Design and Validation of Concurrent Systems

— Dagstuhl Seminar —

Cormac Flanagan!, Susanne Graf?, Madhusudan Parthasarathy?®
and Shaz Qadeer*

! University of California at Santa Cruz, USA
2 VERIMAG - Giéres, France
3 University of Illinois at Urbana-Champaign, USA
4 Microsoft Research, Redmond, USA

Abstract. The Dagstuhl Seminar 09361 “Design and Validation of Con-
current Systems” was held in Schloss Dagstuhl — Leibniz Center for Infor-
matics from August 30 to September 4, 2009. During the seminar, partic-
ipants presented their current research, and ongoing work and open prob-
lems were discussed. This paper reviews the seminar topics and goals,
and provides abstracts of the presentations given during the seminar.
Links to extended abstracts or full papers are provided, if available.

Keywords. Concurrency, Specification, Programming, Verification, Val-
idation, Testing

1 09361 Summary — Design and Validation of Concurrent
Systems

While concurrency has always been central to embedded and distributed com-
puting, it has recently received increasing interest from other fields related to
software engineering such as programming languages, compilers, testing, and
verification. This recent interest has been fuelled by a disruptive trend in the
evolution of microprocessors — the number of independent computing cores will
continue to increase with no significant increase in the speed of each individual
core. This trend implies that software must become increasingly concurrent in
order to exploit current and future hardware.

At the same time, we are seeing an unprecedented penetration of embedded
and distributed systems into everyday human life. Embedded devices, such as cell
phones and media players, are ubiquitously used for communication and enter-
tainment, and distributed control systems in cars and airplanes are increasingly
safety-critical. Today, systems and software engineers face the challenging task of
developing efficient and reliable software for concurrent, embedded, distributed,
and multi-core platforms.

The presence of concurrency in a system severely increases its complexity
due to the possibility of unexpected interactions among concurrently-executing
components. System designers are invariably forced to make trade-offs between

Dagstuhl Seminar Proceedings 09361
Design and Validation of Concurrent Systems
http://drops.dagstuhl.de/opus/volltexte/2010/2549

2 Cormac Flanagan, Susanne Graf, Madhusudan Parthasarathy, Shaz Qadeer

productivity, correctness, and performance. Current practice includes “correct-
by-construction” design methods that yield safe implementations; these imple-
mentations are unlikely to be the most efficient. Conversely, highly flexible design
methods can yield efficient distributed or multithreaded implementations; these
methods are labor intensive and may require expensive post-design validation.
We believe these two approaches delimit a continuous spectrum of design and
validation techniques. It is important to develop techniques that provide a princi-
pled but pragmatic tradeoff between the rigidity of “correctness-by-construction”
and the difficultly of post-hoc verification of arbitrary systems.

This workshop brought together academic and industrial researchers who are
interested in design and validation techniques for concurrent systems. We had
a broad participation reflecting the various approaches to the problem, includ-
ing language design, compiler construction, program analysis, formal methods,
and testing. We believe this mix of participants generated interesting and lively
discussions. Concretely, we addressed the following set of inter-related questions
during the seminar:

— Specification and programming languages: How can a programmer specify
correctness properties of a concurrent system? What are the right idioms
for reasoning about concurrent programs? What concurrency-control mech-
anisms should be provided by the programming language? How do we enable
programmers to write well-reasoned code that can be compiled for efficient
execution on a multi-core platform? What kind of abstractions from the
hardware/OS /runtime are useful and efficient?

— Design methods: How should a programmer choose the right design approach
given the constraints, such as quality-of-service and reliability, that may
be imposed on a given application domain? What are common patterns of
non-interference, e.g. race-freedom, atomicity, and determinism, that help
programmers avoid common concurrency-related pitfalls?

— Validation: How do we verify applications built using a given set of concur-
rency primitives? How do we verify implementations of algorithms realizing
these primitives? How do we design efficient algorithms for verifying various
forms of non-interference, and for explaining existing interference in terms
understandable to the programmer? How do we test concurrent applications
that may exhibit a high degree of, possibly uncontrollable, nondeterminism?

The following section contains abstracts of many of the presentations at the
workshop.

Design and Validation of Concurrent Systems 3

2 Abstracts

Context-bounded analysis for concurrent programs with
dynamic creation of threads

Mohamed-Faouzi Atig (LIAFA University Paris VII, FR)

Context-bounded analysis has been shown to be both efficient and effective at
finding bugs in concurrent programs. According to its original definition, context-
bounded analysis explores all behaviors of a concurrent program up to some
fixed number of context switches between threads. This definition is inadequate
for programs that create threads dynamically because bounding the number of
context switches in a computation also bounds the number of threads involved in
the computation. In this paper, we propose a more general definition of context-
bounded analysis useful for programs with dynamic thread creation. The idea
is to bound the number of context switches for each thread instead of bounding
the number of switches of all threads. We consider several variants based on
this new definition, and we establish decidability and complexity results for the
analysis induced by them.

Keywords: Verification, Concurent programs

Joint work of: Atig, Mohamed-Faouzi; Bouajjani, Ahmed; Qadeer, Shaz

Deterministic Parallel Java: Towards "Deterministic by
Default" Parallel Programming in an Object-Oriented
Language

Robert L. Bocchino Jr. (University of Illinois - Urbana, US)

We say that a parallel program is deterministic if it produces the same output
on every execution with a given input, regardless of the parallel schedule chosen.
Determinism makes parallel programs much easier to write, understand, debug,
and maintain. Further, many (though not all) parallel programs are intended
to be deterministic. However, general-purpose languages particularly those that
allow arbitrary updates to shared data, pointers, and aliasing typically do not
guarantee determinism, leaving the burden on the programmer to ensure that
the program is correctly synchronized.

In this talk, T will present work that I have done with Vikram Adve and
others at the University of Illinois on Deterministic Parallel Java (DPJ). DPJ
uses a sophisticated type and effect system to guarantee deterministic by default
semantics for an object-oriented parallel language: that is, the program is guar-
anteed to be deterministic unless the programmer explicitly requests a controlled
form of nondeterminism. I will give an overview of the typing mechanisms that
DPJ uses to guarantee determinism, and I will illustrate some parallel patterns
that DPJ can express with good performance. I will also discuss some limitations
of DPJ, and directions for future work.

4 Cormac Flanagan, Susanne Graf, Madhusudan Parthasarathy, Shaz Qadeer

Keywords: Shared-memory concurrency, parallel programming, languages, type
and effect systems, determinism

Joint work of: Robert L. Bocchino Jr.; Vikram Adve

A Calculus of Atomic Actions

Tayfun Elmas (Koc University - Istanbul, TR)

Concurrency-related bugs are notoriously difficult to discover by code review and
testing. By doing a formal proof on the program text, one can statically verify
that no execution of the program leads to an error. The effectiveness of the proof
depends on the proper choice of the manual inputs such as code annotations.
Deriving these annotations for a concurrent program requires complicated rea-
soning. The main reason behind this is the interaction between threads over the
shared memory. While writing the proof, at every point, one has to consider the
possible interleavings of conflicting operations. Existing proof methods including
Owicki-Gries, rely/guarantee and concurrent separation logic are applied at the
finest level of concurrency. Analyzing the program at this level requires complex
annotations and invariants, along with many auxiliary variables.

In this talk, we present a new proof method that simplifies verifying as-
sertions in concurrent programs. The key feature of our method is the use of
atomicity as the main proof tool. A proof is done by rewriting the program with
larger atomic blocks in a number of steps. In order to reach the desired level of
atomicity, we alternate proof steps that apply abstraction and reduction, each
of which improves the outcome of the other in a following step. Then, we check
assertions sequentially within the atomic blocks of the resulting program. We
declare the original program correct when we discharge all the assertions. Our
proof style provides separation of concerns: At each step, we either use facts
about a concurrency protocol to enlarge atomic blocks, or check data proper-
ties sequentially. Our software tool, QED, mechanizes proofs using the Z3 SMT
solver to check preconditions of the proof steps. We demonstrated the simplic-
ity of our proof strategy by verifying well-known programs using fine-grained
locking and non-blocking data algorithms.

Keywords: Concurrent Programs, Static Verification, Atomicity, Reduction,
Abstraction, Proof Idiom

Joint work of: Tayfun Elmas; Shaz Qadeer; Ali Sezgin; Serdar Tasiran

Full Paper:
https://research.microsoft.com/pubs/70608 /popl09.pdf

See also: Elmas, T., Qadeer, S., and Tasiran, S. 2009. A calculus of atomic ac-
tions. In Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (Savannah, GA, USA, January 21 -
23, 2009). POPL "09. ACM, New York, NY, 2-15.

https://research.microsoft.com/pubs/70608/popl09.pdf

Design and Validation of Concurrent Systems 5

Towards Effective Testing of Concurrent Programs

Azadeh Farzan (University of Toronto, CA)

We propose non-atomic runs as good candidates in concurrent programs to man-
ifest concurrency-related bugs. In this talk, we will give an overview of dynamic
atomicity checking for concurrent programs, including checking a single run for
atomicity violations. We will then talk about how to infer non-atomic runs from
any observed run for the effective testing of the concurrent program using those
runs.

Keywords: Atomicity, testing, concurrency, model checking, nested locking

Full Paper:
http://www.springerlink.com /content /267n543103u05026 /

Dynamic Checking of Multithreaded Software

Cormac Flanagan (University of California - Santa Cruz, US)

Multithreaded programs are prone to scheduler-dependent bugs that are notori-
ously difficult to detect, reproduce, or eliminate. This talk overviews our recent
work on dynamic analysis techniques to detect race conditions and violations of
desired atomicity or determinism properties.

Keywords: Races, atomicity, determinism, concurrency

Joint work of: Cormac Flanagan; Stephen N. Freund; Caitlin Sadowski; Jae-
heon Yi

Types For Concurrency

Stephen N. Freund (Williams College - Williamstown, US)

Concurrency errors are particularly difficult defects to identify and fix in soft-
ware systems. This talk gives an overview of type-based analyses for specifying
and verifying that such problems do not exist. The talk covers the basic foun-
dations of type systems for preventing race conditions and atomicity violations,
the limitations and strengths of types for concurrency, and our experiences in
applying type-based tools to analyze software systems.

Joint work of: Cormac Flanagan; Stephen N. Freund; Shaz Qadeer

Underapproximation of Concurrent Systems

Pierre Ganty (IMDEA - Software, ES)

Many problems in the verification of concurrent software systems reduce to
checking the non-emptiness of the intersection of two context-free languages,
an undecidable problem.

http://www.springerlink.com/content/267n543l03u05026/

6 Cormac Flanagan, Susanne Graf, Madhusudan Parthasarathy, Shaz Qadeer

We propose a decidable under-approximation, and a semi-algorithm based on
the under-approximation, for this problem through bounded languages, which
are context-free subsets of a regular language of the form wjws ... w; for some
wi,...,wi € X*. Bounded languages have nice structural properties, in partic-
ular the non-emptiness of the intersection of a bounded language and a context
free language is decidable.

Our main theoretical result is a constructive proof of the following result: for
any context free language L, there is a bounded language L’ C L which has the
same Parikh image as L. Along the way, we show an iterative construction that
associates with each context free language a family of linear languages and linear
substitutions that preserve the Parikh image of the context free language. We
show an application of this result to underapproximate the reachability problem
of multi-threaded procedural programs.

Keywords: Underapproximations, concurrent systems, language theory, alge-
braic techniques

Joint work of: Pierre Ganty; Rupak Majumdar; Benjamin Monmege

Message Passing: Formalization and Dynamic Verification

Ganesh Gopalakrishnan (University of Utah, US)

Consider a message passing library consisting of five action types: S(to:x), R(from:y),
R(from:*), W(handle), and B, signifying a non-blocking send, non-blocking re-
ceive, non-blocking wildcard receive, wait (an S or an R), and barrier. We as-
sociate (upto) four states of progress with each of these action invocations: in-
voked, call returned, matched, and completed. We show that these events help
define a state transition semantics relying upon a happens-before relation de-
signed to support efficient message passing. We show that this formalization is
the "heart’ of MPI, the lingua franca for high performance message passing based
programming used in all sorts of high performance applications (e.g. earthquake
modeling).

We conjecture that any attempt to achieve message passing efficiently in
practice, and in a resource aware manner, will potentially lead to something
like these four primitives. Our formalism allows one to mechanically calculate
the state transition behavior of what used to be dismissed as "hairy MPI code."
This deep understanding of MPI has been "baked into" our real-world deployable
dynamic verification tool for MPI that comes with an elegant Eclipse-based
front-end and is being downloaded worldwide. This is joint work with the Gauss
Group, notably Vakkalanka, Vo, DeLisi, Humphrey, Derrick, Aananthakrishnan,
and Kirby.

Keywords: Message Passing, Dynamic Verification, MPI, High Performance
Computing

Full Paper:
http://www.cs.utah.edu/formal _verification/ISP-Eclipse

http://www.cs.utah.edu/formal_verification/ISP-Eclipse

Design and Validation of Concurrent Systems 7

See also: FM 2009, Eindhoven, Nov 2-6, 2009 (accepted; covers part of this
presentation)

Proving that non-blocking algorithms don’t block

Alezey Gotsman (University of Cambridge, GB)

A concurrent data-structure implementation is considered non-blocking if it
meets one of three following liveness criteria: wait-freedom, lock-freedom, or
obstruction-freedom. Developers of non-blocking algorithms aim to meet these
criteria. However, to date their proofs for non-trivial algorithms have been only
manual pencil-and-paper semi-formal proofs. This paper proposes the first fully
automatic tool that allows developers to ensure that their algorithms are in-
deed non-blocking. Our tool uses rely-guarantee reasoning while overcoming the
technical challenge of sound reasoning in the presence of interdependent liveness
properties.

Keywords: Non-blocking concurrency, shape analysis, program logics, liveness

Dynamic Detection of Atomic-Set-Serializability Violations

Christian Hammer (Purdue University, US)

Previously we presented atomic sets, memory locations that share some consis-
tency property, and units of work, code fragments that preserve consistency of
atomic sets on which they are declared. We also proposed atomic-set serializ-
ability as a correctness criterion for concurrent programs, stating that units of
work must be serializable for each atomic set. We showed that a set of prob-
lematic data access patterns characterize executions that are not atomic-set se-
rializable. Our criterion subsumes data races (single-location atomic sets) and
serializability (all locations in one set). In this paper, we present a dynamic
analysis for detecting violations of atomic-set serializability. The analysis can
be implemented efficiently, and does not depend on any specific synchronization
mechanism. We implemented the analysis and evaluated it on a suite of real pro-
grams and benchmarks. We found a number of known errors as well as several
problems not previously reported.

Keywords: Concurrent Object-Oriented Programming, Data Races, Atomicity,
Serializability, Dynamic Analysis

Joint work of: Christian Hammer; Julian Dolby; Mandana Vaziri; Frank Tip

Full Paper:
http://pp.info.uni-karlsruhe.de/uploads/publikationen /hammer08icse.pdf

See also: Christian Hammer, Julian Dolby, Mandana Vaziri, Frank Tip, Dy-
namic Detection of Atomic-Set-Serializability Violations, Proceedings of the 30th
International Conference on Software Engineering, ACM, May 2008.

http://pp.info.uni-karlsruhe.de/uploads/publikationen/hammer08icse.pdf

8 Cormac Flanagan, Susanne Graf, Madhusudan Parthasarathy, Shaz Qadeer

Concurrency Semantics for Transactions

Maurice Herlihy (Brown University - Providence, US)

Traditional transactional memory systems suffer from overly conservative con-
flict detection, yielding so-called false conflicts, because they are based on fine-
grained, low-level read/write conflicts. In response, the recent trend has been
toward integrating various abstract data-type libraries using ad-hoc methods of
high-level conflict detection. These proposals have led to improved performance
but a lack of a unified theory has led to confusion in the literature.

We clarify these recent proposals by defining a generalization of transactional
memory in which a transaction consists of abstract data-type operations rather
than simply memory read/write operations. We provide semantics for both pes-
simistic (e.g. transactional boosting) and optimistic (e.g. traditional TMs and
recent alternatives) execution. We show that both are included in the standard
atomic semantics, yet find that the choice imposes different requirements on the
coarse-grained operations: pessimistic requires operations be left-movers, opti-
mistic requires right-movers. Finally, we discuss how the semantics applies to
numerous TM implementation details discussed widely in the literature.

Joint work of: Eric Koskinen; Matthew Parkinson; Maurice Herlihy

Symbolic Concurrent Semantics of Safe Petri Nets with
Application to the Unfolding of Time Petri Nets

Claude Jard (IRISA - Rennes, FR)

Concurrent semantics aims at representing behaviors of concurrent systems with
an explicit description of causal dependencies. This avoids to memorize all the
inlerleavings of actions as often required when using a sequential semantics.
Starting from ordinary safe Petri nets, we will show a way to deal with colored
Petri nets on infinite domains. The resulting semantics is given in term of a sym-
bolic event structure, mixing a graphical representation of causal dependencies
with symbolic constraints associated with each event. The considered colored
model is sufficiently powerful to code safe time Petri nets, for which it exists a
finite complete prefix of the unfolding.

Keywords: Petri nets, unfolding, event structures, concurrent semantics, colored
petri nets, time Petri nets.

Joint work of: Claude Jard; Thomas Chatain

Reasoning about Threads Interacting via Locks

Vineet Kahlon (NEC Laboratories America, Inc. - Princeton, US)

Precise dataflow analysis of concurrent programs relies on accurately capturing
interference between threads.

Design and Validation of Concurrent Systems 9

Thread interference is governed by scheduling constraints imposed by syn-
chronization primitives like locks, rendezvous, barriers, etc., as well as shared
variables. Given a synchronization primitive p, gauging its effect on thread in-
terference can be reduced to a model checking problem for threads interacting
purely using p. In this talk, we consider the problem of model checking threads
interacting via locks. We show the problem is decidable for threads interacting
via bounded lock chains for certain fragments of Linear Temporal Logic (LTL).
This enables dataflow analysis to be carried out for a larger class of programs
than those allowed by the current state-of-the-art which can handle only nested
locks. Time permitting, we also discuss the problem of model checking threads
interacting via rendezvous (Wait/Notify style primitives).

Keywords: Dataflow Analysis, Model Checking, Locks, Wait/Notify

Interprocedural Analysis of Concurrent Programs under a
Context Bound

Akash Lal (University of Wisconsin - Madison, US)

We address interprocedural analysis of concurrent programs with shared mem-
ory. Such an analysis is undecidable in the presence of multiple procedures. One
approach used in recent work obtains decidability by providing only a partial
guarantee of correctness: the approach bounds the number of context switches
allowed in the concurrent program, and aims to prove safety, or find bugs, under
the given bound. In this talk, we show how to obtain simple and efficient algo-
rithms for the analysis of concurrent programs with a context bound. We give a
general reduction from a concurrent program P, and a given context bound K,
to a sequential program PX such that the analysis of PX can be used to prove
properties about P. We also give a reduction for weighted pushdown systems
that proves decidability of context-bounded analysis in the presence of complex
abstractions, extending previously known results.

Keywords: Verification, Concurrency, Context-Bounded Analysis, Boolean pro-
grams, Weighted pushdown systems

Joint work of: Akash Lal; Thomas Reps; Tayssir Touili; Nicholas Kidd

Full Paper:
http://www.cs.wisc.edu/wpis/abstracts/fmsd09.abs.html

Formal and Executable Contracts for Transaction-Level
Modeling in SystemC

Florence Maraninchi (VERIMAG - Univ. of Grenoble, FR)

Transaction-Level Modeling (TLM) for systems-on-a-chip (SoCs) has become a
standard in the industry, using SystemC.

http://www.cs.wisc.edu/wpis/abstracts/fmsd09.abs.html

10 Cormac Flanagan, Susanne Graf, Madhusudan Parthasarathy, Shaz Qadeer

With SystemC/TLM, it is possible to develop an executable virtual prototype
of a hardware platform, so that software developers can start writing code long
before the actual chip is available. A hardware model in System- C/TLM can
be very abstract, compared to the detailed RTL model. It is clearly component-
based, with guidelines defining how components should be designed for use in
any TLM context. However, these guidelines are quite informal for the moment.
In this paper, we establish a structural correspondence between functional Sys-
temC/TLM models and a formal component-model for embedded systems called
42, for which we have defined a notion of control contract, and an execution mode
for systems made of components and contracts. This is a way of formalizing the
principles of functional SystemC/TLM. Moreover, it allows the combined use
of SystemC/TLM components with 42 components. Demonstrating that such
a combined use is possible is key to the adoption of formal components and
definitions in the community of TLM users.

Keywords: TLM, SoC, components, contracts, concurrent languages and MoCCs

Joint work of: Florence Maraninchi; Tayeb Bouhadiba

Full Paper:
http://www-verimag.imag.fr /~maraninx /spip.php?article168

Local testing of message-passing systems

Madhavan Mukund (Chennai Math. Institute - Madras, IN)

The only practical way to test distributed message-passing systems is to use local
testing. In this approach, used in formalisms such as concurrent TTCN-3, some
components are replaced by test processes. Local testing consists of monitoring
the interactions between these test processes and the rest of the system and
comparing these observations with the specification, typically described in terms
of message sequence charts.

The main difficulty with this approach is that local observations can com-
bine in unexpected ways to define implied scenarios not present in the original
specification.

We first show that checking for implied scenarios is undecidable for regular
specifications, even if observations are made for all but one process at a time.

To get around this, we append tags to the messages generated by the system
under test. Our tags are generated in a uniform manner, without referring to or
influencing the internal details of the underlying system. These enriched behav-
iors are then compared against a tagged version of the specification. The main
result is that detecting implied scenarios becomes decidable in the presence of

tagging.
Keywords: Message-passing systems, formal testing

Joint work of: Puneet Bhateja; Paul Gastin; K. Narayan Kumar

http://www-verimag.imag.fr/~maraninx/spip.php?article168

Design and Validation of Concurrent Systems 11

Priority scheduling based on knowledge and model
checking

Doron A. Peled (Bar-Ilan University - Ramat-Gan, IL)

Priorities are used to control the execution of systems to meet given requirements
for optimal use of resources, e.g., by using scheduling policies. For distributed
systems, it is hard to find efficient implementations for priorities; because they
express constraints on global states, their implementation may incur considerable
overhead.

Our method is based on performing model checking for knowledge properties.
It allows identifying where the local information of a process is sufficient to
schedule the execution of a high priority transition. As a result of the model
checking, the program is transformed to react upon the knowledge it has at
each point. The transformed version has no priorities, and uses the gathered
information and its knowledge to limit the enabledness of transitions so that it
matches or approximates the original specification of priorities.

Keywords: Model checking, Priorities, Knowledge
Joint work of: Saddek Bensalem; Doron A. Peled; Joseph Sifakis

On Speculative Computation and Thread Safe
Programming

Gustavo Petri (INRIA Sophia Antipolis - Méditerranée, FR)

We propose a formal definition for (valid) speculative computations, which is
independent of any implementation technique. By speculative computations we
mean optimization mechanisms that rely on relaxing the flow of execution in a
given program, and on guessing the values read from pointers in the memory.
Our framework for formalizing these computations is the standard operational
one that is used to describe the semantics of programming languages. In par-
ticular, we introduce speculation contexts, that generalize classical evaluation
contexts, and allow us to deal with out of order (or parallel) computations. We
show that the standard DRF guarantee, asserting that data race free programs
are correctly implemented in a relaxed semantics, fails with speculative compu-
tations, but that a similar guarantee holds for programs that are free of data
races in the speculative semantics. We then introduce a language featuring an
explicit distinction between shared and private variables, and show that there
is a translation, guided by a type and effect system, that transforms a program
written in this language into speculatively data race free code, which is therefore
robust against aggressive optimizations.

Keywords: ~ Shared-memory concurrency, design of concurrent programming
languages, relaxed memory models

Joint work of: Gerard Boudol; Gustavo Petri

12 Cormac Flanagan, Susanne Graf, Madhusudan Parthasarathy, Shaz Qadeer

Logical Concurrency Control From Sequential Proofs

Ganesan Ramalingam (Microsoft Research India - Bangalore, IN)

In this talk, we consider the problem of making a sequential library safe for
concurrent clients. Informally, given a sequential library that works satisfactorily
when invoked by a sequential client, we wish to synthesize concurrency control
code for the library that ensures that it will work satisfactorily even when invoked
by a concurrent client (which may lead to overlapping executions of the library’s
procedures).

Formally, we consider a sequential library annotated with assertions along
with a proof that these assertions hold in a sequential execution.

We show how such a proof can be used to derive a concurrency control for
the library that guarantees that the library’s execution will satisfy the same
assertions even when invoked by a concurrent client.

We extend the approach to guarantee linearizability: any concurrent execu-
tion of a procedure is not only guaranteed to satisfy its specification, it also
appears to take effect instantaneously at some point during its execution.

Keywords: Synthesis, concurrency control, isolation, atomicity, shared memory

Joint work of: Jyotirmoy Deshmukh; Ganesan Ramalingam; Venkatesh-Prasad
Ranganath; Kapil Vaswani

Resilient Verification for Optimistic Concurrent
Algorithms

Noam Rinetzky (University of London, GB)

We present a novel approach to the verification of highly concurrent optimistic
algorithms. Our key observation is that, rather than making reasoning harder,
the extreme high degree of concurrency in these algorithms actually makes it
possible to use extremely simple reasoning techniques which reduce the verifi-
cation effort. Based on this observation, we propose to verify these algorithms
using a restricted form of assertion, resilient assertions, which keeps no correla-
tions between the local state of a thread, the local states of all other threads,
and the shared mutable state. Sequential program proofs which use resilient as-
sertions are interference-free by construction, making the concurrent verification
process compositional and proof checking of the same difficulty as sequential
verification.

We demonstrate the value of resilient verification by presenting a proof of
memory safety, structural (shape) invariants, and linearizability for a state of
the art highly-concurrent optimistic set algorithm. Our approach for showing
linearizability is of particular interest as it suggests a new non-constructive proof
technique, formalized by a hindsight lemma, which sidesteps the need to find
linearization points.

Design and Validation of Concurrent Systems 13

Keywords: Verification, concurrency, linearizability, resilient, hindsight

Joint work of: Noam Rinetzky; Peter O’Hearn; Martin Vechev; Eran Yahav;
Greta Yorsh

Asserting and Checking Determinism for Multithreaded
Programs

Koushik Sen (University of California - Berkeley, US)

The trend towards processors with more and more parallel cores is increasing the
need for software that can take advantage of parallelism. The most widespread
method for writing parallel software is to use explicit threads. Writing correct
multithreaded programs, however, has proven to be quite challenging in practice.
The key difficulty is nondeterminism. The threads of a parallel application may
be interleaved nondeterministically during execution.

In a buggy program, nondeterministic scheduling will lead to nondetermin-
istic results—some interleavings will produce the correct result while others will
not.

We propose an assertion framework for specifying that regions of a parallel
program behave deterministically despite nondeterministic thread interleaving.
Our framework allows programmers to write assertions involving pairs of pro-
gram states arising from different parallel schedules. We describe an implementa-
tion of our deterministic assertions as a library for Java, and evaluate the utility
of our specifications on a number of parallel Java benchmarks. We found spec-
ifying deterministic behavior to be quite simple using our assertions. Further,
in experiments with our assertions, we were able to identify two races as true
parallelism errors that lead to incorrect nondeterministic behavior. These races
were distinguished from a number of benign races in the benchmarks.

Full Paper:
http://srl.cs.berkeley.edu/~ksen/papers/detcheck.pdf

See also: Jacob Burnim and Koushik Sen, Asserting and Checking Determinism
for Multithreaded Programs, in 7th joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering (ESEC/FSE 09), Amsterdam, The Netherlands, August
2009. ACM.

The price to pay for mixed transactional programs

Vasu Singh (EPFL - Lausanne, CH)

The semantics of interactions between transactions managed by a transactional
memory (TM) and non-transactional operations, while widely studied, lacks a
clear formal specification. Those interactions can vary, sometimes in subtle ways,
between TM implementations and underlying memory models.

http://srl.cs.berkeley.edu/~ksen/papers/detcheck.pdf

14 Cormac Flanagan, Susanne Graf, Madhusudan Parthasarathy, Shaz Qadeer

We formalize a correctness condition, parameterized opacity for TM, which
captures the two following intuitive requirements: first, every transaction appears
as if it is executed instantaneously with respect to other transactions and non-
transactional operations, and second, non-transactional operations conform to a
given memory model.

We use our formalization to theoretically investigate the inherent cost of
implementing parameterized opacity. We first prove that parameterized opacity
requires either instrumenting non-transactional operations (for most memory
models) or writing to memory by transactions using potentially expensive read-
modify-write instructions (such as compare-and-swap). Then, we show that for
a class of relaxed memory models, parameterized opacity can indeed be imple-
mented with constant-time instrumentation of non-transactional writes and no
instrumentation of non-transactional reads.

We show that, in practice, parameterizing the notion of correctness with
respect to relaxed memory models allows to develop more efficient TM imple-
mentations.

Keywords: Transactional memories, Relaxed memory models

Joint work of: Rachid Guerraoui; Thomas Henzinger; Michal Kapalka; Vasu
Singh

Verifying Optimistic Concurrency: Prophecy Variables and
Backward Reasoning

Serdar Tasiran (Koc University - Istanbul, TR)

Several static proof systems have been developed over the years for verifying
shared-memory multithreaded programs. These proof systems make use of aux-
iliary variables to express mutual exclusion or non-interference among shared
variable accesses. Typically, the values of these variables summarize the past
of the program execution; consequently, they are known as history variables.
Prophecy variables, on the other hand, are the temporal dual of history vari-
ables and their values summarize the future of the program execution. In this
paper, we show that prophecy variables are useful for locally constructing proofs
of systems with optimistic concurrency. To enable the fullest use of prophecy
variables in proof construction, we introduce tressa annotations, as the dual of
the well-known assert annotations. A tressa claim states a condition for reverse
reachability from an end state of the program, much like an assert claim states
a condition for forward reachability from the initial state of the program.

We present the proof rules and the notion of correctness of a program for
two-way reasoning in a static setting: forward in time for assert claims, back-
ward in time for tressa claims. Even though the interaction between the two is
non-trivial, the formalization is intuitive and accessible. We demonstrate how
to verify implementations based on optimistic concurrency which is a program-
ming paradigm that allows conflicts to be handled after they occur. We have

Design and Validation of Concurrent Systems 15

incorporated our proof rules into the QED verifier and have used our implemen-
tation to verify a handful of small but sophisticated algorithms. Our experience
shows that the proof steps and annotations follow closely the intuition of the
programmer, making the proof itself a natural extension of implementation.

Keywords: Concurrency, Program Verification, Static Analysis
Joint work of: Serdar Tasiran; Ali Sezgin; Shaz Qadeer
Full Paper: http://drops.dagstuhl.de/opus/volltexte/2010/2430

Full Paper:
http://research.microsoft.com /pubs/103176 /tressa.pdf

See also: Microsoft Research Technical Report MSR TR-2009-142, October 13,
2009

A Type System for Data-Centric Synchronization

Frank Tip (IBM TJ Watson Research Center - Hawthorne, US)

Data-centric synchronization groups the fields of objects into atomic sets to
indicate which fields must be updated atomically.

Each atomic set has a number of associated units of work, code fragments that
preserve the consistency of that atomic set. This paper presents a type system
for data-centric synchronization that enables separate compilation and supports
atomic sets that span multiple objects, thus allowing recursive data structures
to be updated atomically. The type system also supports full encapsulation of
objects for more efficient code generation. We evaluate our proposal in the con-
text of AJ, an extension to the Java programming language with data-centric
synchronization. We report on the implementation of an extended compiler as
an Eclipse plugin, and on refactoring classes from the Java Collections Frame-
work as well as SPECjbb2005, a well-known multi-threaded benchmark, to use
atomic sets. Our results suggest that data-centric synchronization has the benefit
of very low annotation overhead, while enforcing a rigorous correctness criterion
that rules out data races.

Towards full verification of concurrent libraries

Viktor Vafeiadis (Microsoft Research UK - Cambridge, GB)

Modern programming platforms (such as .NET) provide libraries of efficient
concurrent data structures. Formal verification of these libraries is particularly
challenging, as they involve low-level pointer manipulations and fine-grained
non-blocking concurrency.

Nevertheless, full verification of such libraries is possible and, to a large ex-
tent, can be done automatically. One way to achieve this is to combine a separa-
tion logic shape analysis with rely-guarantee inference and a clever proof search.

http://drops.dagstuhl.de/opus/volltexte/2010/2430
http://research.microsoft.com/pubs/103176/tressa.pdf

16 Cormac Flanagan, Susanne Graf, Madhusudan Parthasarathy, Shaz Qadeer

These techniques allow us to prove both linearizability (atomicity and func-
tional correctness) and non-blocking liveness properties (such as lock-freedom).

Keywords: Rely-guarantee, linearizability, separation logic, lock-freedom

Language Support for Speculative Parallelization

Kapil Vaswani (Microsoft Research India - Bangalore, IN)

With the advent of multi-core processors, programmers face the arduous task of
extracting and expressing parallelism in everyday applications.

However years of experience has shown that parallelization is hard. A funda-
mental problem with parallelizing programs is the presence of sequential com-
putation that cannot be easily decomposed into independent tasks.

In this talk, I will describe speculative parallelization, a algorithm design
and programming idiom that can be quite effective in parallelizing seemingly
sequential algorithms. I will also describe two language extensions, a speculative
task and a speculative parallel for loop, that let programmers express speculative
parallelism naturally.

Keywords: Speculation, parallel programming, language design

Joint work of: Kapil Vaswani; Prakash Prabhu; Ganesan Ramalingam

Abstraction-Guided Synthesis of Synchronization

Eran Yahav (IBM TJ Watson Research Center - Hawthorne, US)

We present a novel framework for automatic inference of efficient synchronization
in concurrent programs, a task known to be difficult and error-prone when done
manually.

Our framework is based on abstract interpretation and can infer synchro-
nization for infinite state programs. Given a program, a specification, and an
abstraction, we infer synchronization that avoids all (abstract) interleavings that
may violate the specification, but permits as many valid interleavings as possible.

Combined with abstraction refinement, our framework can be viewed as a
new approach for verification where both the program and the abstraction can
be modified on-the-fly during the verification process. The ability to modify the
program, and not only the abstraction, allows us to remove program interleavings
not only when they are known to be invalid, but also when they cannot be verified
using the given abstraction.

We implemented a prototype of our approach using numerical abstractions
and applied it to verify several interesting programs.

Design and Validation of Concurrent Systems 17

Keywords: Synthesis, verification, concurrency

Joint work of: Martin Vechev; Eran Yahav; Greta Yorsh

Parallelizing a Symbolic Compositional Model-Checking
Algorithm

Lenore Zuck (US National Science Foundation - Arlington, US)

We describe a parallel, symbolic, model-checking algorithm, built around a com-
positional reasoning method. The compositional method, called lo- cal reasoning,
builds a collection of per-process (i.e., local) invariants, which together imply a
desired global safety property. The local proof computation is a simultaneous
fixpoint evaluation, which lends itself to parallelization. Moreover, the locality
of the computation makes it possible to partition work across several threads,
each with its own BDD manager, while limiting the amount of cross- thread
synchronization. Experimental results are encouraging, and show that the paral-
lelized computation can achieve substantial speed-up, often without incur- ring
significant memory overhead.

Keywords: Symbolic model checking, verification, multi-core

Joint work of: Ariel Cohen; Kedar Namjoshi; Yaniv Sa’ar; Lenore Zuck; Katya
Kisyova

	 Design and Validation of Concurrent Systems — Dagstuhl Seminar —
	 Cormac Flanagan, Susanne Graf, Madhusudan Parthasarathy and Shaz Qadeer

