y) = (x‡ ◦ y)⊗ (x‡ ◦ y) = 〈x|y〉2, i.e.

= ∇ =
y

x‡

y

x‡

y

x‡

y

x‡

y

(c⇒a) x‡ ◦ ∇ ◦ ∆ ◦ y = (x‡ ⊗ x‡)(y ⊗ y) = (x‡ ◦ y)⊗ (x‡ ◦ y) = 〈x|y〉2 = 〈x|y〉 = x‡ ◦ y, and then use theη-rule.

(b⇒d) Since by Thm. 4.3x‡ = x∗, and by Cor. 3.5⊤x = idI , we have〈x|x〉 = x‡x = ⊤x = idI .

= ∇

⊤

=
x x xx

x‡
⊤

�

Definition 4.9 A classical structureis a commutative dagger-Frobenius algebra satifsying 4.8(a). Aclassical extensionof C
is a dagger-monoidal extensionC[x:X ] induced by a classical structure, i.e. satisfying 4.8(b-c).

Remark. Lemma 4.8(b) and Thm. 4.3 together say that a monoidal extensionC[x :X ] of a dagger monoidal categoryC
is a classical extension if and only the variablex is real and idempotent, i.e.x = x∗ = x • x, wherea • b = ∇(a ⊗ b) is
the convolution, mentioned in 2.1.5. Lemma 4.8(c) says that the idempotence ofx is equivalent with the idempotence of the
inner product〈x|y〉 of any two variables of typeX . (Idempotence with respect to which monoid? Recall from Sec. 2.1.5 that
the convolution, the composition, and the tensor of scalars all induce the same monoid, sinces • t = s ◦ t = s⊗ t holds for
all s, t ∈ C(I).)

Note that, by theη-rule,〈x|y〉 = 〈x|z〉 ⇒ y = z. It follows that the monoid of scalars in a polynomial extensionC[x, y, z :X ]
must have freshly adjoined elements, ifx 6= y 6= z. Another interesting point is that the implication〈x|a〉 = 〈x|b〉 ⇒ a = b,

18



valid in C[x :X ], is preserved under the substitutionsjointly, provided that the basis vectors generateX : if 〈β|a〉 = 〈β|b〉
holds for all basis vectorsβ, thena = b. Elaborating this, one could formulate the suitable soundness and completeness
notions and for reasoning with polynomials and classical structures, but we shall not pursue this thread.

Corollary 4.10 The categoryB-AbsC ⊆ ‡-AbsC of classical abstractions ofC is equivalent with the categoryCB of classical
structures and comonoid homomorphisms inC.

Note that the categoryCB is a cartesian subcategory of the categoryC× of commutative comonoids. While the forgetful
functorC× −→ C was couniversal for all monoidal functors from cartesian categories toC, the forgetful functorCB −→ C is
couniversal for the conservative functors among them. The exactness properties ofCB, induced by the various properties of
C, were analyzed in [4]. IfC is compact [18] and right exact with biproducts, thenCB turns out to be a pretopos. In any case,
if C represents a quantum universe,CB can be thought of as the category of classical data.

4.2.1 Orthonormality of bases

Definition 3.9 stipulated an abstract notion of a basis with respect to a comonoid. The notion of a classical structure now
characterizes just those comonoids whose bases areorthonormal, in the sense of the following

Definition 4.11 A vectora ∈ C(A) isnormalizedif 〈a|b〉 = idI . A pair of vectorsa, b ∈ C(A) is orthogonalif 〈a|b〉2 = 〈a|b〉.
A set of vectors isorthonormalwhen each element is normalized, and each pair orthogonal.

Lemma 4.8 and Cor. 3.8 imply that

Proposition 4.12 The basis set of every classical structure is orthonormal.

4.2.2 Succinct classical structures

The following lemma shows that being a classical structure is a property of a comonoid (or of a monoid), rather than additional
structure.

Lemma 4.13 The monoid and the comonoid part of a classical structure determine each other: e.g.,(X,∇,∆1,⊥,⊤1) and
(X,∇,∆2,⊥,⊤2) are classical structures, then∆1 = ∆2 and⊤1 = ⊤2.

Since(X,∇,∆,⊥,⊤) is completely determined by(X,∇,⊥) (and by(X,∆,⊤)), it is justified to speak succinctly of the
classical structure(X,∇,⊥) (and of the classical structure(X,∆,⊤)).

Proof. It is enough to prove∆1 ◦ ∇ = ∆2 ◦ ∇, because this and∇ ◦ ∆1 = idX give

∆1 = ∆1 ◦ ∇ ◦ ∆1 = ∆2 ◦ ∇ ◦ ∆1 = ∆2

Here is a diagrammatic proof∆1 ◦ ∇ = ∆2 ◦ ∇:

2

=

=
1

=
2

1

=
1

1

2

1

2

1

22

= =

=

2=

�

19



4.2.3 Classifying classical structures

Proposition 4.14 [10] In the category(FHilb,⊗,C, ‡) of finitely-dimensional complex Hilbert spaces and linear maps, the
classical structures correspond to the orthonormal bases in the usual sense.FHilbB is equivalent with the categoryFSet of
finite sets and functions.

Proposition 4.15 [31] In the category
(
Rel,×, 1, (̃−)

)
of sets and relations, the classical structures are just the biproducts

(disjoint unions) of abelian groups.RelB is equivalent with the categorySet of sets and functions.

Each classical structureX in Rel decomposes as a disjoint unionX =
∑

j∈J Xj where each restriction(Xj ,∇j ,⊥j) of
(X,∇,⊥) is an abelian group. A classical structure onX thus consists of (1) a partitionX =

∑
j∈J Xj and (2) an abelian

group structure on eachXj. These partitions and group structures, and even the size ofX are, however, indistinguishable by
the morphisms ofRelB, because any two classical structures with the same numberJ of components are isomorphic.

Bases inRel. The basis induced by the classical structureX =
∑

j∈J Xj is in the formB(X) = {Xj}j∈J . While the
bases with the same number of elements are indistinguishable inRelB, they are the crucial resource for quantum computation
in Rel. The bases induced by therectangularstructures(Ξn,∆,⊤), will be particularly useful, where

Ξn =
∑

n

Zn = {ij | 0 ≤ i, j ≤ n− 1}

∆(ij) = {〈ik, iℓ〉 | j = k + ℓ}

⊤ = {i0 | 0 ≤ i ≤ n− 1}

B(Ξn) = {βi = {ij} | 0 ≤ i, j ≤ n− 1}

4.3 Bases for Simon’s algorithm

Any bitstring functionf : Zm
2 → Zn

2 , considered in Simon’s algorithm, can be viewed as a morphismf ∈ FSet℘(m,n) in
the category of finite powersets and all functions between them. It is easy to see that this is a cartesian closed category, with
+ as the cartesian product6. The program transformation from the functionf to the corresponding Hilbert space unitaryUf

is formalized as follows
f(x) = f ◦ x ∈ FSet℘[x :m](n)

f
′(x, y) = 〈x, y ⊕ f(x)〉 ∈ FSet℘[x, y :m + n](m + n)

Uf |x, y〉 = B
⊗f ′(x,y) ∈ FHilb

h

|x, y〉:B⊗(m+n)
i “

B
⊗(m+n)

”

whereB = C2. The unitaryUf is thus the image off ′ along the functor

B
⊗(−) : FSet℘[x, y :m + n] −→ FHilb

h

|x, y〉:B⊗(m+n)
i

which maps finite sets to the tensor powers ofB. SinceB⊗m = C(2m), any functionf : 2m → 2n in Set℘ is mapped to a
linear operatorB⊗f : B⊗m −→ B⊗n in FHilb, represented by the matrixF = (Fij)2n×2m whereFij = 1 wheneverf(j) = i,
otherwiseFij = 0. This determines a functorFSet℘ −→ FHilb. It is extended to a substitutionFSet℘ [x, y :m+ n] −→
FHilb

[
|x, y〉:B⊗(m+n)

]
by stipulating that the variablesx, y are mapped to the variables|x, y〉.

The functionf ∈ FSet℘(m,n) has a simpler, though nonstandard interpretation in the dagger-premonoidal7 category
(Rel℘,⊗, 1, ‡), whereRel℘(m,n) = Rel(2m, 2n) andm ⊗ n = m × n. The dagger is still just the relational converse.
Like before, we define

Ξ⊗(−) : FSet℘[x, y :m + n] −→ Rel℘

h

|x, y〉:Ξ⊗(m+n)
i

6FSet℘ is opposite to the Kleisli category for the℘℘-monad. Along the discrete Stone duality,FSet℘ is thus dual to the category of free finite atomic
Boolean algebras. Since Boolean algebras are primal, every function between them can be expressed as a polynomial.

7The tensorm ⊗ n = m × n is functorial in each argument, but it is not a bifunctor. See [34] for a discussion about such structures. This has no
repercussions for us, since the definition of the functorΞ⊗(−), spelled out explicitly below, makes no use of the arrow part of⊗.

20



this time over the rectangular structure

Ξ = Ξ2 = {00, 01, 10, 11}

∆(i0) = {〈i0, i0〉, 〈i1, i1〉} ∆(i1) = {〈i0, i1〉, 〈i1, i0〉}

⊤ = {00, 10}

B(Ξ) = {β0 = {00, 01}, β1 = {10, 11}}

Note that this comonoid structure lifts from(Rel,×, 1) to (Rel℘,⊗, 1) becauseΞ⊗Ξ = 22⊗22 = 22×2 = 22+2 = 22×22 =
Ξ× Ξ. It furthermore lifts to anyΞ⊗m, since the commutative (co)monoid structures always extend to the tensor powers.

Since the underlying set ofΞ⊗m is 2(2m), any functionf : 2m → 2n in Set℘, is mapped to a relationΞ⊗f : Ξ⊗m −→
Ξ⊗n in Rel℘, represented by the matrixF = (Fij)2n×2m whereFij = 1 wheneverf(j) = i, otherwiseFij = 0. The

functor is extended into a substitutionSet℘[x, y :m+ n] −→ Rel℘

[
|x, y〉:Ξ⊗(m+n)

]
like before. Mapping the polynomial

f ′(x, y), constructed above, along this functor, we get a polynomial unitary relationΥf |x, y〉 = Ξ⊗f ′(x,y) on Ξ⊗(m+n) in
Rel℘

[
|x, y〉:Ξ⊗(m+n)

]
. This polynomial can be viewed as a family of unitary relations indexed over the basis ofΞ⊗(m+n);

and each member of the family is a permutation onΞ⊗(m+n) = 2(2m+n).

5 Complementarity

5.1 Complementary classical structures

Definition 5.1 A vectora ∈ C(X) is unbiased(or complementary) with respect to a classical structure(X,∆,⊤) if ∆a ∈
C(X ⊗X) is strongly entangled (in the sense of Sec. 2.2.4). Two classical structures are complementary if every every basis
vector with respect to one is complementary with respect to the other one, andvice versa.

Remark. In the framework of Hilbert spaces, this definition is equivalent to the standard notion of complementary bases,
used for describing the quantum uncertainty relations [21, 40]. Coecke, Duncan and Edwards [8, 9] have characterized
complementary vectors in terms of their representations (cf. Sec. 2.1.5 (2)). The first part of the following proposition says
that our definition is equivalent to theirs.

Proposition 5.2 With respect to a classical structureX , the representativêb ∈ C(X,X) of b ∈ C(X) is

(a) unitary if and only ifb is unbiased;

(b) a pure projector ifb is a basis vector.

The converse of (b) holds whenever the basis vectors generateX .

Recall from Sec. 2.2.2 that the usual definitions of projectors and unitaries lift to dagger-categories: a unitary is an endomor-
phismu such thatu‡ = u−1, whereas a projectorp satisfiesp = p‡ = p◦p. For a pure projector overX we moreover require
Tr(p) = ε ◦ (X ⊗ p) ◦ η = idI . The assumption that a set of vectorsΓ ⊆ C(X) generates an objectX means that for any
f 6= g ∈ C(X,Y ) there must be a basis vectora ∈ Γ such thatfa 6= ga.

Proof of 5.2. (a) Since∇ is commutative, by the definition of̂b in (2), b̂‡ = (∇(b ⊗ X))‡ =
(
X ⊗ b‡

)
∆. The composites

b̂ ◦ b̂‡ andb̂‡ ◦ b̂ can thus be viewed as the left-hand side and the right-hand side of the following diagram.

∇

∆

=
∇

b

b b‡

b‡

∆ ∇

∆=

b

b‡

21



Both side diagrams can be transformed into the middle one by applying the Frobenius condition 4.3(iii). Thus

b̂ ◦ b̂‡ = idX ⇐⇒ (X ⊗ b‡∇)(∆b⊗X) = idX ⇐⇒ b̂‡ ◦ b̂ = idX

But by Defn. 2.5, the middle equation just says that∆b is strongly entangled, i.e. thatb is unbiased. Hence the claim.

(b) To begin from the easiest, first note thatTr(̂b) = idI ⇐⇒ ⊤b = idI , becauseTr(̂b) = ⊤b:
⊤

⊤

b

∇

∇

b ⊥

∆

⊤

∇

∇

b ⊥

∆

= =
⊤

∇

b

=
⊥

Secondly, we want to show thatb̂ = b̂‡ ⇐⇒ b∗ = b‡, i.e.

∇

b

∆=
⊤

∇

b

=
b‡b‡

⇐⇒

The right-hand equation says thatb is real, which is a property of every basis vector, according Cor. 4.7. The implication
from left to right is obtained by postcomposing both sides of the left-hand equation with⊤. The implication from right to left
is obtained by tensoring byX on the right both sides of the right-hand equation, and then precomposing them with∆. The
left-hand equation is then obtained using 4.3(ii).

To complete the proof, we show that∆b = b⊗ b implies b̂ ◦ b̂ = b̂, by the following diagram:

= = =

bbb

b

b

b

�

5.2 Transforms

A given basis of a Hilbert space can be mapped into a complementary one using a Fourrier transform. This is done in all
HSP-algorithms: the basis vectors are entangled into one complementary vector, and the unitaryUf is then evaluated over
that vector, thus computing all values off in one sweep.

In order to complete the implementation of Simon’s algorithm inRel℘, we need a pair of complementary bases forΞ⊗(m+n).
As mentioned above, the classical structures ofΞ lift from Rel to Rel℘. And in Rel in general, for a given classical structure
X =

∑
j≤m X1

j in Rel, a complementary vector is a setγ ⊆ X such thatγj = γ ∩ X1
j is a singleton for everyj ≤ m.

Another classical structureX =
∑

k≤n X
2
k over the same set is thus complementary if and only ifX1

j ∩X
2
k is a singleton for

all j ≤ m, k ≤ n. SinceX1 andX2 are partitions, it follows that all#X1
j = n and all#X2

k = m. SoX must decompose to
m groups of ordern, and ton groups of ordern. In order to have an invertible transform from one basis to another, we need
m = n. Unless we are interested in the various forms of entanglement engendered by the various group structures, we can
thus restrict attention to rectangular structures from sec. 4.2.3. A simple transform mapping the basis vectors ofΞℓ of into a
complementary basis is

Hℓ : Ξℓ −→ Ξℓ

ij 7−→ ji

UsingH = H2 to transformH⊗m : Ξ⊗m −→ Ξ⊗m we can now produce the superposition of all the basis vectors,
representing the inputs of the functionf : Zm

2 → Zn
2 from Simon’s algorithm. The other way around, theH-image

of any basis vector is the superposition of the complementary basis ofΞ⊗m. We can thus define the unitary polynomial
(H⊗m ⊗ id) ◦ Υf |x, y〉 ◦ (H⊗m ⊗ id) on Ξ⊗(m+n) in Rel℘

[
|x, y〉 : Ξ⊗(m+n)

]
and evaluate it on the vector|0, 0〉 = ⊥ ∈

Rel℘

(
Ξ⊗(m+n)

)
, to get the outcomeS|x, y〉 ∈ Rel℘

[
|x, y〉 : Ξ⊗(m+n)

] (
Ξ⊗(m+n)

)
. To complete the execution of Simon’s

algorithm inRel℘, we just need to measure this outcome.

22



6 Measurements

So far, we have seen that the classical data in a quantum universe, represented by a dagger-monoidal categoryC, can be
characterized as just those data that can be annotated by the variables inC[x, y, . . .], i.e. those data that support the abstraction
operationκx. Quantum programs are thus viewed as polynomial arrowsϕ(x, y, . . .) ∈ C[x, y, . . .]. In this respect, quantum
programs are similar to classical programs: they specify that some operations should be applied to some input data, always
classical, denoted by the variables. Semantics of computation is captured through abstractions and subsitutions. Program
execution, in particular, corresponds to substituting some input data for the variables, and evaluating the resulting expressions.

In classical computation, such evaluations yield the outputs. In quantum computation, however, there is more: the outputs
need to bemeasured. The view of quantum programs as polynomials in dagger-monoidal categories needs to be refined to
capture measurements. In the simplest case, a measurement will turn out to be just a projector inC[x:X ].

Definition 6.1 A morphismX⊗A
α
−→ A in C on is anX-actionA if α◦(X⊗α) = α◦∇. AnX-action isnormalif moreover

α ◦ (⊥×A) = idA.

=
α

A

A

AX X

α

α ∇

A

X X

α

A

A

=
Aη

AnX-equivariang homomorphism fromX⊗A
α
−→ A toX⊗B

β
−→ B is an arrowf ∈ C(A,B) such thatf ◦α = β◦(X⊗f).

The category ofX-actions andX-equivariang homomorphisms is denotedC{X}.

The full subcategory ofnormalX-actions isC[X] →֒ C{X}.

Remark. NormalX-actions are the Eilenberg-Moore algebras for the monadX ⊗ (−) : C −→ C. Equivalently, they are
also actions of the monoidX , and this terminology tends to lead to less confusion.

Lemma 6.2 Let (X,∆,⊤) be a classical structure,α(x) : A −→ A an endomorphism inC[x :X ] andα = κx. α(x) :
X ⊗A −→ A its abstraction.

(a) The following conditions are equivalent:

(i) α(x) = α(x) ◦ α(x), i.e.α(x) is idempotent

(ii) α ◦ (X ⊗ α) = α ◦ ∇, i.e.α is anX-action

(iii) α ◦ (X ⊗ α) ◦ (∆⊗A) = α, i.e.α is idempotent as an endomorphism onA in C[X].

(b) On the other hand, the following conditions are also equivalent:

(i) α(x) = α(x)‡, i.e.α(x) is self-adjoint

(ii) α = (ε⊗A) ◦ α‡

=
α‡

A

A A

AX X

ε

α

(iii) (X ⊗ α) ◦ (∆⊗A) = (∇⊗A) ◦ (X ⊗ α‡)

∆

=
∇α

α‡

A

A A

AX X

X X

23



Theproofs of the above equivalences are easy exercises with classical structure. The equivalence (b)(ii⇔iii) can be viewed,
and proven, in analogy with Thm. 4.3(ii⇔iii).

Definition 6.3 LetX be a classical structure inC. AnX-measurementoverA ∈ C is a projectorα(x) : A −→ A in C[x:X ],
i.e. a self-adjoint idempotentα(x) = α(x)‡ = α(x) ◦ α(x).

A homomorphismf : α(x) −→ β(x), whereα(x) is anX-measurement overA andβ(x) is anX-measurement overB, is
an arrowf ∈ C(A,B) such thatf ◦ α(x) = β(x) ◦ f . The category of measurements in the classical structure(X,∆,⊤) is
denoted byC{x:X}.

Remark. Substituting a basis vectorϕ ∈ B(X) into a measurementα(x) ∈ C[x :X ](A,A) yields a projectorα(ϕ) ∈
C(A,A). The intuition is that this projector corresponds to an the outcome of the measurementα.

It is easy to see thatC{x:X} is a dagger-monoidal category. The following two propositions show that this notion of a
measurement is equivalent with the one from [7].

Theorem 6.4 LetX be a classical structure, andα(x) : A −→ A an endomorphism inC[x:X ]. Then (a)⇐⇒ (b)⇐= (c).

(a) α(x) : A −→ A is a measurement

(b) α = κx. α(x) : XA −→ A is anX-action such thatα ◦ (x⊗A) = (x‡ ⊗A) ◦ α‡

=α

α‡

A

A
A

A

(c) α is anX-action satisfying the following equivalent conditions

(i) (X ⊗ α) ◦ (∆⊗A) = α‡ ◦ α = (∇⊗A) ◦ (X ⊗ α‡)

∆

=
∇α

α‡

A

A A

AX X

X X

α

α‡

A

A

X

X

=

(ii) α‡ ◦ α = (X ⊗ α) ◦ (c⊗A) ◦ (X ⊗ α‡)

=
α

α‡

α‡

A

A A

AX X

X X

α

The converse (c)=⇒ (a)∧ (b) holds if theX-actionα is normal. When this is the case, then also

α ◦ α‡ = idA

=
α‡

A

A

X

α

A

24



Remarks. The two equations in Thm. 6.4(i) imply each other by applying the dagger. They also imply that

• X ⊗A
α
−→ A is a retract ofX ⊗X

∇
−→ X in the category ofX-actions, along the restrictionα‡ : α  ∇, and that

• A
α‡

−→ X ⊗A is a retract ofX
∆
−→ X ⊗X in the category ofX-coactions, along the retractionα : ∆ ։ α‡.

The Frobenius condition is the special case of both (i) and (ii), since∆ and∇ are just special actions.

Proof. (a⇐⇒ b) follows directly from Lemma 6.2. Part (a) of the lemma says thatα(x) is idempotent if and only ifα is an
X-action. Part (b) says thatα(x) is self-adjoint if and only ifα = (ε⊗A)◦α‡, which is equivalent toα◦(x⊗) = (x‡⊗A)◦α‡

by theη-rule, using Thm. 4.3(b).

(a=⇒ii) is proved as follows:

α‡

α‡

A

A

A

A

X

X

X

X

α

=

AX

∇

α‡

AX

α

α‡

=

A

α‡

A

=
α‡

X

∇

AX

A

α‡

∆

∇

X

= =

AX

A

α‡

∆

∇

X

=

using Lemma 6.2, and the commutativity of∆.

(ii=⇒i) is a variation on the same theme:

α‡

α‡

A

A A

AX X

X X

α

=
α

=

A

α‡

A

=
α‡

X

∇

AX

A

α‡

∆

∇

X

= =

AX

A

α‡

∆

∇

X

=
∇

α‡

A

AX

X

Finally, if theX-actionα is normal, then postcomposing (i) with⊤⊗A gives condition 6.2(b), and hence (a).

α ◦ α‡ = idA is left as an exercise. �

Proposition 6.5 The categoryC{x:X} of measurements overX is equivalent with the categoryC{X} ofX-actions.

6.1 Measuring the outcome

In general, the measurement outcome corresponding to a basis vector is the pure projector that represents it. In order to
perform the measurement in the first component ofS|x, y〉 from sec. 5, we use a partial representation of this vector.

Lemma 6.6 σy(x) = (∇m ⊗ idn) ◦ S|x, y〉 is a measurement onΞ⊗(m+n) in Rel℘ [|y〉:Ξ⊗n]{|x〉 :Ξ⊗m}.

Substituting the basis vectors forx in σy(x) gives the projectors onΞ⊗(m+n), from which the information about the period
c is extracted like before.

25



7 Conclusions and future work

Simon’s algorithm required three operations:

abstraction: to represent classical functions and classical data in a quantum universe;

transform to a complementary basis: to entangle classical data and make use of quantum parallelism;

measurement: to extract the classical outcomes of quantum computation.

The abstraction operations shape the classical interfaces of quantum computers. Our analysis of the general abstraction
operations uncovered a rich structure, that may be of interest beyond quantum computation. Are there other computational
resources, besides entanglement, that provide exponential speedup when suitably combined with the general abstraction
operations?

The other two operations that we formalized are typically quantum. Complementary bases provide access to entanglement, as
the main resource of quantum computation, and thus enable quantum parallelism. The varied interactions among the different
classical structures and with measurements give rise to the wealth of quantum algorithms that remain to be explored.

Our abstract model uncovered some abstract entanglement structures, and made them available for quantum computation in
non-standard mathematical models. The algorithmic consequences of this semantical result need to be carefully explored.

References

[1] S. Abramsky and B. Coecke. A categorical semantics of quantum protocols. InProceedings of the 19th Annual IEEE
Symposium on Logic in Computer Science: LICS 2004, pages 415–425. IEEE Computer Society, 2004.

[2] Samson Abramsky. No-cloning in categorical quantum mechanics. In Simon Gay and Ian Mackie, editors,Semantical
Techniques in Quantum Computation. Cambridge University Press, 2008. 32 pp, to appear.

[3] Michael Barr and Charles Wells.Toposes, Triples, and Theories. Number 278 in Grundlehren der mathematischen
Wissenschaften. Springer-Verlag, 1985.

[4] Aurelio Carboni. Matrices, relations, and group representations.J. of Algebra, 136:497–529, 1991.

[5] Aurelio Carboni and Robert F.C. Walters. Cartesian bicategories, I.J. of Pure and Applied Algebra, 49:11–32, 1987.

[6] Alonzo Church. A formulation of the simple theory of types.J. of Symbolic Logic, 5(2):56–68, 1940.

[7] B. Coecke and D. Pavlovic. Quantum measurements without sums. In G. Chen, L. Kauffman, and S. Lamonaco, editors,
Mathematics of Quantum Computing and Technology. Taylor and Francis, 2007. arxiv.org/quant-ph/0608035.

[8] Bob Coecke and Ross Duncan. Interacting quantum observables. In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg,
Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors,ICALP (2), volume 5126 ofLecture Notes
in Computer Science, pages 298–310. Springer, 2008.

[9] Bob Coecke and William Edwards. Toy quantum categories. In Bob Coecke and Prakash Panangaden, editors,Pro-
ceedings of the 2008 QPL-DCM Workshop, pages 25–35. Springer-Verlag, 2008. arXiv:0808.1037.

[10] Bob Coecke, Dusko Pavlovic, and Jamie Vicary. A new description of orthogonal bases.Math. Structures in Comp.
Sci., 2008. 13 pp., to appear, arxiv.org:0810.0812.

[11] D. Dieks. Communication by EPR devices.Physics Letters A, 92(6):271–272, 1982.

[12] Bob CoeckeÉric Oliver Paquette and Dusko Pavlovic. Classical and quantum structuralism. In Simon Gay and Ian
Mackie, editors,Semantical Techniques in Quantum Computation. Cambridge University Press, 2008. 42 pp, to appear.

26



[13] Thomas Fox. Coalgebras and cartesian categories.Comm. Algebra, 4(7):665–667, 1976.

[14] Kurt Gödel.Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme.I. Monatshefte fr
Mathematik und Physik, 38:173–198, 1931.

[15] Sean Hallgren. Polynomial-time quantum algorithms for Pells equation and the principal ideal problem. InProceedings
of the 34th ACM Symposium on Theory of Computing, pages 653–658. ACM Press, 2002.

[16] André Joyal and Ross Street. The geometry of tensor calculus I.Adv. in Math., 88:55–113, 1991.

[17] Gregory M. Kelly. Basic concepts of enriched category theory. Cambridge University Press, 1982.
http://www.tac.mta.ca/tac/reprints/articles/10/tr10.pdf.

[18] Gregory M. Kelly and Miguel L. Laplaza. Coherence for compact closed categories.J. of Pure and Applied Algebra,
19:193–213, 1980.

[19] Stephen Cole Kleene. Recursive predicates and quantifiers.Transactions of the American Mathematical Society,
53(1):41–73, 1943.

[20] Joachim Kock.Frobenius Algebras and 2D Topological Quantum Field Theories, volume 59 ofLondon Mathematical
Society Student Texts. Cambridge University Press, 2004.

[21] K. Kraus. Complementary observables and uncertainty relations.Physical Review D, 35(10):3070–3075, 1987.

[22] Joachim Lambek. From types to sets.Adv. in Math., 36:113–164, 1980.

[23] Joachim Lambek and Philip J. Scott.Introduction to higher order categorical logic. Cambridge University Press, New
York, NY, USA, 1986.

[24] F. William Lawvere. Adjointness in foundations.Dialectica, 23:281–296, 1969.

[25] F.William Lawvere. Ordinal sums and equational doctrines. InSeminar on Triples, Categories and Categorical Homol-
ogy Theory, volume 80 ofLecture Notes in Mathematics, pages 141–155. Springer-Verlag, 1969.

[26] Samuel J. Lomonaco and Louis H. Kauffman. Quantum hidden subgroup algorithms: An algorithmic toolkit. In
G. Chen, Louis Kauffman, and Samuel Lamonaco, editors,Mathematics of Quantum Computing and Technology.
Taylor and Francis, 2007.

[27] Saunders Mac Lane.Categories for the Working Mathematician. Number 5 in Graduate Texts in Mathematics. Springer-
Verlag, 1971.

[28] Michael A. Nielsen and Isaac L. Chuang.Quantum Computation and Quantum Information. Cambridge University
Press, October 2000.

[29] A.K. Pati and S.L. Braunstein. Impossibility of deleting an unknown quantum state.Nature, 404:164–165, 2000.

[30] Dusko Pavlovic. Categorical logic of names and abstraction in action calculus.Math. Structures in Comp. Sci., 7:619–
637, 1997.

[31] Dusko Pavlovic. Quantum and classical structures in nondeterministic computation. In Peter Bruza, Don Sofge, and
Keith van Rijsbergen, editors,Proceedings of Quantum Interaction 2009, volume 5494 ofLecture Notes in Artificial
Intelligence, pages 143–158. Springer Verlag, 2009. arxiv.org:0812.2266.

[32] Dusko Pavlović and Martı́n Escardó. Calculus in coinductive form. In V. Pratt, editor,Proceedings. Thirteenth Annual
IEEE Symposium on Logic in Computer Science, pages 408–417. IEEE Computer Society, 1998.

[33] Roger Penrose. Structure of space-time. In C.M. DeWitt and J.A. Wheeler, editors,Batelle Rencontres, 1967. Benjamin,
1968.

[34] John Power and Edmund Robinson. Premonoidal categories and notions of computation.Mathematical. Structures in
Comp. Sci., 7(5):453–468, 1997.

27



[35] Peter Selinger. Dagger compact closed categories and completely positive maps.Electron. Notes Theor. Comput. Sci.,
170:139–163, 2007.

[36] Peter Selinger. Idempotents in dagger categories: (extended abstract).Electr. Notes Theor. Comput. Sci., 210:107–122,
2008.

[37] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer.
SIAM J. Comput., 26(5):1484–1509, 1997.

[38] Daniel R. Simon. On the power of quantum computation.SIAM J. Comput., 26(5):1474–1483, 1997.

[39] D.V. Widder. An Introduction to Transform Theory, volume 42 ofPure and Applied Mathematics. Academic Press,
New York and London, 1971.

[40] William K. Wootters. Quantum measurements and finite geometry, 2004. arXiv.org:quant-ph/0406032.

[41] W.K. Wootters and W.H. Zurek. A single quantum cannot be cloned.Nature, 299:802–803, 1982.

28




