
Systematic judgment aggregators:
An algebraic connection between

social and logical structure

Daniel Eckert1, Frederik Herzberg2

1 Institut für Finanzwissenschaft, Karl-Franzens-Universität Graz
A-8010, Graz, Universitätsstrasse 15/E4, Austria
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Abstract. We present several results that show that systematic (com-
plete) judgment aggregators can be viewed as both (2-valued) Boolean
homomorphisms and as syntatic versions of reduced (ultra)products.
Thereby, Arrovian judgment aggregators link the Boolean algebraic struc-
tures of (i) the set of coalitions (ii) the agenda, and (iii) the set of truth
values of collective judgments. Since filters arise naturally in the con-
text of Boolean algebras, these findings provide an explanation for the
extraordinary effectiveness of the filter method in abstract aggregation
theory.
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1 Introduction

The relation between rationality and power is one of the oldest puzzles in
philosophy. According to Habermas, power neutrality is even a precondition
of collective rationality ([1]). Recent extensions of the social choice literature
from the aggregation of preferences to judgement aggregation however suggest
that rationality even in the weakest possible sense of logical consistency bears
a close relation to power: In fact, the recent literature on judgment aggregation
(for a survey see [2]) shows that the logical structure of the agenda of a collective
decision process (given by the logical interconnections between the propositions)
shapes the social structure (given by a distribution of decision power) and that
this power structure can be as asymmetric as a dictatorship.

According to the social choice literature, the social structure is modelled by a
partition of the power set of individuals in decisive and non-decisive coalitions.1

1 As a referee rightly noted, this coarse distinction is by no ways the only reasonable
approach to the modelling of social structure, and future work will have to address
more complex social (inter)dependencies, for instance networks.
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For the analysis of the relation between the logical and the social structure
of an aggregation problem, filters and ultrafilters have been proven particularly
useful (see e.g. [3], [4], [5], [6]). As these concepts arise first and foremost in the
context of Boolean algebras, it is natural to expect that the understanding of the
relation between the logical and the social structure of an aggregation problem
can be deepened through concepts from Boolean algebra ([7]).

Indeed, we prove that non-trivial systematic universal judgment aggregators
are in canonical one-to-one correspondences with (a) Boolean algebra
homomorphisms (see Theorem 8) and (b) propositional reduced products (see
Theorem 10). Complete non-trivial universal systematic judgment aggregators
are even in canonical one-to-one correspondences with (a) 2-valued Boolean
algebra homomorphisms (see Theorem 5) and (b) propositional ultraproducts
(see Theorem 11).

Thus, systematic judgment aggregators connect the Boolean algebra
structures on (i) the set of coalitions, (ii) the agenda, and (iii) the set of truth
values of individual and collective judgments. This analysis supports the intuition
that the social structure of the population is shaped by its relation to the
syntactic structure of the agenda and the semantic structure of the collective
judgments.

For technical and expository reasons, we shall assume the strong
independence condition of systematicity together with a (mild) agenda richness
condition inspired by Lauwers and Van Liedekerke ([8]).

2 Framework

Judgment sets Consider a monotonic logic L, containing the connectives ¬ and
∧. Let ` be a provability relation for L.

Let X be a set of sentences in the logic L. X is called the agenda. We assume
that X is the union of proposition-negation pairs (i.e. there exists a non-empty
set X ′ of sentences such that X =

⋃
p∈X′ {p,¬p}). For every p ∈ X we denote

by ∼p an element q of X such that either q = ¬p or p = ¬q.
Subsets of X will be called judgment sets and we denote the power-set of X

by P(X).
For every judgment set Y , we define the following: Y is consistent if and only

if Y 6` (p ∧ ¬p) for any sentence p. (In particular for every p ∈ X, we assume
{p} to be consistent.) Y is deductively closed (in X) if and only if for all p ∈ X,
if Y ` p, then p ∈ Y . Y is complete (in X) if and only if for all p ∈ X, p 6∈ Y
implies ∼p ∈ Y . Y is algebraically consistent if and only if for all p ∈ X, ∼p ∈ Y
implies p 6∈ Y .

We denote by D the set of all consistent and complete subsets of X, by D∗

the set of all consistent and deductively closed subsets of X, by D′ the set of all
deductively closed subsets of X, by D̄ the set of all consistent subsets of X, by
Dac the set of all algebraically consistent and complete subsets of X, and by Da

the set of all algebraically consistent subsets of X.
Clearly D ⊆ D∗ ⊆ D′, and D ⊆ Dac ⊆ Da.
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A subset Y ⊆ X is in Dac if and only if p 6∈ Y ⇔ ∼p ∈ Y for all p ∈ X.

Judgment aggregators Let N be a non-empty set of individuals, called the
population set. We call subsets of N coalitions. The power-set of N is denoted
by P(N).

A judgment aggregator is a mapping f : Df → P(X) with ∅ 6= Df ⊆ P(X)N .
Elements of Df , usually denoted A = 〈Ai〉i∈N , are called profiles, components
Ai of profiles are called individual judgment sets, elements of the range of f will
be called collective judgment sets.

We say that f is complete (or consistent, or deductively closed, or algebraically
consistent, respectively) if its range only consists of complete (or consistent, or
deductively closed, or algebraically consistent, respectively) judgment sets.

f is called dictatorial if and only if there exists some if ∈ N such that
f(A) = Aif

for all A ∈ Df . f is called oligarchic if and only if there exists some
non-empty Mf ⊆ N such that f(A) =

⋂
i∈Mf

Ai for all A ∈ Df .

Coalitions For all p ∈ X and A ∈ Df , the coalition supporting p given A is

A(p) := {i ∈ N : p ∈ Ai} .

We say that A(p) is winning for p given A under f if and only if p ∈ f(A).
We collect all winning coalitions in the set

Ff := {A(p) : A ∈ Df , p ∈ f(A)} .

Given any C,C ′ ⊆ N , we shall write C ∼f C ′ (in words: C and C ′ share the
same part of a winning coalition) if and only if there exists some U ∈ Ff such
that C ∩ U = C ′ ∩ U. Note that the set of winning coalitions for p is the same
for each profile if and only if f is independent in the sense that for every p ∈ X
and A, A′ ∈ Df ,

A(p) = A′(p) ⇒ (
p ∈ f(A) ⇔ p ∈ f(A′)

)
.

As a notational device, we regard f(A), for all A ∈ Df , as a function f(A) :
X → {0, 1}, defined through

f(A)(p) =
{

1, p ∈ f(A)
0, p 6∈ f(A)

3 Axioms

In the spirit of Arrovian social choice theory, we introduce the following set of
aggregator axioms. A judgment aggregator which satisfies the agenda richness
and rationality axioms (A2-A5) will also be called Arrovian for the purposes of
this paper.

A1. Finite population. N is finite.
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A2. Agenda richness. There are propositions p, q ∈ X such that each of
the propositions p ∧ q, p ∧ ¬q,¬p ∧ q is consistent and ∈ X.

A3. Universality. Df ⊇ DN .
A4. Non-triviality. f is neither constantly = ∅ nor constantly = X.
A5. Systematicity. For all p, q ∈ X and A, A′ ∈ Df : If A(p) = A′(q), then

p ∈ f(A) ⇔ q ∈ f(A′).
The axiom of non-triviality, which to the knowledge of the authors is new in

the judgment-aggregation literature, is satisfied in two important special cases:

Remark 1. f satisfies (A4) whenever f satisfies (A3) as well as strict
unanimity preservation (that is, for all p ∈ X and A ∈ Df , if A(p) = N then
p ∈ f(A), and if A(p) = ∅ then p 6∈ f(A)). f also satisfies (A4) if f is both
complete and consistent.

Proof. Since X is comprised of proposition-negation pairs, it contains some
consistent proposition p and some proposition q which is not universally valid.
Hence there must be some A ∈ DN with A(p) = N and some A′ ∈ DN with
A′(q) = ∅. If f satisfies both (A3) and strict unanimity preservation, then
p ∈ f(A) and q 6∈ f(A′).

If f is both complete and consistent, then f(A) 6= ∅ (as ∅ is incomplete)
and f(A) 6= X (as X is inconsistent, being comprised of proposition-negation
pairs) for all A ∈ Df . ¤

We end this section with a brief discussion of the apparently very strong
axiom of systematicity; herein, we follow the presentation in Klamler and Eckert
([6]) where more details, including proofs and further references, can be found.

Clearly, if f is systematic, then also independent. The converse is true if
the agenda satisfies an additional condition known as total blockedness (see e.g.
[9]) which asserts that any proposition in the agenda is related to any other
proposition by a sequence of conditional entailments.

Given any distinct p, q ∈ X, we say that p entails q conditionally (denoted
p `∗ q) if there exists a minimally inconsistent superset S of {p,¬q}. X is called
totally blocked if the transitive closure of the conditional entailment relation is
all of X ×X.

Finally, we say that f is weakly unanimity-preserving if and only if for all
p ∈ X and A ∈ Df , if A(p) = N then p ∈ f(A).

Lemma 2. Let X be totally blocked and consider a unanimity-preserving
judgment aggregator f . If f satisfies (A3) and is both independent and
unanimity-preserving, then f also satisfies (A5).

For systematic f , the set Ff of winning coalitions allows for a natural
characterization (see e.g. Eckert and Herzberg [10]):

Lemma 3. Suppose f satisfies (A5). Then for all A ∈ Df and p ∈ X, one
has A(p) ∈ Ff if and only if p ∈ f(A).

Proof. Let A ∈ Df and p ∈ X. By definition, if p ∈ f(A), then A(p) ∈ Ff .
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Conversely, if A(p) ∈ Ff , then there must be some q ∈ X and A′ ∈ Df such
that A(p) = A′(q) and q ∈ f(A′). By (A5), this readily yields p ∈ f(A). ¤

4 Results

4.1 Aggregators as homomorphisms: Translating coalitions into
truth values

Both the set of coalitions P(N) and the set of truth values 2 := {0, 1} are
canonically endowed with a Boolean algebraic structure: Both the power set
algebra

〈
P(N),∩,∪, {,∅, N

〉
(wherein {B := N \ B for all B ⊆ N) and the

algebra 2 of truth values 〈{0, 1},∧,∨,∗ , 0, 1〉 (wherein 0∗ = 1, 1∗ = 0) are
Boolean algebras. For the following, we adopt standard terminology of Boolean
algebra (cf. e.g. Bell and Slomson [11]). In particular, a (Boolean algebra)
homomorphism is a map φ : B1 → B2 between two Boolean algebras B1, B2

which preserves the algebraic operations; the shell of such a homomorphism is
φ−1 {1B2}, the pre-image of the 1-element of the image algebra. We will first
show that non-trivial universal systematic (complete) judgment aggregators are
derived from (2-valued) Boolean algebra homomorphisms with domain P(N) and
vice versa. The shell of these homomorphisms will be nothing else than the set
of winning coalitions. En passant, we obtain very general impossibility results.
The proofs of the main results have been deferred to the appendix. A detailed
exposition of the proofs for Theorems 5 and 8 can also be found in Herzberg [7].

Lemma 4. If f satisfies (A2), (A3) and (A5), then there is a well-defined
map

π : P(N) → 2, A(p) 7→ f(A)(p).

If f is also deductively closed, then π−1{1} equals Ff and is both closed under
supersets and closed under intersections.

Note that generically, π does not have to be a lattice homomorphism, let
alone a Boolean algebra homomorphism.

Theorem 5. If f satisfies (A2), (A3) and (A5) and is both consistent and
complete, then f also satisfies (A4) and π is a homomorphism with shell Ff .

Conversely, assuming (A2), if ρ : P(N) → 2 is a homomorphism, then the
judgment aggregator

f : DN → P(X), A 7→ {p ∈ X : ρ (A(p)) = 1}

satisfies (A2-A5) and is both algebraically consistent and complete.

Corollary 6. If f satisfies (A2), (A3) and (A5) and is both consistent
and complete, then Ff is an ultrafilter. If, in addition, (A1) holds, then f is
dictatorial.
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Proof of Corollary 6. Theorem 5 ensures that π is a 2-valued homomorphism.
However, every shell of a 2-valued homomorphism is an ultrafilter. Therefore,
Ff = π−1{1} is an ultrafilter on N . Now, every ultrafilter F on a finite set N is
principal. Hence, if (A1) is satisfied in addition, then there must be some if ∈ N
such that π−1{1} = Ff = {C ⊆ N : if ∈ C}, hence

p ∈ f(A) ⇔ π (A(p)) = 1 ⇔ A(p) ∈ Ff ⇔ if ∈ A(p) ⇔ p ∈ Aif

for all A ∈ Df and p ∈ X. ¤

A congruence relation is an equivalence relation on a Boolean algebra which
respects the Boolean operations. Recall that two coalitions C, C ′ stand in relation
∼f to each other if and only if they share the same part of some winning coalition.

Lemma 7. If f satisfies axioms (A2-A5) and is deductively closed, then ∼f is
a congruence relation on the Boolean algebra P(N) and the Boolean operations
on P(N) induce a Boolean algebra structure on P(N)/ ∼f .

Theorem 5 can be generalized as follows:

Theorem 8. If f satisfies (A2-A5) and is deductively closed, then the
canonical surjection σ : P(N) → P(N)/ ∼f is a homomorphism with shell Ff .

Conversely, assuming (A2), if τ : P(N) → B is a homomorphism for some
Boolean algebra B, then the judgment aggregator

f : DN → P(X), A 7→ {p ∈ X : τ (A(p)) = 1B}

satisfies (A2-A5) and is algebraically consistent.

Corollary 9. If f satisfies axioms (A2-A5) and is deductively closed, then Ff

is a filter. If, in addition, (A1) holds, then f is oligarchic.

Proof of Corollary 9. As the shell of a homomorphism, Ff is a filter.
For every filter F on a finite set N , there exists some M ⊆ N such

that F = {C ⊆ N : M ⊆ C}. Hence, if (A1-A5) are satisfied, then there
must be some Mf ⊆ N such that π−1{1} = Ff = {C ⊆ N : Mf ⊆ C} =⋂

i∈Mf
{C ⊆ N : i ∈ C}, so

p ∈ f(A) ⇔ π (A(p)) = 1 ⇔ A(p) ∈ Ff ⇔


∀i ∈ Mf i ∈ A(p)︸ ︷︷ ︸

⇔p∈Ai


 ,

hence p ∈ f(A) ⇔ p ∈ ⋂
i∈Mf

Ai for all A ∈ DN and p ∈ X. ¤
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4.2 Aggregators as reduced products: Translating profiles into
proposition sets

If G is an ultrafilter on N , we define the (propositional) ultraproduct of A ∈ DN

by ∏
A/G := {p ∈ X : {i ∈ N : p ∈ Ai} ∈ G} , (1)

in other words,
p ∈

∏
A/G ⇔ A(p) ∈ G (2)

for every p ∈ X.
One can show that

∏
A/G ∈ D, so

∏
A/G is a maximally consistent subset

of X, whence the propositional ultraproduct may be viewed as an interpretation
of the propositional variables occurring in the propositions from X. Also, the
definition of the propositional ultraproduct exhibits an obvious formal analogy
to the definition of an ultraproduct in classical model theory. This is sufficient
to justify the term “propositional ultraproduct”.

In Equation (1), G could be an arbitrary filter rather than an ultrafilter, and
the set

∏
A/G will still be well-defined, even for arbitrary A ∈ P(X)N . It will be

called, in analogy to the terminology of classical model theory, reduced product.
(However, generically, reduced products are not maximally consistent set.)

Propositional reduced products are deductively closed Arrovian judgment
aggregators:

Theorem 10. If f satisfies axioms (A2-A5) and is deductively closed, then
Ff is a filter and f(A) =

∏
A/Ff for all A ∈ DN .

Conversely, assuming (A2), if G is a filter on N , then the judgment aggregator

f : P(X)N → P(X), A 7→
∏

A/G

satisfies axioms (A2-A5). Furthermore, f ¹ (D′)N is deductively closed and f ¹
D̄N is consistent, whence f ¹ (D∗)N is both consistent and deductively closed.

Propositional ultraproducts are consistent complete Arrovian judgment
aggregators:

Theorem 11. If f satisfies (A2), (A3) and (A5) and is both consistent and
complete, then Ff is an ultrafilter and f(A) =

∏
A/Ff for all A ∈ DN .

Conversely, assuming (A2), if G is an ultrafilter on N , then the judgment
aggregator

f : DN → P(X), A 7→
∏

A/G

satisfies axioms (A2-A5) and is both consistent and complete.

Theorems 11 and 10 are partially contained in Dietrich and Mongin [3];
more general versions of these theorems, with a somewhat different notation,
can be found in papers by Herzberg ([5] and [12]) which were inspired by the
work of Lauwers and Van Liedekerke [8] on the relationship between preference
aggregation and first-order model theory.
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5 Conclusion

This paper contains two results which provide a formal justification of the
perception of aggregation as a link between social and logical structure.

Firstly, Boolean algebra provides a framework to interpret universal
systematic judgment aggregators as homomorphisms which relate the coalition
structure, viz. the power-set algebra of the population set, with the formal
semantic structure of possible collective outcomes, viz. the truth-value algebra.

Secondly, universal (complete) systematic judgment aggregators can be
viewed as the natural extension of reduced product (ultraproduct) constructions
in the setting of propositional logic (or more general monotonic logics). Thereby,
judgment aggregators relate the structure of the set of coalitions with the
syntactic structure of the agenda.

A Proofs

Remark 12. Let κ be finite or infinite. Let N =
⋃

j∈κ Cj be a disjoint
decomposition of N and let 〈Yj〉j∈κ be a family of consistent subsets of X. Each
Yj can be extended to a maximally consistent, thus consistent and complete subset
Zj of X. Hence, there exists some profile A ∈ DN such that Ai = Zj ⊇ Yj for
every i ∈ Cj and j ∈ κ.

Remark 13. If (A2) is satisfied, then
{
A(p) : A ∈ DN , p ∈ X

}
= P(N).

Proof of Remark 13. (A2) implies that X contains a contingent sentence p (i.e.
both {p} and {¬p} are consistent). Let C ⊆ N . By Remark 12, there exists a
profile A ∈ DN such that for all i ∈ N , if i ∈ C then p ∈ Ai and if i ∈ N \ C
then ¬p ∈ Ai, hence p 6∈ Ai whenever i ∈ N \ C since Ai is consistent. Thus,
p ∈ Ai ⇔ i ∈ C for all i ∈ N , so A(p) = C. Therefore, every coalition C is of
the form A(p) for some A ∈ DN and p ∈ X. ¤

Proof of Lemma 4. Suppose f satisfies (A2), (A3) and (A5), and let p, q denote
the two sentences whose existence is postulated in (A2). We verify:

π is well-defined on P(N). The map π : A(p) 7→ f(A)(p) is well-defined on
Dπ := {A(p) : A ∈ Df , p ∈ X} because of (A5). Also, Df ⊇ DN by (A3).
Therefore Dπ ⊇

{
A(p) : A ∈ DN , p ∈ X

}
, hence Dπ = P(N) by Remark 13.

π−1{1} equals Ff . For all p ∈ X and A ∈ Df , one has f(A)(p) = 1 ⇔ p ∈
f(A) by convention, therefore π−1{1} = Ff .

π−1{1} is ⊇-closed. Let C ′ ∈ π−1{1} and C ⊇ C ′. By (A2) and Remark 12
there exists a profile A ∈ DN such that

∀i ∈ C \ C ′ p ∧ ¬q ∈ Ai, ∀i ∈ N \ C ¬p ∧ q ∈ Ai, ∀i ∈ C ′ p ∧ q ∈ Ai.

Then A(p ∧ q) = C ′ ∈ π−1{1}, whence p ∧ q ∈ f(A) because π is well-defined.
However, f(A) is deductively closed, therefore p ∈ f(A), hence π−1{1} 3 A(p) =
(C \ C ′) ∪ C ′ = C.
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π−1{1} is ∩-closed. Let C ′, C ′′ ∈ π−1{1}. By (A2) and Remark 12 there
exists a profile A′ ∈ DN such that

∀i ∈ C ′′\C ′ p∧¬q ∈ A′i, ∀i ∈ N\C ′′ ¬p∧q ∈ A′i, ∀i ∈ C ′∩C ′′ p∧q ∈ A′i.

Then A′(p) = (C ′∩C ′′)∪ (C ′′ \C ′) = C ′′ ∈ π−1{1}, so p ∈ f(A′) since π is well-
defined. On the other hand, A′(q) = (C ′∩C ′′)∪(N \C ′′) ⊇ (C ′∩C ′′)∪(C ′\C ′′) =
C ′ ∈ π−1{1}. Hence, A′(q) ∈ π−1{1} because we have already seen that π−1{1}
is ⊇-closed. Again, since π is well-defined, A′(q) ∈ π−1{1} implies q ∈ f(A′).
So, p, q ∈ f(A′), whence p ∧ q ∈ f(A′) because f(A′) is deductively closed and
p ∧ q ∈ X. It follows that π−1{1} 3 A′(p ∧ q) = C ′ ∩ C ′′. ¤

Proof of Theorem 5. For the first part of the Theorem, suppose f satisfies (A2),
(A3) and (A5) and is consistent and complete. Remark 1 then teaches that f
satisfies (A4). From Lemma 4, we already know π−1{1} = Ff . It remains to
verify that π preserves algebraic operations.

π preserves meets. Let C, C ′ ⊆ N . By Lemma 4, π−1{1} is both ⊇-closed
and ∩-closed, so

C ∩ C ′ ∈ π−1{1} ⇔ (
C ∈ π−1{1}, C ′ ∈ π−1{1}) .

As π is {0, 1}-valued, this means

π (C ∩ C ′) = 1 ⇔ (π(C) = 1, π(C ′) = 1) ⇔ π(C) ∧ π(C ′) = 1.

Thus π (C ∩ C ′) = π(C) ∧ π(C ′).
π preserves complements. Let A ∈ DN and p ∈ X. For every i ∈ N , the set

Ai is consistent and complete, hence

p ∈ Ai ⇔ ∼p 6∈ Ai.

Therefore A(p) = N \A(∼p) = {A(∼p) or equivalently

{A(p) = A(∼p). (3)

But f(A) is also assumed to be consistent and complete, whence ∼p ∈ f(A) if
and only if p 6∈ f(A). Combining this:

π
(
{A(p)

)
= 1 ⇔ π (A(∼p)) = 1 ⇔ ∼p ∈ f(A) ⇔ p 6∈ f(A) ⇔ π (A(p)) = 0,

π
(
{A(p)

)
= 0 ⇔ π

(
{A(p)

) 6= 1 ⇔ π (A(p)) 6= 0 ⇔ π (A(p)) = 1.

π preserves joins. Let C, C ′ ⊆ N . First, suppose π(C) ∨ π(C ′) = 1. Then
either π(C) = 1 or π(C ′) = 1, hence either C ∈ π−1{1} or C ′ ∈ π−1{1}. This
means that C ∪ C ′ will be the superset of an element of π−1{1}, hence by ⊇-
closedness of π−1{1}, we deduce C ∪ C ′ ∈ π−1{1}, so π (C ∪ C ′) = 1.

Now suppose π(C) ∨ π(C ′) = 0, hence π(C) = π(C ′) = 0. We have
already verified that π preserves complements, hence we deduce that π

(
{C

)
=

π
(
{C ′

)
= 1. Since we have also already seen that π preserves meets, we obtain
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π
(
{C ∩ {C ′

)
= 1 ∧ 1 = 1. By de Morgan’s law, π

(
{(C ∪ C ′)

)
= 1, hence, again

exploiting that π preserves complements, we arrive at π (C ∪ C ′) = 0.
Thus, π is a homomorphism and the first part of the Theorem established.
For the converse part of the Theorem, suppose ρ : P(N) → 2 is a

homomorphism. We verify:
Axiom (A2). (A2) is satisfied by assumption.
Axiom (A3). (A3) holds by definition of f .
Axiom (A5). (A5) also holds by definition of f -
Axiom (A4). Since ρ is a homomorphism, ρ(∅) = 0 and ρ(N) = 1. By

Remark 13, we can find A, A′ ∈ DN and p, q ∈ X such that A(p) = ∅ and
A′(q) = N . Then, by construction of f , both q ∈ f

(
A′

)
and p 6∈ f (A), so

f
(
A′

) 6= ∅ and f (A) 6= X.
Finally, for every A ∈ DN and p ∈ X, one has A(∼p) = {A(p) by

Equation (3). Hence, using that ρ is a homomorphism,

p ∈ f(A) ⇔ ρ (A(p)) = 1 ⇔ ρ
(
{A(p)

)
= 0 ⇔ ρ (A(∼p)) = 0

⇔ ρ (A(∼p)) 6= 1 ⇔ ∼p 6∈ f(A).

So, f(A) is complete and algebraically consistent for every A ∈ DN . ¤

Proof of Lemma 7. Suppose f satisfies (A2-A5). Then Ff = π−1{1} is non-
empty by (A4) and ∩-closed by Lemma 4. Therefore, ∼f must be a congruence
relation (cf. e.g. Bell and Slomson [11, Chapter 1, proof of Lemma 4.3, proof
of Lemma 4.4]). For all C ⊆ N , denote by |C| the equivalence class of C
with respect to ∼f . Since ∼f is a congruence relation, the operations ∧,∨,∗,
introduced representative-wise via

|C| ∧ |C ′| := |C ∩ C ′| , |C| ∨ |C ′| := |C ∪ C ′| , |C|∗ :=
∣∣{C

∣∣

for all C, C ′ ⊆ N , are well-defined. If we define, in addition,

0∼f
:= |∅|, 1∼f

:= |N |
then through straightforward calculations one can check that〈
P(N)/ ∼f ,∧,∨,∗ , 0∼f

, 1∼f

〉
is indeed a Boolean algebra. ¤

Proof of Theorem 8. Using the same notation as in the proof of Lemma 7, the
map σ : C 7→ |C| trivially preserves the Boolean operations.

For every C ⊆ N , one has

C ∼f N ⇔ ∃U ∈ Ff (C ∩ U = N ∩ U) ⇔ ∃U ∈ Ff (C ∩ U = U)
⇔ ∃U ∈ Ff U ⊆ C,

hence, by the ⊇-closedness of Ff ,

|C| = |N | ⇔ C ∼f N ⇔ C ∈ Ff .

Therefore σ−1 {1∼f} = σ−1 {|N |} = Ff .
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Let us move to the converse part of the Theorem. As in the proof of
Theorem 5, one can verify that f satisfies axioms (A2-A5).

It remains to show that f is algebraically consistent. Assume otherwise. Then
there are A ∈ DN and p ∈ X such that both ∼p ∈ f(A) and p ∈ f(A).
Therefore τ (A(p)) = f(A)(p) = 1 as well as τ (A(∼p)) = g(A)(∼p) = 1. However
A(∼p) = {A(p) by Equation (3), so τ

(
{A(p)

)
= 1. On the other hand, since τ

is a homomorphism and τ (A(p)) = 1, one has τ
(
{A(p)

)
= 0, a contradiction. ¤

Proof of Theorem 10. By Corollary 9, Ff is a filter. Combining Lemma 3 and
Equation (2), one gets

p ∈ f(A) ⇔ A(p) ∈ Ff ⇔ p ∈
∏

A/Ff

for all A ∈ DN and p ∈ X.
For the converse part, we verify the properties stipulated in the Theorem:
Axiom (A2). By assumption.
Axiom (A3). By definition of the reduced product.
Axiom (A4). Since N ∈ G but ∅ 6∈ G, we have p ∈ ∏

A/G = f(A) if A(p) = N
but p 6∈ ∏

A/G = f(A) if A(p) = ∅ (for all p ∈ X and A ∈ P(X)N ). Therefore,
f satisfies strict unanimity preservation. Since f also satisfies (A3), Remark 1
yields that f satisfies (A4).

Axiom (A5). Evident from Equation (2).
Deductive closedness (in X) of f ¹ (D′)N . Let A ∈ (D′)N and q ∈ X with

f(A) ` q. Since proofs have finite length, there exists a finite set Y ⊆ f(A)
with Y ` q. By definition of f as a reduced product, A(p) ∈ G for all p ∈ Y .
Since filters are closed under finite intersections,

⋂
p∈Y A(p) ∈ G. Note that for

all i ∈ ⋂
p∈Y A(p), one has Y ⊆ Ai and therefore Ai ` q, which readily means

q ∈ Ai (since Ai is deductively closed, as A ∈ (D′)N , and q ∈ X). Hence
A(q) ⊇ ⋂

p∈Y A(p) ∈ G, so A(q) ∈ G and thus q ∈ ∏
A/G = f(A).

Consistency of f ¹ D̄N . Let A ∈ D̄N and suppose
∏

A/G were inconsistent.
Then, since proofs have finite length, there must be some inconsistent finite
subset Y ⊆ ∏

A/G. Then, A(p) ∈ G for all p ∈ Y , hence
⋂

p∈Y A(p) ∈ G since
filters are closed under finite intersections. But this means

⋂
p∈Y A(p) 6= ∅ since

filters do not contain ∅, so there is some i ∈ N such that p ∈ Ai for all p ∈ Y ,
thus Y ⊆ Ai. Y being inconsistent, Ai is inconsistent, too, whence Ai 6∈ D̄, a
contradiction. ¤

Proof of Theorem 11. By Corollary 6, Ff is an ultrafilter, and by Theorem 5, f
also satisfies (A4). Thus, the first half of Theorem 10 may be applied and yields
f(A) =

∏
A/Ff for all A ∈ DN .

To prove converse part, note that the second half of Theorem 10 already
ensures that f satisfies (A2-A5) and that f is consistent.

What remains to be shown is the completeness (in X) of f . Let p ∈ X.
The maximality of the ultrafilter ensures that either {i ∈ N : p ∈ Ai} ∈ G or
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{i ∈ N : p 6∈ Ai} ∈ G. In the former case, already p ∈ ∏
A/G. In the latter case,

note that for every i ∈ N , one has p 6∈ Ai if and only if ∼ p ∈ Ai (since Ai ∈ D),
whence {i ∈ N : ∼ p ∈ Ai} ∈ G and therefore ∼ p ∈ ∏

A/G. ¤
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