Geometry of abstraction
In quantum computation

Dusko Pavlovic
Oxford University and Kestrel Institute

Abstract

Quantum algorithms are sequences of abstract operations, performed on non-existent computers. They are in obvious need
of categorical semantics. We present some steps in this direction, following earlier contributions of Abramsky, Coecke and
Selinger. In particular, we analyze function abstraction in quantum computation, which turns out to characterize its classical
interfaces.

Some quantum algorithms provide feasible solutions of important hard problems, such as factoring and discrete log (which
are the building blocks of modern cryptography). Itis of a great practical interest to precisely characterize the computational
resources needed to execute such quantum algorithms. There are many ideas how to build a quantum computer. Can we prove
some necessary conditions? Categorical semantics help with such questions. We show how to implement an important family
of quantum algorithms using just abelian groups and relations.

1 Introduction

What do quantum programmers do? They do a variety of things, but there is a "design pattern” that they often follow,
based on thédidden Subgroup Problem (HSF26, 28, sec. 5.4]. Shor’s factoring and discrete log algorithms [37] are
examples of this pattern, as well as Hallgren’s algorithm for the Pell equation [15]. They all provide an exponential speedup
with respect to the best known classical algorithms. The simplest member of the family is Simon'’s algorithm for period
finding [38], which we use as the running example. The other HSP algorithms only differ in "domain specific” details, but
yield to the same semantics.

The input for Simon’s algorithm is an arbitrary functign: Z5* — Z%, where(Z., ®, 0) is the group with two elements,
and @ is the "exclusive or” operation. The task is to find the periodfofif it exists, i.e. a bitstring: € Z3* such that
flx®c) = f(z) forall z € ZJ*. For simplicity, let us assume that there is exactly one syel the discussion of the other
cases does not bring in anything essential.

Sincef is arbitrary, one cannot ascertain that a bitstrifga solution without computing the value pfx) for everyz € Z7".
But a quantum computer can compute all such values at once! This is gaetm parallelismand is one of the first things
explained to quantum programmers’ apprentices [28, sec. 1.4.2].

Mathematically speaking, the main capability of a quantum computer is that it can evaluate unitary operators. If the inputs
of a function are represented as the basis vectors of a Hilbert space, and the function itself is captured as a unitary operator
over it, then the quantum computer can compute all values of the function at once, by evaluating this unitary over a suitably
generated combination of the basis vectors. Simon'’s algorithm shows how to extract the information about the period of the
function from the projections of the resulting mixture.

But how do we represent a functigh: Z3* — Z% by a unitary operator? For an involutive functign B — B, the answer
is easy: definé/, : CB — CP by settingU,|b) = |g(b)), where|b) € C? are the basis vectors indexedby B. The fact

Dagstuhl Seminar Proceedings 09311
Classical and Quantum Information Assurance Foundations and Practice
http://drops.dagstuhl .de/opus/vol ltexte/2010/2362

thatU, is unitary follows fromy o ¢ = id . For a generaf : Z5* — Z%, first define a corresponding involutigi, and then
extract the unitary/:
FrLy — 75w f(x)

2yt — 28T ca iy oxy @ f(x)
Ug: (CZ;n+n — (CZZI“L : Ix,y) — |«T7y @ f(x)>

where the basis vectofs, y) of CZ"™" are indexed by the bitstrings of lengthm concatenated with the bitstringsof
lengthn. The values of the functiofi are recovered frorV¢|z, 0) = |z, f(z)).

The other conceptual component of Simon’s algorithm, and of all HSP-algorithms, is a standard application of transform
theory [39]: transform the inputs into another domain, where the computation is easier, compute the outputs there, and then
transform them back In our special casé/; is thus precomposed and postcomposed with a suitable version of the Fourrier
transform, which fofZ, boils down to the Hadamard-Walsh tranfoffi®™ |z) = ZIGZ?(—l)I'ﬂx). Herex - z denotes the

inner product irZy*, and we ignore the renormalizing factr = . This transform is applied to the first arguments ot/;,
to generate the desired superposition of all inputg.dFhe quantum computer thus computes the followsing véctor

Simon = (H®™ ®id)U;(H®™ ®id) |0,0)
= Y))

z,x €LY

When we measure the first component of this vector, it collapses to a sihgle. we gety, = |z) ®ZI€Z? (=1)*=|f(x)).

By assumption, there is exactly onec Z3* such thatf(z ¢ ¢) = f(x) holds for allz. The coefficient of each of the
basis vectorsz, f(z)) = |z, f(z @ ¢) is thusy? = (—1)% + (=1)@®)2 = (—1)®* (1 4+ (=1)¢7). It follows that

(Ve € Z5'. v #0) <= c¢-z = 0. Each time that we run the algorithm, we can thus extract a linear equatiorfter

m runs, we can thus compute(The probability that at some stép< m we may get an equation dependent on the previous
ones s 0, becauseare chosen randomly, and the measure of every proper linear subsZitesod.) On the other hand, in
order to convince ourselves classically thét the period off, we should to compute all valugs which require2™ steps,
sincef is an arbitrary function.

The core of Shor’s factoring algorithm follows the same pattern, adapteflf@, — Zx, wheref(x) = ® mod k. The
factored integer i%, anda is randomly selected to be tested for common factors with it, which can be derived by finding a
period of f.

Summary of the paper. A program generally describes a family of computations over a family of input data. The various
input data to be computed with are denoted by variables. E.g., the polyneinial: + 2 can be construed as a program,
describing the family of computations that can be performed for the various value$t @ tacitly assumed that the possible
values ofr can be copied, so that one copy can be substituted for each occurrenaetbe polynomiak:? + z; and that
these data can also be deleted, if the polynomial isjuahdz does not occur in it.

The first problem with quantum programming is that quantum data cannot be manipulated in this way: it is a fundamental
property of quantum states that they generally cannot be copied [41, 11], or even deleted [29, 2]. So how do we write quantum
programs? In particular, given a progrditx) for a functionf, what kind of a program transformation leads to the quantum
programUy|z, y), that we used to specify the unitaliyy above? This question is analyzed and answered in sections 3 and 4.

It turns out that the needed copying and deleting operations are closely related with the abstraction.

On the other hand, copying, deleting and abstraction capabilities can be viewed as the characteristics of classical computation.
In a quantum computer, a structure that supports copying, deleting and abstraction can be construed as its classical interface
This is what we call &lassical structure An early analysis of this structure was in [7]. In the meantime, there are several
versions, and many applications [8, 31, 12]. In recent work, Coecke [9] uses thbasisrstructuregor the same concept,
because a classical structure over a finitely dimensional Hilbert space precisely correspond to a choice of a basis [10], and can
be viewed as a purely categorical, element-free version of this notion. While the simple basis intuitions are attractive, | stick

1E.g., Laplace’s transform maps a differential equation into a polynomial equation over the field, generated by the convolution ring in which the original
equation was stated [32]. The solutions of the polynomial equation are then mapped back by the inverse Laplace transform.
2\We ignore the renormalizing factors throughout.

here with the original terminology. One reason is that theespondence of classical structures and the induced bases is not
always as simple as it is in the category of finitely dimensional Hilbert spaces [31], and it is useful to keep the distinction.

A more important reason is that classical structures express the factabsitality is relativeas an algebraic structure. The

fact that classical data with respect to one classical structure may be entangled with respect to another one is the fundamenta
feature of quantum computation. This is usually captured through change of basis. Classical structures provide an algebraic
framework for such transforms. This is summarized in section 5.

The final step of the described algorithm pattern, measurement, is modeled in section 6. The resulting categorical semantics
is supported not only by the standard Hilbert space model, but also by non-standard models. We spell out a relational
interpretation, based on [9, 31]. In particular, Simon’s algorithm turns out to have an effective relational implementation,
using an abelian group as the computational resource supplying the power of a quantum computer.

Section 2 provides a brief summary of the basic semantical prerequisites, notations and terminology.

2 Preliminaries

2.1 Monoidal categories

We assume that the reader has some understanding of the basic categorical concepts and terminology [27], and work with
symmetric monoidal categorié§, ®, I) [17, 16].

Strictness. For simplicity, and without loss of generality, we tacitly assume that each of our monoidal categstiislis
associative and unitary.e. that the objects form a monoid in the usual sense. This causes no loss of generality because every
monoidal category is equivalent to a strictly associative and unitary one, along a monoidal equivalence. But note that the
tensor symmetry cannot be "strictified” without essentially changing the category; the canonical isomorphisBis—

B ® A are thus generallgotidentities.

On the other hand, just like the tensors, we strictify functormamoidalfunctor F' is always assumed to be strict, i.e. it
preserves the monoidal structure onthe nd8ed @ B) = FA® FBandFI = I.

The arrows fronT are sometimes callacectors or elementsThe abstract "vector spaces” are thus writtéX) = C(1, X).
When confusion is unlikely, we elide the tensor symbol and wXitéf instead ofX ® A ® f.

2.1.1 String diagrams

Calculations in monoidal categories are supported by a simple and intuitive graphical language: the string diagrams. This
language has its roots in Penrose’s diagrammatic notation [33], and it has been formally developed in categeraate

theory, and in particular in Joyal and Streetjgsometry of tensor calculy46]. The objects are drawn as strings, and the
morphisms as boxes attached on these strings. One can think that the information flows through the strings, and is processec
in the boxes. A direction of this flow is chosen by convenience. We shall assume that the information flows up, so that
the strings at the bottom of a box denote the domain of the corresponding morphism; the threads at the top the codomain.
Drawing the stringsA and B next to each other represemsp B; similarly with the boxes. Drawing a thread from one box

to another is denotes the composition of the corresponding morphisms.

BRX
TB(X)X(X)I)
BX®C
h® f
X®ARDR®B®X
id®z
XRARDRB®I
XRARcRr
X®ARB®D
XQRAQ®B®g
XRARBRIDRDRX
Tﬂc®a®D®D®z
IRIRDRDRI

One of the salient features if this notation is that the associativity is implicit, and automatic, both of the tensor and of the
composition. The tensor symmetry: B ® D — D ® B is denoted above by a circle. The circle is usually omitted, so
that symmetry boils down to crossing the strings. The identity morphisms are the "invisible boxes”, that can be placed on
any thread. The tensor uritis the "invisible thread”, that can be added to any diagram. This means that a box representing
a vectora € C(I, AB) does not have any visible threads coming in from below. This is often emphasized by reducing

the bottom of such a box to a point: e.g., the vedtor— AB is denoted by a triangle. The box representing a covector
b € C(C,I) does not have any visible threads coming out, and boils down to a triangle pointing up. The black triangles

denote the vector indeterminates— X, freely adjointed to monoidal categories to form polynomials. Such polynomial
constructions will be discussed in Sec. 3.

2.1.2 Monoids and comonoids

A monoid in a monoidal category is a pair of arroWsg X Y, X & I such that

vo(veX)=v(X®V)
o(L®X)=vo(X®1)=1idyx

When the tensor is the cartesian product, this captures the usual notion of monoid.
A comonoid in a monoidal category is dual to a monoid: it is a pair of art&ws X £ x -1 I such that

(A X)oa=(X®A)oA
(T®X)oa=(X®T)oa=idx
In string diagrams, we draw the monoid evaluations as trapezoids pointing up, whereas their units are little triangles pointing

down. The comonoids are represented by the trapezoids and the little triangles in the opposite directions. E.g., the comonoid
laws correspond to the following graph transformations

¥ -[¥-
T

A A

Y-y

A monoid iscommutativef v o cx x = v. A comonoid is commutative ix x o A = A. In string diagrams, this means that
the value of the output of does not change if the strings that come into it cross; and that the outpuda¥s not change if
the strings coming out of it cross.

2.1.3 Cartesian categories
A monoidal categoryC, ®, I) is cartesianwhen it comes with natural transformations
XeoXx & x X

which make every objecX into a comonoid. The naturality of this structure means that every morphis## YinCis
a comonoid homomorphism. It is easy to see that this makes the t&¥ngoY” into a productX ® Y, such that any pair of

arrowsA - X andA % v corresponds to a unique arroa&tv<g’—h>> A x B, and the tensor unit into the final object,
with a unique arrow from each object. Cartesian structure is thus written in thg(@r 1).

2.1.4 Monads and comonads

A monadon a category can be defined as a functdr: ¢ — C together with a monoid structuf€l” — T < 1din

the category of endofunctors @¢h With the corresponding monoid homomorphisms, monads form a category on their own
[3]. Dually, comonad®nC can be defined as comonoids in the category of endofunctor€owmrd accomodate similar
developments.

The categories of algebras for a monad and coalgebras for a comonad, and in particular the Kleisli and the Eilenberg-Moore
constructions that will be used below, are presented in detail in [27, 3], and in many other books.

The following observation is the starting point for most of the constructions in this paper. The proofis left as an easy exercise.

Proposition 2.1 Every (co)monoid in a monoidal category induces a (co)monall ® (—) : C — C. The corresponding
Kleisli categoryC x| is monoidal if and only if the (co)monoid is commutative.

More precisely, the category of monoids in a monoidal categasyequivalent with the category of mondt®nC such that
T(A® B) =T(A) ® Band moreovehy = h; ® Bandmp = m; ® B hold for all A, B € C. The dual statement holds
for comonoids and comonads.

2.1.5 Convolution and representation

Any monoid(X, v, 1) in a monoidal categor{C, ®, I) induces the ordinary monoid@ (X), e, L), whose operation
aeb = vo(a®b) 1)
is often callecconvolution A Cayley representation (or Yoneda embedding) of the mofWidv, 1) is a map

(-): CX) — C(X,X))
(15x) — (X xex%X)
furthermore represents the vectars C(X) as endomorphisnise C(X, X).

Lemma 2.2 (Cayley, Yoneda) The Cayley representation is a monoid isomorphism between the convolutiori@idhoie 1)
and the monoidNat(X, X), o,idx) of naturalendomorphisms

Nat(X,X) = {feC(X,X)|VabeC(X).fo(aeb)=(foa)eb}
A comonoid structure oX induces a convolution monoid @i X, I), with ce d = (¢ ® d) o a, and with a similar Cayley

representation. In general, a convolution monoid can be defined over any h6¥sét), whereX is a comonoid and” a
monoid, by settingf e g = vy o (f ® g) o Ax.

Scalars. The canonical isomorphising I = I makes the tensor unitof C into a commutative monoid and comonoid; the
tensor associativity is the associativity law of this (co)monoid; the tensor commutativity makes the (co)monoid commutative;
the coherence conditions tell that this is the only (co)monoid structufe &he convolution monoidC(7,), e,id;) is the
abstracscalar algebraof the monoidal categor§. The coherence conditions imply that there is only one monoid structure
onl, henceset =sot=s®tholdsforall scalars,t € C(I,).

Abusing notation, the scalar actien C(I,I) x C(A, B) — C(A, B) is defined bys e f = s @ f. If the tensor unif is not
strict, thens ® f needs to be precomposed By | ® A and postcomposed hy® B = B.

2.2 Duals with daggers

2.2.1 Dualities

A duality structure in a monoidal categofyconsists of two object& and X* and two arrows, the pairingd @ X* = I
and the copairind - X* ® X, such that

e X)(Xon =X (X*®e)(n® X*) = X*

A duality structure is writterin,) : X 4 X*. Note thatX** = X, becausécn,ec) : X* 4 X is also a duality structure.
If every objectX € C has a chosen duality structure, then such choices inddoeléy functor« : C°? — C, which maps
AL Bto . .

B P A AP qrppr S 4

Using a duality(n, ¢) : X - X*, the abstract trace operataisy” : C(X A, X B) — C(A, B) can be defined as follows:

TdBg. A X4 xrxa X9 x xp B, p

2.2.2 Dagger-monoidal categories

A daggerover a categorg is an involutive iooft : C°? — C. In other words, it satisfied* = A on the objects angi* = f
on the arrows. This very basic structure turns out to suffice for some crucial concepts.

Definition 2.3 A morphismu € C(A, B) unitaryif u* o u = id4 andu o u* = idg. An endomorphism € C(A, A) is a
projectorif p = p! = p o p. A projector ispureif moreoverTr/ (p) = id;.

Remarks. Note that the abstract trace operators, given above, require a monoidal structuiénhiminteractions between

the dagger with the monoidal structure, and in particular with the duals, has been recognized and analyzed in [1, 35, 36]. A
dagger-monoidatategory(C, ®, I, 1) is a dagger-category with a monoidal structure where all canonical isomorphisms, that
form the monoidal structure, are unitary. When the monoidal structure is strict, this boils down to the requirement that the
symmetryc: A® B — B ® A is unitary.

In the string diagrams, the morphismf* is represented by flipping the bgkaround its horizontal axis. The morphism
boxes thus need to be made asymmetric to record this flipping: in [35], a corner of the box is filled; in [7], a corner is cut off.

2.2.3 Abstract conjugates and reals

Since the dagger and the duality funct¢rs)t, (—)* : C°? — C commute, their composite defines thenjugationioof

(=)« : C°? — C, which mapsf to f. = f*! = f¥*. In the category of complex Hilbert spaces, the conjugation ioof
corresponds is induced by the conjugation of the complex numbers. In the category of real Hilbert spaces, it degenerates into
the identity functor.

Definition 2.4 A morphismf is said to berealif f = f. (or equivalentlyf* =).

Remarks. Pursuing the Hilbert space intuitions, the arrofwsnd ¥ are sometimes thought of as each other’s adjoints. On
the other hand, in a completely different sense, the dual ohjeatsd A* are each other’s adjoints, if the monoidal category
is vewed as a bicategory with one object.

2.2.4 Inner products and entanglement

The dagger-monoidal structure has been proposed as a framework for categorical semantics of quantum computation [1, 35].
It turns out that this modes structure suffices for deriving many important notions:

e inner product

(=|=)a : C(A) xC(A) — C(I) 3)
(1 2h 4y — (1&;1”_%)

e partial inner product
: C(A) xC(AB) — (C(B) 4)

B
A

I%AT%AB) — (1% aBY2B B
() — ()

o weakly entangled vectorse C(A ® A), such that for alb € C(A) holds
(a M4 = a (5)

Furthermore, an abstract version of strong entanglement can be defined as self-duality.

Definition 2.5 A vectorn € C(X ® X) is said to be (strongly) entangled (), *) : X - X is a duality, i.e. satisfies
MeoX)(Xon =X=(Xo9")(noX),and thusX* = X.

Proposition 2.6 For every objectX in a dagger-monoidal categoy holds (a) < (b) < (c), where

(@) n € C(X ® X) is weakly entangled
(b) n* € C(X ® X, I) internalizes the inner product, d8|b) = n* o (a. @ b)

() n € C(X ® X) is strongly entangled.

The three conditions are equivalentifjenerate€, in the sense that whenevgs = ga for all « € C(X), thenf = g.

A proof can be conveniently built from transformations among the string diagrams of the conditions:

- B - G

2.3 Notation and terminology

To describe relations on finite sets, we often find it convenient to use von Neumann's representation of ordinals-where
is the empty set, and = {0, 1,...,n — 1}. Moreover, the pairéi, j) € n x n are often abbreviated tg € n x n.

When space is constrained and confusion unlikely, we often elide the tensors and fukit& instead ofA ® f @ X ® X.

loofs and embeddings. Many categorical constructions lead to functors where the object part is the identity. They are often
called Identity-Onthe-Objects-Functors. | call thexofs If the reader finds this abbreviation objectionable, she is welcome
to unfold each of its occurrences, and read out the full phrase .

In a similar development, the functors that are full and faithful are often called Full-and-Faithful-Functors. | call them
embeddingsThe reader may notice that every functor can be factored into an ioof followed by an embedding.

3 Polynomials and abstraction

In this section we formalize the program transformations needed to implement a classical function in a quantum computer. If
a program is an arrow in a category, a program transformation is simply a functor out of it. But the problem with transforming

a classical program into a quantum program is that classical data can be copied and deleted, whereas quantum data canno
So the program transformation must map classical data to classical data, distinguished within a quantum universe. What does
this mean? When the classical progrgftx, y) was transformed into the corresponding quantum prodrafe, y) in the
Introduction, the classical inputs were denoted by the variablgsand mapped to the basis vector varialieg). The fact

that the classical inputs can be copied and deleted was captured as a syntactical property of the variables.

If the data over which a program will compute are denoted by variables, then the program itself is a polynomial in some
suitable algebraic theory. More precisely, a program islastractionover the as-yet-undetermined input data, and a com-
putation is arapplicationof the program. More generally, a program transformation can be viewedwssttutioninto a
polynomial. So we need functorial semantics of polynomial constructions, and of the abstraction and substitution operations.
In the framework of cartesian (closed) categories, such a treatment goes back to Lambek and Scott's seminal work [22, 23].
It was extended to monoidal categories in [30]. Here we extend it to dagger-monoidal categories.

3.1 Polynomial constructions

Adjoining an indeterminate to a ring R leads to the ring of polynomialB[z]. Its universal property is that every ring
homomorphisny : R — S extends to a unique ring homomorphigm: R[z] — S for each choice of € S to whichz
is mapped.

B
=
8

=y

/ N
o
~ 8

N €------
P

a

The same construction applies to other algebraic theories: e.g., one could form polynomial groups, or polynomial lattices.
Categorically, for an arbitrary algebraic the@Pya polynomiall’-algebraA[x] can be viewed as the coproductin the category
of T-algebras of th@-algebraA and the free-algebra over one generator, denated

The polynomial construction also applies to algebraic structures over categories, such as cartesian, menaigdahomous;
polynomial categories can be built for any algebraic thédver the category of categories. The polynomial categidsy

is then the fred’-category obtained by freely adjoining a single generattur the7-categorys; i.e. as the coproduct &

and the fre€l’-category generated by However, categories are generated over graphs, rather than sets, so the question is
what kind of a graph should be. There seem to be two minimal choices:

(a) x is an object: a graph with one node and no edges; or

(b) z is an arrow: a graph with two nodes and an edge between them.

While case (a) leads to the constructions which do not involve the arrows, and thus largely boil down to the polynomial con-
structions of universal algebra, case (b) involves genuinely categorical aspects. These new aspects are isolated by assumin
thatonlynew arrows are adjoined), andnonew objects. More precisely, an indeterminate arrowé B is freely adjoined

between the extant objects B of S. In other wordsS[A % B] can be viewed as the following pushout

A B
/ N
3\\\ T
S[AZ B]

in the category of-categories.

Lambek was the first to use polynomial categories in his interpretation of xgedtulus in cartesian closed categories [22].

The approach was elaborated in the book [23], from which categorical semantics branched in many directions. The terms
containing a variable of type X were represented as the arrows of the polynomial cateSjoryX |, built by adjoining to a
cartesian closed categafyan indeterminate arrow - X, whereX is an object ofS. The universal property 6§z : X]

is the same as before: every structure preserving functorS — L extends to a unique structure-preserving functor

F, : S[z] — L by mappingl = X to1 % FX in L.

Just like a polynomial ring, the catego$jz : X| can be constructed syntactically. However, the cartesian closed structure
allows a more effective and more familiar presentatios§ pf: X .

Theorem 3.1 [22, 23]LetS be a cartesian category¥ € S an object andS[z: X] the free cartesian category generated by
Sand1l % X. Then the inclusion functard : S — S[z: X] has a left adjoint, thabstractiorfunctorab : S[z: X] —
S:A—-XxA

(x,id)

A xxat B Slz:X](A,ad(B)) pyasays

I () |

ko)

xxA-L.B S(ab(A), B) XxA—=2 . p
andS[z: X] is equivalent with the Kleisli category for the comong&dx (—) : S — S.

WhensS is cartesian closed, thefifz: X] is cartesian closed too. The Kleisli category for the comoXad (—): S — S
is isomorphic with the Kleisli category for the mongd)* : S — S. The abstraction functor can now be viewed agat
adjoint of the inclusiorad : § — S[z: X]

ATUBNux 5B S[r:X](ad(A),B) 4%9B
AL, px S(A,ab(B)) PESELCINNSY

This latter adjunction provides a categorical model of simply typed lambda-calculus.

Notion of abstraction. Function abstraction is what makes programming possible. The first example of program ab-
straction were probably Godel's numberings of primitive recursive functions [14]. Godel's construction demonstrated that
recursive programs, specifying entire families of computations (of the values of a function for all its inputs), can be stored
as data. Von Neumann later explicated this as the fundamental principle of computer architecture. Kleene, on the other side,
refined the idea of program abstraction into the fundamental lemma of recursion theory: the s-m-n theorem [19]. Church,
finally®> proposed the formal operations of function abstraction and data application as the driving force of all computation
[6]. This proposal became the foundation of functional programming. Lawvere's observation that Chuatisgaction

could be interpreted as an adjunction transposition [24] was a critical step towards categorical semantics of computation.
Theorem 3.1 spells out this observation in terms of polynomial categories. Besides the farabistraction, which uses the

right adjoint of the inclusiond : S — S[x:X] to transpose a polynomial into a function which outputs functions

o(z):A— B
\e.p(z) : A — BX

the theorem points to an analogous abstraction operation which ude# #ijoint to the inclusiond : S — S[z:X], and
transposes polynomials inbadexedfamilies of functions

o(z): A— B
kr.p(x): X x A— B

This form of abstraction does not require higher-order types, and lifts from cartesian to monoidal categories [30]. In the
present paper, we extend such abstraction operations to monoidal categories with enough structure to support the basic
forms of quantum programming. — In this way, the usual quantum programming constructions can be viewed as a form of
functional programming in Hilbert spaces.

But what kind of functional programming is it?

The fundamental assumption of functional programming is that all data can be copied and deleted. Theorem 3.1 shows that
this implies a canonical abstraction operation.

The fundamental assumption of quantum programming is that some data —the quantum data— cannot be copied or deleted;
but they can be entangled. Entanglement is then developed into a powerful computational resource. In-between the data that
can be copied and deleted, and the data that can be entangled, there is a rich structure of diverse abstraction operations, the
we shall now explore. The idea is that quantum programming can be "semantically reconstructed” a set of techniques for
combining and interfacing quantum entanglement and classical abstractions.

SAlthough Church’s paper appeared three years earlier than Kleene’s, Church’s proposal is the final step in the conceptual development of function
abstraction as the foundation of computation.

10

3.2 Abstraction in monoidal categories

Given a monoidal categong and a chosen object in it, we want to freely adjoin a variable arralv= A and build the
polynomial monoidal categorg|x : X]. Like before,C[z:X] can be built syntactically, as the free symmetric monoidal
category over the graph spanned®andl = A, factored by the equations between the arrow€.ofAlthough this is

not a very effective description, it does show that the polynomial categaryX] can in this case be quite complicated
Moreover, in contrast with the cartesian (closed) case, the inclagiof — C[z:X] does not have an adjoint in general,

and thus does not support abstraction. The task is now to extend the polynomial construction to support abstraction. We
follow, refine and strengthen the results from [30].

Definition 3.2 Let C be a monoidal category, anfl’ a set of well typed equations between some polynomial arrows in
C[z:X]. Amonoidal extensiors the monoidal categor§[z: X ; E] = C[z:X]/E obtained by imposing the equatioAson

Clx:X], together with all equations that make it into a monoidal category. Every monoidal extension comes with the obvious
ioofad : C — Clz:X; E].

A substitution functobetween monoidal extensions is a (strict) monoidal BofC[z: X ; E] — C[y:Y; D).

We denote b¥xtc the category of monoidal extensiongefwith the substitution functors between them.

Definition 3.3 A (monoidal) abstractionver a monoidal extensioad : ¢ — C[z:X; E] is the adjunctiorab - ad such
thatab(A ® B) = ab(A) ® B, and the unit of the adjunctioh : Id — ad o ab satisfiesh4 = x ® A. We denote bybs.
the subcategory dixte spanned by the monoidal extensions that support abstraction.

Notation and terminology. Since the abstraction notatiab < ad : ¢ — C[z:X; E] is generic, we often elide the
structure and refer to an abstractiorCas: X; EJ.

Theorem 3.4 The categorAbs: of monoidal abstractions is equivalent with the categdgyof commutative comonoids in
C. Each abstraction is isomorphic with the Kleisli adjunction for the comonad induced by the corresponding comonoid.

Proof (sketch). Given a commutative comondill, a, T) in C, we construct the abstractiab < ad : C — C[z:X; E] as
follows. Let

E = Eam
be the set of equations

rRr®---x = Alox forn=0,1,2...
~—_———

n times

wherea™ : X — X®" is defined inductively:

0

A= 2

=idx A=A

Al
AT = (A x X®) oAl

This determines the extensiad : ¢ — C[z: X; E]. Using the symmetry, it follows that every polynomiglz) € Clx:
X; E] must satisfy the equation

4E.g.,Rel[z] is not a locally small category.

11

Settingkz.o(x) = @, define

ab:Clz:X;E] — C
A — XA
o) — (X @rz.p(@))o(a®A) (6)

The adjunction correspondence, wilth B) = B, is now

_ Cetewa)

C(ab(A),B),\%/C[:C:X;E] (A,ad(B))
(kz. p(x)) o (x @A) = p(x) (B-rule
kz. (fo(z®A)) =f (n-rule

The other way around, given an abstractiord ad : C — C[x:X; E], the conditions from Def. 3.3 imply tha{4) = 20 A
andab(A) = X ® A. With the transpositiorx as above, the comonoid structure must be

& T
ZF = K. s

The arrow part of the claimed equivalentbs: ~ C, follows in one direction from the fact that any comonoid homomor-
phismf : Y — X induces a unique ioof" : C[z:X] — C[y:Y], mappingy(x) to Fp(x) = o(f o y). Since every
structure-preserving functdr is easily seen to be induced by the comonoid homomorplfismky. Fz in this way, the
bijective correspondendkbs (Clz: X],Cly:Y]) = C« (X,Y) is established.

The isomorphisnC[z : X] = C|x), whereCx; is the Kleisli category for the comonoil, is obtained by viewing the
transpositiongz.(—) and(—) o (x ® A) as functors. More precisely, this isomorphism is realized by the following ioofs:

K :Clz:X]| — Cix) H :Cix) — Clr:X]
p(a) — K. p(z) fr—=1fo(z®A)

The fact thatH o K = id is just thes-rule; the fact that’ o H = id is then-rule. Proving the functoriality of and
H, and the fact that they commute with the abstraction structbire ad : C — Clz : X; E] and the Kleisli adjunction
V 4G : C — Cxj is an instructive exercise. O

Remarks. (&) The upshot of the preceding theorem is that the set of equdiiom€ [z : X'; E] determines the comonoid
structure(a, T) over.X; andvice versathe comonoid structur@,) determines the equatiois= E s 1), as in the above
proof. Just like we often speak of a "comondid and leave the actual structufe, T) implicit, we shall often elideZ, and

write C[z : X, or evenC[z], whenever the rest of the structure is clear from the context. We shall also blur the distinction
between the comonoi@X, a, T) and the corresponding comonad, and denote botlX byvriting C;x; for the X-Kleisli
category, the&?X! for the X -Eilenberg-Moore category.

12

(b) The extension process can be iterated to consfifuctX, y:Y] = Clz: X][y:Y] = Cix gy, OrC[z,y: X = Cxgx]-

(c) The category« of commutative comonoids is the cofree cartesian category over the monoidal cafed@ly The
equivalence of categories established in 3.4 can be extended to an equivalence of 2-categories. The/Absels®the

monoidal natural transformations. The 2-cells(gf can be obtained by dualizing the notion of natural transformations
between the monoid homomorphisms. And the monoid homomorphisms are functors between categories with one object, so
the usual notion of natural transformation just needs to be internalized. The reader may find it interesting to work this out.

(d) Recall (or see 2.1.2) that the tensor undarries a canonical structure of a commutative comonoid. Adjoining a variable
I % Ileads taC[y:I] = C, becauseyy = y ® y and the coherence conditions imply= id;.

Corollary 3.5 In every extensio@[z: X | that supports monoidal abstraction holds = = ® x and T2 = id;.

Proof. The first equation follows by postcomposing withthe equatiomn = xz. x ® z, which is the definition ofa in
Clx:X], and applying thg-rule. The second one is obtained by precomposiagxx. id; with z and applyng thg-rule.OJ

Corollary 3.6 If the extensiorf [z: X| supports abstraction, theX is generated by the tensor udit As a consequence, a
weakly entangled vector € C[z: X (X ® X) is always strongly entangled.

Proof. By definition, generatesX in C if wheneverfa = ga forall a € C(X), thenf = g, forany f,g € C(X,Y). But

the n-rule implies thatfx = gz implies f = g. Hence the first claim. Furthermore, the same fact can be used to show
that condition (a) implies condition (c) in Prop. 2.6. E.g., going back to the proof of 2.6, condition (c) can be obtained by
composing the diagram for condition (a) and its dagger, after instantiating.. Condition (c) then follows by abstracting
overz. O

3.2.1 Substitutions

But what does the variablein the extensioi€[z] actually represent? What kind of vectors carshbstitutedor it?
Definition 3.7 A Substitutiorfor « in C[z:X] is a monoidal functo€|[z:X] — C.

Corollary 3.8 Substitution€[xz:X] — C are in one-to-one correspondence with the comonoid homomorpHismsX,
whereX is the comonoid that induces the abstractio[m: X] as in Thm. 3.4.

Remark. Only the vectors € C(X) that happen to be comonoid homomorphisms can thus be substituted=fdtz :
X](X), leading to. In the categofyHilb of finitely-dimensional Hilbert spaces, such vectors turn out to form a basis of the
spaceX.

3.2.2 Bases

Definition 3.9 A basis vectowith respect to a comonoidX, A, T) in C is a comonoid homomorphism frafni.e. an arrow
8 : 1 — X satisfyinga = S ® and T8 = id;.

- Ll

= ©

o) 4
Thebasisof a comonoid is the set of its basis vectors.

In Hopf algebra theory, our basis vectors are sometimes csdletike elementsWe shall see in the next section that, for
a special family of comonoids that we call classical structures, the bases tend to form categories equivalent to the category

13

of sets. The basis vectors of a tyfein a monoidal categorg are just the data that can be copied and deleted by a given
comonoid structure oX .

Examples. Consider the monoidal categd(fgel, x, 1) of sets and relations. Every s€thas a standard comonoid structure
X1 = (X, a, 1), induced by the cartesian structure of sets:

a(r) = {ax} () = {0}

On the other hand, any monof&, +, o) over the same underlying set induces a nonstandard coméfoid (X, +,0),
wherer : B — A denotes the converse relatiomof A — B, and thus

+u) = {vw|u=v+w} o(u) = {o}

These different comonoids induce different monoidal extendRef{s : X ; £;] andRel[z: X; E»], with different abstraction
operations. Both extensions have the same objects, and even the same arrows, but these arrows compose in different ways
Viewed in the Kleisli form, both categories consist of relations in the fafm A — B. But the compositeX x A =% C'

of X x A5 BandX x B 2 will respectively be

(rys$)i(u,a,¢) <= 3b. r(u,a,b) A s(u,b,c)
(r;$)2(u,a,¢) <= Jbow. r(w,a,b) As(v,b,c)

ANu=v+w

As a consequence, each case allows substitution of different basis vectors. With respect to the standard éomenoid
(X, a,T), the basis vectors are just the singleton relatipis € Rel(X). The variabler in Rel[z: X; E;] thus denotes an
indeterminate element of the st On the other hand, with respect to the comon®id= (X, +,0), there is only one basis
vectorfs € Rel(X), which is the subset oX' consisting of the invertible elements with respect to the mo(&igt-, o). The
variablez in Rel[z: X ; E»] thus denotes this one vectfre Rel(X), since there is nothing else that can be substituted.for

4 Daggers and classical structures

This section adds the dagger functor, and the dualities to the monoidal framework of abstraction (cf. 2.2.2). The abstraction
now leads to classical structures, which were introduced hg3¢lassical structures

4.1 Dagger-monoidal abstraction

Definition 4.1 LetC be a dagger-monoidal category, atla set of equations between some parallel arrows in the dagger-
monoidal polynomial catego{z: X]. Adagger-monoidal extensigsithe dagger-monoidal categotyz: X; E] = C[z: X]/E,
obtained by imposing the equatioAson C[z: X], together with all equations that make it into a dagger-monoidal category.
As all such constructions, it comes with the obvious &iof C — Clx:X; E].

A substitution functobetween the dagger-monoidal extensions is a monoidalfivofC[z:X; E] — Cly:Y’; D] which
preserves the dagger, i.€.(y*) = (F)*.

We denote by-Extc the category of dagger-monoidal extensiong ofvith the substitution functors between them.

Definition 4.2 A dagger monoidal abstracti@mver a dagger monoidal extensiad : C — C[z:X; E] is the adjunction
ab - ad, which satisfies the requirements of Definition 3.3, and moreover preserves the dagger, in the sebse(thgt=

(ab.p(x))".
We denote by-Abs; the subcategory af-Extc where the abstraction is supported. Its objects are often called abstractions.

5Their origin in the abstraction operations was not addressed there.

14

Thm. 3.4 established the correspondence between monogtahetions oveX and the comonoid structures carried Ky

The next theorem extends this correspondence to dagger monoidal categories: a monoidal abstraction corresponding to &
comonoid structure preserves the dagger if and only if the Kleisli category, induced by the comonoid, is (equivalent with) the
dagger monoidal extension itself.

Theorem 4.3 LetC be a dagger-monoidal category and : C — C[z: X; E] a dagger-monoidal extension. Suppose that
it admits a monoidal abstractioab - ad (as in Def. 3.3), with the induced comondgid, A, T) (as in Thm. 3.4) . Then the
following statements are equivalent:

(a) ab +ad : C — C[z:X; E] is a dagger-abstraction, i.ab.o(z)! = (ab.o(z))*

£t

(c) ab 4 ad: C — C[z:X; E] is isomorphic with the Kleisli adjunction 4 G : C — Cix;

(b) zisreal, i.e.x* =2t

The following conditions provide further equivalent characterizations of (a-c), this time expressed in terms of the properties
of the comonoid X, a, T) and its dual monoid X, v, unt), wherev = a* and 1 = 7.

(i) n=na0 1 ande = T o vmakeX = X* self-dual

/T\

QHB

(i) (X@v)o(ne@X)=a=(vaX)o(Xan)

15

Remark. Condition (iii) is theFrobenius conditiopanalyzed in [5, 4, 20, 7]. Condition (ii) is Lawvere’s earlier version of
the same [25]. In each of the last three conditions, the commutativity assumption makes one of the equations redundant. The
equivalence of (i-iii), however, holds without this commutativity.

Proof. (a=-b) Using the definition (6) ofb, condition (a) implies thall = (ab.:zc)jt = abat = (X ®@kz.2t) o (A®X),

or graphically

from which (b) follows by precomposing both sides with® X) and postcomposing witf .

(b=-i) Dualizing (b) givesr = =, = z**, i.e.

-y

from which (i) follows, because therule impliesthatf o (z ® A) = go (2 ® A) = f =g

Combining (b) and its dual gives

(i=-ii) On one hand, iX is self-dual, thenX ® X is self-dual too, because

LT e
X
then B

£

E E
) - X_ n
1 n

On the other hand, (i) also implies that = v*, and sincexn = v* holds by definition, we have

£ 13
%_ AN AN
n n

(ii=iii) Using (ii) to expand at the first step, and to collapse it at the last step, we get

=

16

(iii =) follows in a way obvious from the diagrams, by precomposing the first equation of (iiiw#tl and postcomposing
it with X ® T; and by precomposing the second equation Witty 1 and postcomposing it with @ X.

(i=-c) Using the self-duality ofY, the dagger oCx is defined by

Since this impliessz. ¢(z)f = (ka. o(x))*, it follows that the isomorphisri[z : X] = Cx], defined in the proof of
Thm. 3.4, preserves the dagger.

(c=-a) Since the dagger preservation under the isomorpliismX| = C;x) means that the daggerdiy; must be as above,
it follows

By (6), the left-hand side isb. ¢(z)*, whereas the right-hand side(isb. go(:v))i. Hence (a). O

Definition 4.4 A Frobenius algebrian a monoidal categorg is a structure(X, v, A, 1, T) such that

e (X,v,1)isamonoid,
e (X, A, T)Iis acomonoid, and

e the equivalent conditions (i-iii) of Thm. 4.3 are satisfied.

A dagger-Frobenius algebiraa dagger-monoidal categoiyis a Frobenius algebra where = a* and 1. = T+,
Thm. 4.3 can now be summarized as follows.

Corollary 4.5 The category of dagger-monoidal abstractianébs; is equivalent with the categoig, of commutative
dagger-Frobenius algebras and comonoid homomorphisr@s in

Summary. The upshot of Thm. 4.3 is thus that a monoidal extensipn: X], induced by a commutative comonald
which also happens to be a dagger-Frobenius algebra, is necessarily a dagger-monoidal extension. The immediate corollary
is the following.

Corollary 4.6 The substitution§[x: X] — C of the basis vectors with respect to a Frobenius algebrpreserve not only
the tensors and their unit, but also the daggers.

Furthermore, since the basis vectors of the Frobenius algélage substituted for the variable which must be real, it is
natural to expect, and easy to prove that

Corollary 4.7 The basis vectors with respect to a dagger-Frobenius algebra are always real.

Remark. This last statement may sound curious. There are many complex vectors in a complex Hilbert space, and each of
them may participate some basis. However, after a change of basis they may become real; and some vectors that were real will
cease to be real. The notion of reality depends on the choice of basis. However, just like people, the basis vectors themselves

17

always satisfy their own notion of reality: they are in thenfiop; = (1,0,0,...,0),8: = (0,1,0,...,0),...,8, =
(0,0,...,0,1).

4.2 Classical structures

It turns out that Frobenius algebras with additional properties provide a purely algebraic characterization of the choice of a
basis, e.g. in a Hilbert space. More generally, in an abstract quantum universe, we can thus distinguish classical data types,
by means of algebraic operations. We begin by describing the additional property needed for this.

Lemma 4.8 LetC[z,y : X| be a dagger-monoidal extension induced by the Frobenius algebra, A, 1, T). Then the
following conditions are equivalent:

(@) voa=1idy
(b) vie®z) ==
©) (zly)? = (zly)
and they imply
(d) (z|z) =id;
The equivalence of (a) and (b) is also valid for monoidal categories, with no dagger.

Proof. (a=b) v(z ®) = vaz = z, using Cor. 3.5.

(b=c) (z]y) =atoy=atovo(y®y) =ztoato(yoy) =zt (yoy) = (2t oy) ® (z¥ o y) = (zly)?, i.e.

»

(cza)ztovoroy=(vt@zh)(yay) = (ztoy) @ (2t oy) = (z|y) = 2t oy, and then use the-rule.
(b=-d) Since by Thm. 4.3 = z*, and by Cor. 3.5z = id;, we han:c|:v) =zle = To =id;.

8

O

Definition 4.9 A classical structuris a commutative dagger-Frobenius algebra satifsying 4.8(ajladsical extensioaf C
is a dagger-monoidal extensi@hz: X] induced by a classical structure, i.e. satisfying 4.8(b-c).

Remark. Lemma 4.8(b) and Thm. 4.3 together say that a monoidal exted$ionX| of a dagger monoidal catego€y

is a classical extension if and only the variablés real and idempotent, i.ec = 2, = x e x, wherea e b = v(a ® b) is

the convolution, mentioned in 2.1.5. Lemma 4.8(c) says that the idempotends efjuivalent with the idempotence of the
inner productx|y) of any two variables of typ& . (Idempotence with respect to which monoid? Recall from Sec. 2.1.5 that
the convolution, the composition, and the tensor of scalars all induce the same monoid,esinees o t = s @ ¢ holds for

all s,t € C(I).)

Note that, by they-rule, (x|y) = (x|z) = y = z. It follows that the monoid of scalars in a polynomial extension y, z: X|
must have freshly adjoined elementsyi#£ y # z. Another interesting point is that the implicati¢n|a) = (x|b) = a = b,

18

valid in C[z : X], is preserved under the substitutigositly, provided that the basis vectors generdteif (5|a) = (G|b)
holds for all basis vectors, thena = b. Elaborating this, one could formulate the suitable soundness and completeness
notions and for reasoning with polynomials and classical structures, but we shall not pursue this thread.

Corollary 4.10 The category3-Absc C 1-Absc of classical abstractions @f is equivalent with the categoG of classical
structures and comonoid homomorphismgin

Note that the categorgi is a cartesian subcategory of the categogyof commutative comonoids. While the forgetful
functorCx — C was couniversal for all monoidal functors from cartesian categoriésttee forgetful functoCz — C is
couniversal for the conservative functors among them. The exactness prope@igsrafuced by the various properties of
C, were analyzed in [4]. I€ is compact [18] and right exact with biproducts, thnturns out to be a pretopos. In any case,
if C represents a quantum univer§g,can be thought of as the category of classical data.

4.2.1 Orthonormality of bases

Definition 3.9 stipulated an abstract notion of a basis with respect to a comonoid. The notion of a classical structure now
characterizes just those comonoids whose basesrtm@normal in the sense of the following

Definition 4.11 Avectora € C(A) isnormalizedf (a|b) = id;. A pair of vectors:, b € C(A) is orthogonalf (a|b)? = (a|b).
A set of vectors isrthonormalvhen each element is normalized, and each pair orthogonal.

Lemma 4.8 and Cor. 3.8 imply that

Proposition 4.12 The basis set of every classical structure is orthonormal.

4.2.2 Succinct classical structures

The following lemma shows that being a classical structure is a property of a comonoid (or of a monoid), rather than additional
structure.

Lemma 4.13 The monoid and the comonoid part of a classical structure determine each other(>é.g.,41, 1, 71) and
(X, v,a9, 1, To) are classical structures, thexy = Ao andT; = Ta.

Since (X, v, a, 1, T) is completely determined b{X, v, 1) (and by (X, a, T)), it is justified to speak succinctly of the
classical structuréX, v, 1) (and of the classical structu(&’, a, T)).

Proof. Itis enough to prove; o v = As o v, because this amd o A; = idx give

Al = A1 OVOA] = A0V OA] = Ag

5!

Here is a diagrammatic proaf; o v = A5 o v:

z-5 -

Dq

4.2.3 Classifying classical structures

Proposition 4.14 [10] In the categoryFHilb, ®, C, 1) of finitely-dimensional complex Hilbert spaces and linear maps, the
classical structures correspond to the orthonormal bases in the usual g8k is equivalent with the categoRSet of
finite sets and functions.

Proposition 4.15 [31] In the category(Rel, x, 1, (A—/)) of sets and relations, the classical structures are just the biproducts
(disjoint unions) of abelian group®el; is equivalent with the categoBet of sets and functions.

Each classical structur® in Rel decomposes as a disjoint uniéh = >, ; X; where each restrictioQX;, v;, 1;) of
(X, v, 1) is an abelian group. A classical structure @rthus consists of (1) a partmoX Z s X; and (2) an abelian
group structure on eacki;. These partitions and group structures, and even the sixeavé, however indistinguishable by
the morphisms oRelz, because any two classical structures with the same nuhbkcomponents are isomorphic.

Bases inRel. The basis induced by the classical structdre= . ; X; is in the formB(X) = {X;};c;. While the
bases with the same number of elements are indistinguishaRignthey are the crucial resource for quantum computation
in Rel. The bases induced by thectangularstructureg=,,, A, T), will be particularly useful, where

En o= Y Zn={ij|0<i,j<n-—1}
a(ij) = {(ik,it) | j=k+ 1}

T = {i0]0<i<n—1}
B(E,) = {Bi={ij}l0<ij<n-1}

4.3 Bases for Simon’s algorithm

Any bitstring functionf : Z5* — Z%, considered in Simon’s algorithm, can be viewed as a morplfismFSet,,(m,n) in
the category of finite powersets and all functions between them. It is easy to see that this is a cartesian closed category, with
+ as the cartesian prod@cfThe program transformation from the functigro the corresponding Hilbert space unitéfy

is formalized as follows
f(z) = fox € FSety[z:m](n)

f'(@,y) = {@,y ® f(z)) € FSety[z, y:m +n](m + n)
Usle, y) = B %) € FHilb ||z,) B2 | (BE)

whereB = C2. The unitaryU; is thus the image of’ along the functor
B ¢ FSety[w, yim + n] — FHilb [|a, y):B%™]

which maps finite sets to the tensor power8ofSinceB®™ = C2™), any functionf : 2 — 2" in Set,, is mapped to a
linear operatoB®/ : B¥™ — B" in FHilb, represented by the matrix = (F};),. . ,.. WhereF;; = 1 wheneverf(j) = i,
otherwiseF;; = 0. This determines a functdiSet, — FHilb. It is extended to a substitutidfbet,, [z, y:m + n] —
FHilb [|z,y) :B®(m+”>] by stipulating that the variables y are mapped to the variables y).

The functionf € FSet,,(m,n) has a simpler, though nonstandard interpretation in the daggemnoidal category
(Rely,, ®,1,1), whereRel,(m,n) = Rel(2™,2") andm ® n = m x n. The dagger is still just the relational converse.
Like before, we define

E@(*)

: FSet,[z,y:m +n] — Rel, [|:p y): '—*®(m+n):|

6FSet,, is opposite to the Kleisli category for thep-monad. Along the discrete Stone dualiiBet,, is thus dual to the category of free finite atomic
Boolean algebras. Since Boolean algebras are primal, every function between them can be expressed as a polynomial.

"The tensonn ® n = m x n is functorial in each argument, but it is not a bifunctor. See [34] for a discussion about such structures. This has no
repercussions for us, since the definition of the fungi®¥ —), spelled out explicitly below, makes no use of the arrow patbof

20

this time over the rectangular structure

2 ==, = {00,01,10,11}
A(10) = {(i0,140), (i1,:1)} a(il) = {(:0,41), (i1,40)}
T ={00,10}
B(E) = {fo = {00,01}, 81 = {10, 11}}
Note that this comonoid structure lifts frofRel, x, 1) to (Rel,,, ®, 1) becaus€ @ = = 22 @2? = 22%2 = 2242 = 22 x 22 =
= x Z. It furthermore lifts to anyg®™, since the commutative (co)monoid structures always extend to the tensor powers.

Since the underlying set &®™ is 2(2™), any functionf : 2™ — 2" in Set,,, is mapped to a relatiog®f : =™ —
Z¥" in Rel,, represented by the matriX = (Fj;),. ... WhereF;; = 1 wheneverf(j) = 4, otherwiseF;; = 0. The
functor is extended into a substitutiGet, [z, y :m + n] — Rel,, [|z, y) :E®(m+">} like before. Mapping the polynomial

f'(x,y), constructed above, along this functor, we get a polynomial unitary relatjon, y) = 2©/'(#v) on E®(m+n) jn

Rely, [|z, y):E€(m*+™)]. This polynomial can be viewed as a family of unitary relations indexed over the basi&sf");

and each member of the family is a permutatiorgsii™+ = 2(2""),

5 Complementarity
5.1 Complementary classical structures

Definition 5.1 A vectora € C(X) is unbiasedor complementary) with respect to a classical structUkg a, 1) if aa €
C(X ® X) is strongly entangled (in the sense of Sec. 2.2.4). Two classical structures are complementary if every every basis
vector with respect to one is complementary with respect to the other ongjcankersa

Remark. In the framework of Hilbert spaces, this definition is equivalent to the standard notion of complementary bases,
used for describing the quantum uncertainty relations [21, 40]. Coecke, Duncan and Edwards [8, 9] have characterized
complementary vectors in terms of their representations (cf. Sec. 2.1.5 (2)). The first part of the following proposition says
that our definition is equivalent to theirs.

Proposition 5.2 With respect to a classical structufé, the representative C(X,X)ofbeC(X)is

(a) unitary if and only ifb is unbiased;

(b) a pure projector i is a basis vector.

The converse of (b) holds whenever the basis vectors genkrate

Recall from Sec. 2.2.2 that the usual definitions of projectors and unitaries lift to dagger-categories: a unitary is an endomor-
phismu such that:t = u~', whereas a projectorsatisfiep = p* = pop. For a pure projector oveY we moreover require

Tr(p) = e o (X ® p) o = id;. The assumption that a set of vectdrs C(X) generates an objeéf means that for any

f # g € C(X,Y) there must be a basis vectoe T" such thatfa # ga.

Proof of 5.2. (a) Sincev is commutative, by the definition @fin (2), b} = (v(b® X)) = (X ®bt) a. The composites
bo bt andbf o b can thus be viewed as the left-hand side and the right-hand side of the following diagram.

A | A
JATAN JATAN N
N bi = =
&/ AV ZATAN
[AV4 N

21

Both side diagrams can be transformed into the middle one plyiag the Frobenius condition 4.3(iii). Thus
bobf =idy <= (X@bv)(ab®X)=idy <= blob=idy
But by Defn. 2.5, the middle equation just says thais strongly entangled, i.e. thais unbiased. Hence the claim.

(b) To begin from the easiest, first note tl‘lé(b id;y <= Tb=1idy, becausd‘r = Tb:

4-em

Secondly, we want to show that= bF <= b* = b}, i.e.

bﬁ% :“% - &7

The right-hand equation says thais real, which is a property of every basis vector, according Cor. 4.7. The implication
from left to right is obtained by postcomposing both sides of the left-hand equatiorrwithe implication from right to left

is obtained by tensoring h¥ on the right both sides of the right-hand equation, and then precomposing them. witie
left-hand equation is then obtained using 4.3(ii).

To complete the proof, we show thab = b ® b implies sbob = by the following diagram:

5.2 Transforms

A given basis of a Hilbert space can be mapped into a complementary one using a Fourrier transform. This is done in all
HSP-algorithms: the basis vectors are entangled into one complementary vector, and thelynigathyen evaluated over
that vector, thus computing all values pfn one sweep.

In order to complete the implementation of Simon'’s algorithrRéf),, we need a pair of complementary basesg6f "+,

As mentioned above, the classical structures tift from Rel to Rel,. And in Rel in general, for a given classical structure

X = ngm le in Rel, a complementary vector is a sgtC X such thaty; = v N le is a singleton for every < m.

Another classical structut® = ", . X7 over the same set is thus complementary if and on]s]}ih X? is a singleton for

all j <m,k <n. SinceX' andX? are partitions, it follows that al§ X} = n and all#X? = m. SoX must decompose to

m groups of order, and ton groups of order.. In order to have an invertible transform from one basis to another, we need

m = n. Unless we are interested in the various forms of entanglement engendered by the various group structures, we can
thus restrict attention to rectangular structures from sec. 4.2.3. A simple transform mapping the basis vEg¢tofendd a
complementary basis is

Hg . Eg — Eg
iy s Ji

Using H = H, to transformH®™ . =™ . =®m we can now produce the superposition of all the basis vectors,
representing the inputs of the functigh: Z3* — Z% from Simon’s algorithm. The other way around, theimage
of any basis vector is the superposition of the complementary ba&i§8f We can thus define the unitary polynomial
(H®™ ®id) o Yylz,y) o (H®™ ® id) onZE(m+1) in Rel,, [|z,y) : E2(™+™)] and evaluate it on the vectty, 0) = L €
Rel, (2®¥(m+m)), to get the outcoms|z,y) € Rel, [|z,y) : E¥(m+™)] (22(m+n)) To complete the execution of Simon’s
algorithminRel,,, we just need to measure this outcome.

22

6 Measurements

So far, we have seen that the classical data in a quantum universe, represented by a dagger-monoidal categbry
characterized as just those data that can be annotated by the variaghlesjin . .], i.e. those data that support the abstraction
operationsz. Quantum programs are thus viewed as polynomial artefsy, . ..) € Clz,y,...]. In this respect, quantum
programs are similar to classical programs: they specify that some operations should be applied to some input data, always
classical, denoted by the variables. Semantics of computation is captured through abstractions and subsitutions. Program
execution, in particular, corresponds to substituting some input data for the variables, and evaluating the resulting expressions.

In classical computation, such evaluations yield the outputs. In quantum computation, however, there is more: the outputs
need to beneasured The view of quantum programs as polynomials in dagger-monoidal categories needs to be refined to
capture measurements. In the simplest case, a measurement will turn out to be just a prajeetof|in

Definition 6.1 A morphismX ® A % AinC onis anX-actionA if ao (X ®a) = aov. An X-action isnormalif moreover

ao(LxA)=ida.
A A
sa]] 4
pcu i B
A A
X'x A x! x! 14

An X -equivariang homomorphism froki® A < Ato X ® B 2, Bisan arrowf € C(A, B) suchthatfoa = So(X® f).
The category o -actions andX -equivariang homomorphisms is denot&d}.

The full subcategory aformal X -actions isC!*] — ¢1X},

Remark. Normal X-actions are the Eilenberg-Moore algebras for the maXiag (—) : C — C. Equivalently, they are
also actions of the monoifl, and this terminology tends to lead to less confusion.

Lemma 6.2 Let (X, A, T) be a classical structurex(z) : A — A an endomorphism i€z : X] anda = kx. a(z) :
X ® A — Aits abstraction.

(a) The following conditions are equivalent:

(i) a(z) =alz)oa(z), i.e.a(z) is idempotent
() ao (X ®a)=aov,ie «aisanX-action
(i) ao(X ®a)o(a®A) = q,i.e. aisidempotent as an endomorphism.in Cx;.

(b) On the other hand, the following conditions are also equivalent:

() a(z) = a(z),i.e. az) is self-adjoint
(i) a=(e@A)oat

(i) (X®a)o(a®A)=(veA)o (X ®at)

23

Theproofs of the above equivalences are easy exercises with classical structure. The equivaleregifloHi be viewed,
and proven, in analogy with Thm. 4.3iiii).

Definition 6.3 LetX be a classical structure ii. An X-measuremerverA € C is a projectora(z) : A — AinClz:X],
i.e. a self-adjoint idempotent(r) = a(x)* = a(x) o a(x).

A homomorphisnf : a(x) — [(x), wherea(z) is an X-measurement ovet and 3(x) is an X-measurement oves, is
anarrow f € C(A, B) such thatf o a(x) = 8(z) o f. The category of measurements in the classical stru¢tiite, 7) is
denoted by {z: X }.

Remark. Substituting a basis vecter € B(X) into a measurement(z) € Clz : X|(A, A) yields a projector(p) €
C(A, A). The intuition is that this projector corresponds to an the outcome of the measurement

It is easy to see that{z:X} is a dagger-monoidal category. The following two propositions show that this notion of a
measurement is equivalent with the one from [7].

Theorem 6.4 Let X be a classical structure, andl(z) : A — A an endomorphismi@[z:X]. Then (a) < (b) < (c).

(@) a(x) : A — Ais ameasurement

(b) a = Kkz.) : XA — Alis an X-action such thatvo (z ® A) = (2 ® A) o o

o

(c) ais anX-action satisfying the following equivalent conditions

() (X®a)o(a®A) = atoa = (VR A)o (X ®at)

X A X A
T I
N2/ o]
X A X A

(i) foa=(X®a)o(c®A)o (X ®at)

Al

The converse (= (a) A (b) holds if theX -action« is normal. When this is the case, then also
aocat = ida
A
o]
x|
Net]

A A

24

Remarks. The two equations in Thm. 6.4(i) imply each other by applying the dagger. They also imply that

e X®A% Aisaretractoff ® X - X inthe category of{ -actions, along the restriction’ : o — v, and that
b3
e A%, X ® Aisaretract ofYf = X ® X in the category of{ -coactions, along the retraction: A — a*.

The Frobenius condition is the special case of both (i) and (ii), sinaedv are just special actions.

Proof. (a <= b) follows directly from Lemma 6.2. Part (a) of the lemma says that) is idempotent if and only if is an
X-action. Part (b) says thaix) is self-adjoint if and only it = (¢® A)oat, which is equivalent tavo (2®) = (z* @ A)oat
by then-rule, using Thm. 4.3(b).

(a==ii) is proved as follows:

X A X A XA
Nt] Nt | _ v _
o] L
x A Nt | Nt]
X A X A
X A A X A
AN Y o]
= < = "] S
N4/ N
Nt | o] b's A
X A X A
using Lemma 6.2, and the commutativity of
(ii=>i) is a variation on the same theme:
X A X A S A
Nef | o] _ —
= X1 = =g =
o] Net | 7]
X A X A
X A
X A X A X A
_ A _ A _ \Y4
— ‘ — —
8, 8,
I
Nt] Nt]
X A X A X A

Finally, if the X -action« is normal, then postcomposing (i) with® A gives condition 6.2(b), and hence (a).

a oot =idy is left as an exercise. [l

Proposition 6.5 The category {z: X } of measurements oveéf is equivalent with the catego/(~} of X -actions.
6.1 Measuring the outcome

In general, the measurement outcome corresponding to a basis vector is the pure projector that represents it. In order to
perform the measurement in the first componerfijof y) from sec. 5, we use a partial representation of this vector.

Lemma 6.6 o, (z) = (v, ®id,,) o S|z, y) is a measurement a8 (™+7) in Rel,, [|y):Z2®"|{|z) :Z®™}.

Substituting the basis vectors forin o, () gives the projectors 0B®(™+™), from which the information about the period
cis extracted like before.

25

7 Conclusions and future work

Simon’s algorithm required three operations:

abstraction: to represent classical functions and classical data in a quantum universe;
transform to a complementary basis: to entangle classical data and make use of quantum parallelism;

measurement: to extract the classical outcomes of quantum computation.

The abstraction operations shape the classical interfaces of quantum computers. Our analysis of the general abstractior
operations uncovered a rich structure, that may be of interest beyond quantum computation. Are there other computational
resources, besides entanglement, that provide exponential speedup when suitably combined with the general abstractior
operations?

The other two operations that we formalized are typically guantum. Complementary bases provide access to entanglement, as
the main resource of quantum computation, and thus enable quantum parallelism. The varied interactions among the different
classical structures and with measurements give rise to the wealth of quantum algorithms that remain to be explored.

Our abstract model uncovered some abstract entanglement structures, and made them available for quantum computation ir
non-standard mathematical models. The algorithmic consequences of this semantical result need to be carefully explored.

References

[1] S. Abramsky and B. Coecke. A categorical semantics of quantum protocdsoteedings of the 19th Annual IEEE
Symposium on Logic in Computer Science: LICS 2p84es 415-425. IEEE Computer Society, 2004.

[2] Samson Abramsky. No-cloning in categorical quantum mechanics. In Simon Gay and lan Mackie, Sditwastical
Techniques in Quantum Computati@ambridge University Press, 2008. 32 pp, to appear.

[3] Michael Barr and Charles WellsToposes, Triples, and Theoriedlumber 278 in Grundlehren der mathematischen
Wissenschaften. Springer-Verlag, 1985.

[4] Aurelio Carboni. Matrices, relations, and group representatidnst Algebra 136:497-529, 1991.
[5] Aurelio Carboni and Robert F.C. Walters. Cartesian bicategoridsof Pure and Applied Algebrd9:11-32, 1987.
[6] Alonzo Church. A formulation of the simple theory of typek.of Symbolic Logic5(2):56—68, 1940.

[7] B. Coecke and D. Pavlovic. Quantum measurements without sums. In G. Chen, L. Kauffman, and S. Lamonaco, editors,
Mathematics of Quantum Computing and Technaoldgylor and Francis, 2007. arxiv.org/quant-ph/0608035.

[8] Bob Coecke and Ross Duncan. Interacting quantum observables. In Luca Aceto, lvan Damgard, Leslie Ann Goldberg,
MagnUs M. Halldérsson, Anna Ingblfsdottir, and Igor Walukiewicz, edit@s\LP (2), volume 5126 of ecture Notes
in Computer Scieng@ages 298-310. Springer, 2008.

[9] Bob Coecke and William Edwards. Toy quantum categories. In Bob Coecke and Prakash PanangaderRreditors,
ceedings of the 2008 QPL-DCM Workshppges 25-35. Springer-Verlag, 2008. arXiv:0808.1037.

[10] Bob Coecke, Dusko Pavlovic, and Jamie Vicary. A new description of orthogonal bilsis. Structures in Comp.
Sci, 2008. 13 pp., to appeatr, arxiv.org:0810.0812.

[11] D. Dieks. Communication by EPR devicd2hysics Letters A92(6):271-272,1982.

[12] Bob CoeckeEric Oliver Paquette and Dusko Pavlovic. Classical and quantum structuralism. In Simon Gay and lan
Mackie, editorsSemantical Techniques in Quantum Computati@ambridge University Press, 2008. 42 pp, to appeatr.

26

[13] Thomas Fox. Coalgebras and cartesian categdienm. Algebra4(7):665-667, 1976.

[14] Kurt Godel. Uber formal unentscheidbare Satze der Principia Mathematica und verwandter Systdomatshefte fr
Mathematik und Physjlid8:173—-198, 1931.

[15] Sean Hallgren. Polynomial-time quantum algorithms for Pells equation and the principal ideal probRrotdedings
of the 34th ACM Symposium on Theory of Compytiages 653-658. ACM Press, 2002.

[16] André Joyal and Ross Street. The geometry of tensor calcuhbd.in Math, 88:55-113, 1991.

[17] Gregory M. Kelly. Basic concepts of enriched category theory Cambridge University Press, 1982.
http://www.tac.mta.ca/tac/reprints/articles/10/tr10.pdf.

[18] Gregory M. Kelly and Miguel L. Laplaza. Coherence for compact closed categdrie§ Pure and Applied Algebra
19:193-213, 1980.

[19] Stephen Cole Kleene. Recursive predicates and quantifitr@nsactions of the American Mathematical Sogiety
53(1):41-73,1943.

[20] Joachim Kock.Frobenius Algebras and 2D Topological Quantum Field Theoretume 59 ofLondon Mathematical
Society Student Text€ambridge University Press, 2004.

[21] K. Kraus. Complementary observables and uncertainty relatimgsical Review D35(10):3070-3075, 1987.
[22] Joachim Lambek. From types to sefglv. in Math, 36:113-164, 1980.

[23] Joachim Lambek and Philip J. Scalibtroduction to higher order categorical logicCambridge University Press, New
York, NY, USA, 1986.

[24] F. William Lawvere. Adjointness in foundationBialectica 23:281-296, 1969.

[25] F.William Lawvere. Ordinal sums and equational doctrinesséminar on Triples, Categories and Categorical Homol-
ogy Theoryvolume 80 ofLecture Notes in Mathematicgages 141-155. Springer-Verlag, 1969.

[26] Samuel J. Lomonaco and Louis H. Kauffman. Quantum hidden subgroup algorithms: An algorithmic toolkit. In
G. Chen, Louis Kauffman, and Samuel Lamonaco, editbtathematics of Quantum Computing and Technalogy
Taylor and Francis, 2007.

[27] Saunders Mac Lan€ategories for the Working Mathematiciadumber 5 in Graduate Texts in Mathematics. Springer-
Verlag, 1971.

[28] Michael A. Nielsen and Isaac L. Chuan@Quantum Computation and Quantum Informatid@ambridge University
Press, October 2000.

[29] A.K. Patiand S.L. Braunstein. Impossibility of deleting an unknown quantum dtitielre 404:164—165, 2000.

[30] Dusko Pavlovic. Categorical logic of names and abstraction in action calddhtb. Structures in Comp. Scv:619—
637, 1997.

[31] Dusko Pavlovic. Quantum and classical structures in nondeterministic computation. In Peter Bruza, Don Sofge, and
Keith van Rijsbergen, editor®roceedings of Quantum Interaction 200®lume 5494 of_ecture Notes in Artificial
Intelligence pages 143-158. Springer Verlag, 2009. arxiv.org:0812.2266.

[32] Dusko Pavlovit and Martin Escard6. Calculus in coinductive form. In V. Pratt, eBitoceedings. Thirteenth Annual
IEEE Symposium on Logic in Computer Sciemames 408-417. IEEE Computer Society, 1998.

[33] Roger Penrose. Structure of space-time. In C.M. DeWitt and J.A. Wheeler, eBitwetie Rencontres, 196Benjamin,
1968.

[34] John Power and Edmund Robinson. Premonoidal categories and notions of compiatio@matical. Structures in
Comp. Sci.7(5):453-468, 1997.

27

[35] Peter Selinger. Dagger compact closed categories angletely positive mapsklectron. Notes Theor. Comput. Sci.
170:139-163, 2007.

[36] Peter Selinger. Idempotents in dagger categories: (extended abdftact). Notes Theor. Comput. SA@10:107-122,
2008.

[37] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer.
SIAM J. Comput.26(5):1484—1509, 1997.

[38] Daniel R. Simon. On the power of quantum computati®iAM J. Comput.26(5):1474-1483, 1997.

[39] D.V. Widder. An Introduction to Transform Theaoryolume 42 ofPure and Applied MathematicsAcademic Press,
New York and London, 1971.

[40] William K. Wootters. Quantum measurements and finite geometry, 2004. arXiv.org:quant-ph/0406032.
[41] W.K. Wootters and W.H. Zurek. A single quantum cannot be clohadure 299:802—-803, 1982.

28

