Back and Forth: Prophecy Variables for Static
Verification of Concurrent Programs

October 13, 2009

Technical Report
MSR-TR-2009-142

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

Dagstuhl Seminar Proceedings 09361
Design and Vdidation of Concurrent Systems
http://drops.dagstuhl.de/opus/volltexte/2010/2430

This page intentionally left blank.

1 2009/10/31

Back and Forth: Prophecy Variables for
Static Verification of Concurrent Programs

Shaz Qadeer

Microsoft Research
gadeer@microsoft.com

Abstract
Several static proof systems have been developed over the yea

for verifying shared-memory multithreaded programs. These proof

systems make use of auxiliary variables to express mutual exclu
sion or non-interference among shared variable accesses. Typ

cally, the values of these variables summarize the past of the pro-
gram execution; consequently, they are known as history variables.
Prophecy variables, on the other hand, are the temporal dual of his-
tory variables and their values summarize the future of the program
execution. In this paper, we show that prophecy variables are use-

ful for locally constructing proofs of systems with optimistic con-

currency. To enable the fullest use of prophecy variables in proof

construction, we introduce tressa annotations, as the dual of th

well-known assert annotations. A tressa claim states a condition
for reverse reachability from an end state of the program, much

like an assert claim states a condition for forward reachability from
the initial state of the program.

We present the proof rules and the notion of correctness of a

program for two-way reasoning in a static setting: forward in time

for assert claims, backward in time for tressa claims. Even though

the interaction between the two is non-trivial, the formalization is
intuitive and accessible. We demonstrate how to verify implemen-
tations based on optimistic concurrency which is a programming

paradigm that allows conflicts to be handled after they occur. We

have incorporated our proof rules into the QED verifier and have
used our implementation to verify a handful of small but sophis-
ticated algorithms. Our experience shows that the proof steps an
annotations follow closely the intuition of the programmer, making

Ali Sezgin Serdar Tasiran

Koc University

asezgin@ku.edu.tr stasiran@ku.edu.tr

consider concurrency- and data-related properties at the same time
rgmd this results in complicated proofs.

We have recently developed a static verification method called
QED [1] that alleviates this complexity. A proof in QED consists
of rewriting the input program iteratively using abstraction and
reduction so that, in the limit, one arrives at a program that can
be verified by sequential reasoning methods. Reduction, due to [2],
creates coarse-grained atomic statements from fine-grained ones.
Whether statements can be thus combined depends omtbhear
types Abstraction of a statement allows us to reason that it does
not interfere with other atomic statements. Adding assertions over
auxiliary history variables or relaxing transitions are two main
abstraction methods. We will have more to say on these in Sec. 2.
In short, though, as we shall see, abstraction leads to reduction
which in turn may enable more abstraction. This proof method is
supported by a tool also called QED. The QED tool provides a set
of intuitive, concise and machine checked proof commands.

For sample implementations based on optimistic concurrency,
our experience with QED suggests that expressing facts about con-
currency control mechanisms in the form of assertions over his-
tory variables is unnatural and counter-intuitive. Correct operation
of optimistic concurrency implementations, used in the implemen-
tation of non-blocking data structures or Software Transactional
Memories (STM’s) [3], do not depend on exclusive access to shared
variables. The idea is to carry out computatasif no interference
will occur and then, prior to termination, check whether this as-
dsumption is correct. If it is, then simplgommit if not, roll-back

any visible global change and, optionally, re-start. In this case, itis

e

not the prefix of the execution that leads to the statement that sum-
marizes its interference, but rather, the suffix of the execution that
. leads from the statement.

1. Introduction Prophecy variables, the temporal dual of history variables, are
The main challenge in proving a concurrent program is reasoning ideal for this kind of reasoning. They are used to select at a state
about interactions among threads on the shared memory. In a proofg a subset of all execution segments frgnonwards. To the best
based on validating assertions that specify a program’s desired be-of our knowledge, research on using prophecy variables so far has
havior, one has to consider all possible interleavings of conflict- concentrated on execution-based refinement proofs (e.g., [4]). The
ing operations. Most existing methods verify programs at the finest auxiliary variables allowed in static proof systems are exclusively
level of granularity of atomic actions: only actions guaranteed to be history variables.

executed without interruption by the runtime are considered to be In this paper, we incorporate prophecy variables as a new class
atomic. At this level of granularity, there are a large number of pos- of auxiliary variables into the static QED proof system for concur-
sible interleavings. Proving the program at this level requires one to rent programs. Along with prophecy variables, in order to achieve
their fullest use in proof construction, we introduce tressa anno-
tations, as the dual of the well-known assert annotations. A tressa
claim states a condition for reverse reachability from an end state
of the program, much like an assert claim states a condition for for-
ward reachability from the initial state of the program. Annotating
actions with prophecy variables allows information about the rest
of the execution to be used in deciding the mover types of actions
which are checked locally. A tressa claim stating that an action fol-
lowed by another action cannot lead to a final state of the program

the proof itself a natural extension of implementation.

[Copyright notice will appear here once 'preprint’ option is removed.]

2009/10/31

because it contradicts with the current value of a prophedplvier "acq(lock); //sets lock==tid “atomic { acq(lock);

becomes very useful in locally constructing proofs of systems with assert lock==tid; }
optimistic concurrency. g =% atomic { assert 1f}>ck==tid;
. g = X;
We present the proof rules and the notion of correctness of a ,; 1ock); //sets 1ock==0 atomic { assert lock==tid;
program for two-way reasoning in a static setting: forward in time rel(lock); }

for assert claims, backward in time for tressa claims. Building on ...
our initial work [1], we reformulate simulation and mover defini-
tions, valid for both forward and backward reasoning. Even though Figure 1. Enabling commuting by adding assertions.
the interaction between the two is non-trivial, the formalization is
intuitive and accessible. We demonstrate how to verify a handful
of small but sophisticated algorithms based on optimistic concur- writing to it. Actions with only thread-local accesses are both left
rency. and right movers. Lock acquires are right-movers, since they can-
Related WorkProphecy variables were introduced in [5] in the not be immediately followed by an acquire or release of the same
context of refinement proofs. They were used to define refinement jock by another thread. Similarly, lock releases are left-movers.
mappings between specification and its implementation in cases The QED method improves this idea of reduction by relaxing
where the mapping between abstract and concrete states depends Gfe requirement that the same end state be reached from every
the rest of the execution. Subsequent work on prophecy variablesinitial state. This is formalized as a simulation relation: as long as
were almost exclusively on refinement checking (e.g., [4]). Static s, followed by s’ is simulated bys’ followed by s1, for arbitrary
verification is a well-known technique for concurrent program ver- s, actions; is a right-mover. The simulation relation used by QED
ification (e.qg., [6, 7, 8]). A variety of techniques have been proposed is illustrated below.

for static verification of concurrent programs (e.g., [6, 7, 9, 8]). T1:s1 T2:s2 e

Some work on static verification use reduction as the key ingredient e - e

(e.g., [10, 11, 12]). However, the only work on prophecy variables fail: e, fail: e}

in static verification we know of is by Marcus and Pnueli [13]. In g2 sy T

the context of a static method for proving refinement between two '?"5 - >

transition systems, the authors present two sound ways of augment- g; 5 z — ad — qr: €}
H 2:.52 1.81

ing a sequential program with assignments that involve temporal
logic formulas with future operators. Their soundness condition for The topmost line represents a pair of actions executed one after
annotating programs with auxiliary variables is, as expected, sim- the other: from state, s; by T followed by s; by T2 reaches

ilar to ours. In contrast, our proof system targets concurrent soft- stategs. We say thafl';:s1,T2:s2 is simulated byI'2:s2,T1:s1 if

ware and the verification of assertions rather than refinement, andone of the transition sequences depicted in the bottom exists.

uses atomicity as a key reasoning tool.

Roadmapln the next section, we briefly highlight QED method.
We give a semi-formal description of reduction, abstraction and . .
how they interact. We then give an example for which the current the same end staig is reached after swapping the order of
proof rules do not give an immediate solution. We demonstrate how execution of the two actions.
prophecy variables can help in reduction. In Sec. 4, we formalize In the remaining cases, the transition sequeliges;, T2:s2 iS
our framework, describing the programming language syntax and simulated by assertion failures.
semantics. For ease of presentation, we only use a subset of QEDji) The sequence’, corresponds to the case where executingt
In Sec. 5, we formalize prophecy variables, define the new mover " * |eads to an assertion violation, makip@ failing state.
conditions, and state the soundness theorem. In Sec. 6, we showin. = , .) _
detail how to reason and use prophecy variables and tressa annotdll) Similarly, es is the sequence which ends with an assertion

(i) The sequence’ corresponds to the regular simulation (com-
mutativity) condition: starting from the same starting state

tions in the proof of implementations using optimistic concurrency. ~ Violation after executing: .

We finish with concluding remarks. With this definition of simulation, QED transformations are guar-
anteed to preserve (and potentially increase) assertion violations in

2. QED- An Informal Summary programs.

In this section, we will briefly describe the QED method (for a In a typical QED proof, at the final proof state, when atomic

detailed account, please see [1]) . This section can be skipped byblock; are re.Iatlver large, all assertions are glscharggd. Thls means

those who are familiar with QED. that, in the S|ml_JIat|on check above, cases (ii) and _(|||) were in fact
vacuous. Put differently, later in the proof we realize (show) that,

2.1 Reduction, Movers, Simulation for statesg reachable from an initial state of the program, case (i)

Reduction, the starting point of QED, combines sequentially com- of the S|mglat|0n cqndltlon alwayg applies. Agsertlon annotations
posed atomic actions of appropriate mover types into a single Make this information locally available to actions and s, and
atomic action. Consider two sequentially composed actigns. enable its use fqr mover checks earlier in the proof. For a proof of
Now imagine that in any execution; executed by a threatlat soundness of this approach, see [1].

stateq followed by an arbitrary action’ executed by a different
threadu reaches statg implies that from the state, s’ executed
by u followed by s; executed by reaches the statg; that is, from In QED, reduction is combined with abstraction resulting in a pow-
the same initial state, the same end state remains reachable afteerful proof methodology as explained next. QED decides on the
swapping the order of execution of the two actions. In such a case, mover type of each action by local checks. Each action is compared
s1 Is aright-mover because, in any execution, it can commute to with every other action of the program, assuming they are executed
the right of any other statement without changing the end state. It is by different threads at any state satisfying an invariant. In order
then sound to treat; ; s2 as a single atomic action. The mover type to make mover checks local and efficient (linear in the number of
of an action depends on the existenceaiflictingactions: pairs of program actions), this approach is forced to disregard all execution-
actions accessing the same shared variable with at least one of thenspecific information. For instance, even though lock-protected ac-

2.2 Abstraction and Reduction

3 2009/10/31

havoc t;
CAS(g,t,t+1);

t :=g; // t local, g global
CAS(g,t,t+1);

Figure 2. Atomic increment using Compare-And-Swapg).

cesses are provably both-movers, at first, QED fails to assign any

mover type to such accesses. Two types of abstraction are QED’s

mechanisms for providing such information to mover checks: anno-

tating statements with assertions and relaxing transitions by replac-
ing accesses to global variables with non-deterministic thread-local
reads or writes.

3. Motivation

In this section, we present an example which is interesting because
it contains a pattern typical to optimistic concurrency control, and
is difficult to handle with the current set of QED proof rules. We
show how prophecy variables and tressa claims provide a simple
proof of atomicity.

3.1 Atomic Copy: First Proof Attempt

The purpose th€opy procedure (Fig. 3) is to cop§r.value to
to.value atomically. If Copy does not succeed, it leavgsun-
modified. One can imagin€opy to be the body of a loop that

is iterated until the atomic copy operation succeeds. In this ex-

Fig 1 presents an example of abstraction through assertions. Theample, objects have version numbersdrsion) that get incre-

code on the left is the original snippet, where the global varigble

is updated with the value of the local variable The update ac-
tion is tagged as a non-mover because it apparently conflicts with
itself: the end value o may depends on the order of threads ex-
ecuting this action. However, this action is protected by a lock, so
conflicting accesses tg cannot be concurrent — a fact expressed
by annotating this action with an assertion as in the transformed
code on the right in Fig. 1. Letid be the variable that holds the
unique thread identifier of each thread. Then clearly, two consecu-
tive updates by different threads will always end with an assertion
violation, proving that the update action is a both-mover. That these
assertions fail in mover check does not imply that we have added
extra failing behaviors to the original program. The assertions are
our way of telling QED that two updates gpare not simultane-
ously enabled and they are left unproved as proof obligations to be
eventually discharged, once all three actions are combined into a
single atomic block.

Fig. 2 presents an example of relaxing transitions by read ab-
straction. First the value of the global varialglés read to the local
variablet and then an atomic compare-and-swap (CAS) instruc-
tion attempts to incremergt Thus, this code executed by a thread
t either atomically incrementsor leaves it unchanged if@s in-
struction by another thread is interleaved between the readgf
and thecAs by ¢. The read of (by t) will be tagged as a non-mover
because it fails to commute to the right of &8 action executed by
a different thread#(). But, in this interference scenaribdoes not
updateg and the value ot is irrelevant. We express this fact by
abstracting the read @f. havoc t; assigns a non-deterministic
value tot.Note that all executions of the original program (that
may succeed or fail in incrementing) are subsumed by the ab-
stracted program, and the set of possible end valueg femains

the same after this abstraction. The abstracted read is now taggec

as a both-mover and can be combined with @8 action into a
single atomic block.

Copy (fr: Obj, to: Obj) {
action SS(fr):
atomic{ version := fr.ver; value := fr.val;}
action ConfNWrt(fr, to):
atomic{ if (version == fr.ver)
{to.val := value; to.ver := to.ver + 1;}
}
}
Wrt (to: Obj, newVal: int) {

atomic{ to.val newVal; to.ver to.ver + 1;}

}

Figure 3. TheCopy procedure consisting of two atomic actions.

mented atomically when the object’alue field is modified Copy
consists of two atomic actions. The figt (fr) takes a snapshot
of the objecttr into the local variablesersion andvalue. The
secondConfNWrt (fr,to), confirms that the version number has
not changed since the snapshot was taken and cepiealue to
to.value. If the version number has changed, it leavesinmod-
ified. Wrt (to,newVal) atomically writesnewVal to to.value.

Tl T2
o 55
Wrt (x)
ConfNWrt (x, y)

Figure 4. A thread interleaving with a conflict.

From the caller’s point of viewGopy is atomic, because, when

it succeeds in writing to the objec¢b, the version number check
guarantees thato has not been written to by another thread be-
tweenss (x) andConfNWrt (x). WhenCopy fails, to is not mod-
ified. In a QED-style static proof, the atomicity 0bpy is shown

by attempting to show that eith8g (fr) is a right-mover, or that
ConfNWrt (fr,to) is a left-mover. In the presence of concurrent
Write's by other threadssS(fr) andConfNWrt (fr,to) are not
movers as they stand as the interleaving in Figure 4 shows. One
must abstract one of these actions to make it into a mover without
changing whatopy is meant to accomplish.

Copy (fr: Obj, to: Obj){
action SS_Abs(fr):

atomic{ havoc version, value; }

action ConfNWrt(fr, to):
atomic{ if (version
{to.val

== fr.ver)

:= value; to.ver := to.ver + 1;}

SS_Abs (x)
ConfNWrt (x, y)

Figure 5. The initial proof attempt abstracts to SS_abs. This
interleaving contains no conflicts, but the final valueyofral is
arbitrary.

SinceConfNWrt writes toto.value, we avoid abstracting this

action. We observe that, in the interleaving shown in Figure 4, the
values ofversion and value are not used byonfNwrt. Our

2009/10/31

first proof attempt is therefore to abstr&st(fr) to SS_Abs (fr) Copy (fr: Obj, to: Obj){
(Fig. 5). The latter does not depend on, thus, does not conflict

with any wrt action. However, this turns out to be too much ab- action SS_Proph (£r):
straction. In the interleaving in Figure 5, an arbitrary value is writ- atomic{ if (p) {version := fr.ver; value := fr.val;}
ten tOy.val. else { havoc version, value;}

- T2 tressa p ==> (version >= ver);

________________ }

// Want to abstract SS (x) iff p == true

SS_Proph (x) action ConfNWrt(fr, to):
Wzt (x) atomic{ if (version == fr.ver) {
A.AProphe:y variable p indicates p =: true;
ConfNWrt (x, ¥) whether version == x.ver at this point to.val := value; to.ver := to.ver + 1;
} else {

Figure 6. The prophecy variablg p =: false;
. }

}

3.2 Introducing Prophecy Variables toC -
niroducing Frophecy variables fotopy Figure 7. The transformedCopy procedure makes use of a

We would like to constrain the amount of abstraction we ap- prophecy variable and a tressa annotation.
ply to SS(x). We would like version andvalue to have non-
deterministically-chosen values only in executions like the one in
Fig. 4, in which awrt by another thread interferes witlopy and

the atomic copy attempt fails. Introducing a prophecy varigble
(local to theCopy procedure) allows us to do just that (Fig 6.)

The remainder of this section provides a detailed explanation of
how tressa annotations make mover checks pass.

p has the valuetrue iff no interfering wrt(x) occurs be- erigo — 1 Taio
tween taking a snapshot of and confirmingx.ver == ver. fail- ! fail- !
Put differently,p encapsulates how future thread interleaving non- EN » 2
determinism is resolved in an executign== true iff ConfNWrt NS S,
finds thatversion == x.ver. This is accomplished by “reverse- o - TN " q ? ., q
assignment” of the valugrue to p (denoted byp =: true) 90 T e T1is: !

exactly whenversion == x.ver, as shown in Figure 7p =:
true; is shorthand for the actiomtomic{ assume p == true;
havoc p;}. We refer top =: true as reverse assignment be-
cause, if we imagine that we are going backwards in time along
a given execution, this action has the effect of constraining earlier
(between it and program start) valuesmfo true. If we think (i) Transition sequence starting éft: ¢y is reached starting from
forward in time, initially the value of the prophecy variable is non- qo. This is the conventional simulation definition.
deterministic and guesses whethetsion == x.ver will be the
case later whe@onfNWrt executes. The execution 0bnfNWrt S))
is blocked if the guess expressed by the prophecy variable does ndtii) €3: The tressa predicate ef fails.
match reality.

Usingp, we abstract the snapshot action only in desired execu-
tions, i.e., wherp is false, as shown in the actio8S_Proph in
Fig. 7.

Here,q; represents a state in which all threads have reached the
end of the code they are executing. Similarly to the mover check in
the presence of assert annotations (Section 2.1), in the presence of
tressa’s, there are three ways a mover check to pass:

(i) e5: The tressa predicate ef fails.

With this definition of simulation in the presence of tressa’s, QED
transformations are guaranteed to preserve (and potentially in-
crease) tressa violations in programs.

Again similarly to the case with assertions, the goal of a QED
proof is to reach a proof state in which atomic blocks are large
enough to discharge all tressa’s. Intuitively, this means later proof
Recall that in QED proofs, assertions are used to annotate actionssteps allow us to conclude that, in this mover check, cases (ii) and
with information about execution history in order to remove appar- (iii) were vacuous, i.e., for statesstarting from which each thread
ent conflicts between actions (See abstraction through assertions ircan run its code to completion, it is not possible to violate the tressa
Section 2.) Annotating actions with assertions expressed in termspredicates o&; ands». Put differently, executions starting from a
of prophecy variables is helpful in enabling further reduction in a stateq that violates the tressa predicates will eventually get stuck.
similar way. However, assertions that refer to prophecy variables The tressa annotations allow us to use this information locally for
cannot be discharged by forward reasoning in time. To distinguish mover checks earlier in the proof.
assertions that are discharged by backward reasoning from a final In the Copy example, when the prophecy variahjes false,

3.3 Tressa Annotations

state of the program, we introduce the tressa const8ScProph SS_Proph(x) commutes to the right oirt (x) , since it is able
in Fig. 7 makes use of tressa statements. Similar to assertions, anto assign arbitrary values teersion andvalue, as shown in the
notating an action with a tressa is always a valid abstraction. first part of Fig. 8. Wherp is true, SS_Proph(x) cannot be im-
In theCopy example in Fig. 7, the tressa claim3a8_Proph (x) mediately followed byWrt (x). The tressa annotation inis able
states that if the prophecy variable is true but the valueeafsion to express this fact locally. b == true, from any states, that
is not up to date, then this execution will eventually block and can be reached by executisg§_Proph(x) immediately followed
not reach a final state. With this tressa annotat8f1Proph (x) by wrt (x), the program eventually blocks. All sugh violate the

becomes a right mover as illustrated in Fig. 8. This makes the entire tressa annotation &S_Proph(x). The second part of Fig. 8 illus-
Copy procedure atomic, and the tressa annotation is discharged bytrates the case where the tressa on the left-hand side of the simu-
a simple sequential analysis. lation checkSS_Proph(x).Wrt (x) <Wrt(x).SS_Proph(x) fails.

5 2009/10/31

— C Full x (Atom U{\}) x Full

A-EVAL C-LEFT C-RIGHT
v € Atom y=A y=A
Y Yy Y
Y;c1 — c1 cilecz — c1 c10cg — c2
L-ITER L-SKIP STEVAL
y=A Y= c1 — c2

5 Y ¢ Y Y
c\lﬁ"—>c1;c\lD 09;62%02 C1;C3 — C2;C3

Figure 9. Obhtaining all possible subactions of a given full action
via the silent transformation relatios.

e avariable valuationo; that maps a thread id and a variable to
avalue,

* acode map; that associates a thread with a full action.

Figure 8. Why SS_Proph(x) commutes to the right dfrt (x), We require thab s (t, g) = o:(u, g) for all statess and thread id's
i.e., SS_Proph (x) Wrt (x) < Wrt(x).SS_Proph(x). In each fig- t, u, whenever is a global variable. The code mapkeeps track
ure, the bottom and top parts of the diamond correspond to the left- of what each thread is to execute. For instanc€]) = ¢ means
and right-hand sides of this simulation check, respectively. that at program state, the remaining part of the program to be

executed by thread is given byc. We will give the small step
semantics for the execution of full actions below. A program state

In the third part of the figure, this tressa succeeds, but the tressa o’ '® calledfinal if . () = stop, for all ¢.

the right-hand side still fails. ThuSS_Proph(x) commutes to the Predicates over program variables.For an assert predicate

right of wrt (x). (over unprimed program variables), left] denote the same pred-
icate in which all free occurrences ofd is replaced witht. We

4. Formalization say that a program statesatisfiesz(t], denoted as F x[t] or as
z[t](s), if z[t] evaluates to true when all free occurrences of each

We start this section by formalizing the programming environment ynprimed variablev is replaced witho (¢, v), its value seen by

by giving the syntax and operational semantics of a simple pro- threadt.

gramming language. We then build a proof system for this program- Similarly, the pair of program state@, s2) satisfies a tran-

ming environment. The formalization given in this section closely sition predicatep[t] (over unprimed and primed variables), de-

follows that of QED as was given in [1]. noted as(s1, s2) F p[t] or asp[t](s1, s2), if p[t] evaluates to true
when each unprimed variabies replaced withs s, (¢, v) and each
4.1 Syntax primed variable’ is replaced with , (¢, v).
Actions: Atomic, Compound, Nullary, Full. First, we will as- Finally, for a tressa predicate(over primed program variables)
sume that each atomic actianis in the form and a thread, the program statesatisfieg[t], denoted as’ = y|t]
or asy[t](s"), if y[t] evaluates to true when each primed varialdle
assert a; p; tressa b is replaced withrs (¢, v).
We require that, the assert predicate(b, the tressa predicate Configurations. The evaluation of a full action is given in terms

be over only unprimed (primed) variables. Tiensition predicate of the silent transformation relation—, whose definition is given
p is over both primed and unprimed variables. For any acfion in Fig. 9. Intuitively, if we imagine the execution of a full action
let ¢s, ¥5, 75 denote its assert, tressa and transition predicates, represented as a flowchart with an explicit control pointer denoting

respectively. For instancé. = a, 9o = band7, = p, for o what to execute next, the silent transformation relation corresponds

given above. . " . to advancing the control pointer over the flowchart not modifying
We use sequential composition) (choice (1) and loop) any program variable’s value. When this imaginary control pointer

operators to forntompound actions. Formally, each atomic action sejects a branch, it is represented by the labshich is called the

is a compound action and for compound actiengindcs, c1;ca, invisible transition Otherwise, the label is the content of the box

c10co amdc§5 are also compound actions. We will represent each gyver which the control pointer passes.

sequential code segment byudl action. A full action is either the For full actionsc andd, and a stringy = ~1 . . . v, over AtomU

nullary actionstop which intuitively marks the end of the code, or a
compound actior sequentially composed with the nullary action,
c; stop. Let Atom and Full denote the set of all atomic and full
actions, respectively.

Note that, we have opted for the more intuitively appealing A program state’ is in conf(s), theconfigurationseachable from
pseudo-language in the sample codes given in this paper. The meanprogram state, if, for all ¢, there exists some strirfg, such that
ing of each construct in the pseudo-language is either given infor- es(t) b, e.s(1). Intuitively, s’ is a configuration of if s’ can be
mally or should be obvious. The language we describe here, on the,piained by moving forward the control pointer of each thread's
other hand, is more suitable for formal treatment. program an arbitrary number of, possibly 0, steps.

Let s and s’ be program stateg, be a thread id. Thery' is
called a(t, a)-successoof s (or s, a (t, «)-predecessor of’, if
Program states. A program state is a pair consisting of the following conditions hold:

{A}, we letc <, d denote a sequence of silent transformations

71 Tn
C:CO‘—>61...‘—>Cn:d

4.2 Semantics

6 2009/10/31

k;a
o e.(t) 2% . (1), for somek > 0.
o forallu # t, €5 (u) = es(u),

Intuitively, s’ is a (, a)-successor of if at s threadt hasa as a

possible next action and is the same as except the control flow
att skips overa. For any thread and~y € Atoms, (t,) is called

atransition label

Execution semantics. Alluding to the flowchart and control

of reaching an assert violation from an initial program state, but
also the impossibility of reaching a final state starting from a state
violating a tressa predicate. The former kind of violation is named a
forward violation whereas the latter is calledbackward violation

For the formal definitions to follow, fix a proof sta{@, 7).

DerINITION 1 (forward violation).Arun(s,)o<r<n Of P is called
a forward violation(f-violation) if the following conditions hold:

e 50 is an initial state of(P,7),

pointer analogy given above, the execution of a program can be e —¢;[u](s,,) evaluates to true for some, 3) € fst(sy).

seen as advancing the control pointer of each thread while mak-

ing the effect of each atomic action passed over visible to variable Intuitively, a forward violation is a run ofP that starts from an

valuations. Lety be an atomic action. We writeﬂ s if

e s'isa(t, a)-successor of,

o forall u # t and for any local variable, o (u, z) = oy (u, z),
o for any variabley and threads, o,/ (t,9) = o4 (u, g),

o (s5,58') F 7alt]

In other words,s RCLN holds whent can executex next, all
other threads do not update their control flow, all local variables

initial program statesp; and reaches a program statge which
violates the assert predicatég, of an actions which threadu
can execute at stats,. It is important to note that the transition
predicate of3, 75, does not need to be satisfiedsat if its assert
predicate is violated, the outgoing transition (frar) is ignored
in f-violation.

DEFINITION 2 (backward violation)The run(s,)o<r<n Of P is
called abackward violation(b-violation) if the following condi-
tions hold:

of other threads remain the same, the global variables and local e s, ¢ conf(s) for some initial states of (P, Z),

variables oft are updated so that the transition predicatexa$

® 5, is afinal state ofP,

satisfied. Note that both assert and tressa commands behave like 4 T(s0) A—ba[t](50") evaluates to true for somie, o) € Ist(so)

no-op’s.
A traceis a sequence of transition labdlss [; . . . lx. The trace

. 1 . .
moves a statay to si, written sy — s, if there is a sequence of

states(s;)o<i<k, arun of P overl, such that for alb < ¢ < k,
Si—1 l—7> Si.

The run ismaximalif s, cannot make any transition. The run is
exhaustivef s, is final (it is maximal anc;, (t) = stop, for all
thread<). Henceforth, we will always consider maximal runs.

4.3 Proof and Correctness
Proof state. A proof stateis the tuple(P,Z), where? andZ

Intuitively, a backward violation is a run @® that ends at a final
states,,, starts at a configuratios, of an initial program state
such that there is a threadvhich could have executed prior to
reachingso and the tressa predicate of v, is violated byso.
Again, as in forward violation, we do not require that there exist a
states’ such thai(s’, so) F 7. [t]; if the tressa predicate is violated,
the incoming transition (intey) is ignored.

Note that, a forward violation does not have to lead to a final
state, much like a backward violation does not have to start from an
initial state.

are called the program and the forward invariant, respectively. The DEFINITION 3 (Violation-free).A proof state(P,) is violation

programP C Fwll is a set ofprocedures The forward invariant

free(vf) if it does not allow a run that is either a forward or a back-

7 is a predicate over unprimed global variables appearing in the ward violation; it is callednon-violation freg (non-vf), otherwise.
program. It is a predicate that has to be preserved by each atomic

action inP. An atomic actionx preserves the forward invariaft

writtenZ 2 q, if s; LGN sy ands; E Z imply s2 F Z. In
other words is preserved by if Z cannot be falsified (changed
from true to false) by any execution af If all the atomic actions of
programP preserve the invariatt, P is said to preserve, written
I=P.

A program states is called an initial program state ¢P, 7) if
s E Z," there are only finitely many such that,(t) # stop and
for each such, e,(t) is in P. We will let Tid be the (finite) set
{tes(t) # stop}.

For a non-initial (resp. non-final) program state(resp.r),
definelst(s) (resp.fst(r)) as the set of all transition labels=
(t,) such that there exists some program stat@esp.r’) with

s’ L s (respr 5 r'). That is,(t, @) € Ist(s) means that the last
action that thread performed prior to reaching is «. Similarly,
(t,a) € fst(s) means thatx can be the first action executed by
threadt at states. Note that, either set contain more than one label
for the same thread due to possible branching.

Forward and backward violations. With the introduction of

4.4 Simulation and Composition

In this section, we will define the simulation relation between two

atomic actions and prove that simulation preserves violations of
the program. We will also define the composition of two atomic

actions which will be used in a proof rule making use of mover

types explained in the following section.

DEFINITION 4 (Simulation).Let « = assert a; p;tressab, 8 =
assert ¢; g; tressa d, t be an arbitrary thread id angp = (P, Z) be
a proof state. We sag simulatesa at p, written o <, 3, if the
following three conditions hold:

Slc=aqa,
S2d =,
S3fp=qV ¢
S3bp=qV-d

Whenever clear from the context the proof state subscript will be
dropped.

The simulation conditions are relaxed in certain cases. Intu-
itively, S3f, along with S1, is used to preserve forward violations:

tressa predicates, correctness not only implies the impossibility If there was a forward violation with, there has to be a forward

violation with 3 substituted in place aok. If each assert predicate

1The thread id is ignored for invariants, since all threads agree on the value iS true, there can be no forward violation, thus condition S3f be-

of all global variables.

comes unnecessary (S1 becomes trivially satisfied witteing

2009/10/31

identical to true). Thus, ip is such that the assert predicate of each
a € Atoms(P) is identical to true, the condition S3f is not re-
quired to hold. In other words, if the program contained only tressa
annotations, then we require only S1, S2 and S3b to hold. A sim-
ilar argument holds for backward violations, tressa predicates and
S3b: If pis such that the assert predicate of each Atoms(P) is
identical to true, the condition S3f is not required to hold. That is,
if the program contained only assert annotations, then we require
only S1, S2 and S3fto hold.

We will sometimes restrict a simulation relation to a set of
program state pairs represented by a logical formula. Formally,
a <® g if the simulation conditions hold for all state pairs that
satisfy ©. For instance, if there is ne, such that(s1, s2) F ©,
then the first simulation condition S&(s1) = a(s1), does not
need to hold forr <© 3 whereasy < 3 would fail if S1 failed for

s1. Let Atoms(P) be all atomic actions: of P, that is,s (&), s
holds for somes € conf(s;), wheres; is an initial state ofP.
LEMMA 1. Let p = (P,Z) be a non-violation free proof state.
Let«a be an atomic action imMtoms(P). Let 3 be another atomic
action such thatx <, 3 holds. Then(P’,T) is a non-violation
free proof state, wher@’ is obtained by replacinge with 3 in P.

PrRoOOF1. Take any violation op in whicha occurs. That replac-
ing all occurrences ofv with 3 in the violation will lead to the
construction of another violation ifP’, Z) follows directly from
the definition of simulation.

Letwp(p,), theweakest (liberal) pre-conditionf predicater
for transition predicate, stand for all states which cannot reach a
state where: evaluates to false after executipgFormally,

wp(p,z) = {s|Vs'.p(s,s") = =(s')}
Similarly, sp(z, p) denotes thestrongest post-conditionf predi-
catex for transition predicate, and stands for all next states that
cannot be reached after executipgrom states violatinge. For-
mally,

sp(z,p) = {s'|Vs.p(s,s') = x(s)}
Finally, for two transition predicatgsandq, define their composi-
tion p - ¢, as the transition predicate

p-q={(s1,52)|3s3.p(s1,53) A q(s3,52)}

As actions are reduced, we need a formal mechanism to define

the resulting atomic action by specifying what its assert, tressa
predicates and transition predicate are. The following definition
provides this mechanism in termswp, sp and-.

DEFINITION 5. Let o and 3 be two atomic actions. Define their
composition a o 3, as the atomic action

assert o A Wp(Ta, $8); Ta - Ta; tressa g A sp(Ya, 78)

5. Proof Rules
In this section, we will define the new rules enabling the use of

P1,Z1 --» P2, 12

ANNOT-H _
ag¢ Var 1<i<n Atoms(P)={a}}
i, =0k, th, =¥, T=o
= Va.3d . 7,

Erl
P,T --» P[Var — Var U{a}, ol — ab],T

a1

INV SIM
Io=1T1 To=P a=pon b
P, 11 --» P, 1> P,Z --» Pla— B],T
RED-C

v = assert o A\ ¢g;Ta V Tg;tressatha Atbg
Pvl - P[Q’Dﬁ = FYLI

RED-S
P, ZFai :R or P,ZFas:L

P, T --» Plai;a2 — a1 o az], 7

RED-L
P,ITFa:m m € {R,L} AE=2C]
F ¢g = 15[Var/ Var') IFBoa=p

P,T --» Pla® — 8],

Figure 10. The proof rules of the QED method.

original program is left out. That is why thenNOT-H rule for in-
troducing history variables into the program requires a transition
for every valuation of the auxiliary variable: if the original program
makes a transition over a certain valuation of variables, so will the
new program over the same valuation for any value of the history
variable. Prophecy variables should satisfy a similar requirement.
The condition that has to be satisfied for prophecy variables, how-
ever, is the dual of that of a history variable. Prophecy variable
introduction requires the new transition be defined for all next state
values of the prophecy variable. The formal condition for prophecy
variable introduction is given by the followinguNOT-P rule.

ANNOT-P _
ag¢ Var 1<i<n Atoms(P)={a;}
o = Pay VYo, =Va, TTah
Er, = Vd'3a. 7],

P,T --» P[Var — Var U{a}, o’ — ab],T

LEMMA 2. Letp; = (P1,Z1) be a proof state. Let, be the proof
state obtained fromp; by an application of theNNOT-Prule. Let
(si)1<i<n be arun ofPi. Then, there exists a rus;)1<i<» of P2
such that for alki, s; ands; have the same code maps and variable
valuations except for the prophecy variahieintroduced by the
ANNOT-Prule.

PrROOF2 (Sketch).By induction on the length of the run, Con-
struct the run backwards, starting from the end state and make the

tressa and assert claims . In order to make the paper self-sufficientobservation that for each state, due to the premise oftieoT-

Figure 10 lists the proof rules of [1] relevant to the subset we are
using in this paper. The ruleNNOT-H is for annotating atomic ac-
tions with a new (history) variable. The rulsv is for strength-
ening of the invariant. The rulsim is for abstracting an action by
replacing it with one that simulates it. The rulegD-L, RED-S,
RED-C are for reducing loops, sequential composition and condi-
tional branches of two atomic statements, respectively.

5.1 Prophecy Variable Introduction
The main concern when adding a new variable into the program

P rule, there always exists a value of the prophecy variable in the
preceding state such that the transition7af is enabled irP..

5.2 Mover Checks

QED depends on reduction and reduction is the act of merging
atomic actions of suitable mover types, as can be seen from the
rules RED-S and RED-L. In our previous work [1], we defined
mover types with only forward violations in mind. Below, we
re-define mover types to account for both forward and backward
violations. We also establish the correctness of the definitions via

is to annotate statements so that no terminating execution of thesoundness results.

2009/10/31

Let pre(tp,z), the pre-imageof predicatex for the transi- Przced“r‘z 1?e:d1’*1‘ir§af égt_’ Z;.igf,)-)
tion predicatetp, denote the predicate only satisfied by all the 7*7*"° *57 2007 &5 F0J, b =5

states in the sefs | 3s’. tp(s, s’) A z(s)}. Intuitively, pre(tp, z) var va: int, vb: int;

gives all states such that executingp at s can reach a state '

which satisfiesz. Similarly, post(z, tp), the post-imageof z for 1: atomic { va :=mlal.v; da :=nlal.d; }
atomic { vb := m[b].v; db := m[b]l.d; }

tp, denotes the predicate only satisfied by all the states in the setgj s = true;

{s" | 3s.tp(s,s’) A z(s)}. Intuitively, post(z, tp) gives all states 4: atomic { if (va < m[al.v) { s:= false; } }
s’ that can be reached by executityg from some states satis- 5: atomic { if (vb < m[bl.v) { s:= false; } }
fying . A label (u, 3) follows another label(t, a) in program ?’ if (!s) { da := nil; db := nil; }
P, if there exists a program statesuch that(t, «) € Ist(s) and
(u, ﬂ) S fSt(S). procedure Write(a: int, d: 0bj)
{
DEFINITION 6 (Right-mover).Let p = (P,Z) be a proof state atomic { m[al.d := d; mlal.v := m[al.v+1; }
and « be an atomic action imtoms(P). The action is a right- ¥
mover if for anyg in Atoms(P), threadst, u with ¢ # wu, the
following conditions hold: Figure 11. A collection that implements an atomic read of two

1. aft] © Blu] e Bu] o aft], with © = 7alt] - 75[u] distinct variablesReadPair, and random access updateésjte.

balt] V Palt],
2. post(¢sul, Ta[t]) = dalul each of which is obtained from its immediate predecessor by an

i . . application of the proof rules defined in this section.
The first condition requires thatt, «) followed by (u,), for

arbitraryt # u, is simulated by(u, 3) followed by (¢, o) except THEOREM1 (Soundness).et (Po,Zo) --» ... -=* (Pn,ZIn)
possibly for state pairgsi,sz) such thats, violates ¢ [t], s2 be a proof. If the proof stat€P,,Z,) is violation free, then so is
violates ¢, [t] and sz is the program state reached fram by (Po,Zn).

executing(¢, «) followed by (u, 3). The second condition states
;hﬁtatcet\nnot change the assert predicate of any other action fromg, Examples
alse to true. _ _ _)
A left-mover can be defined similar to right-mover using dual N this section, we verify two examples, both making use of op-
conditions. timistic concurrency. The first is an implementation of an atomic

shapshot of a pair of objects in the presence of concurrent updates
DEFINITION 7 (Left-mover).Letp = (P, T) be a proof state and to the objects. The second is an implementation of a set with meth-

a be an atomic action iMtoms(P). The actionx is a left-mover ods for searching and inserting elements. In both of the examples,
if for any 8 in Atoms(P), threadst, u with ¢t # wu, the following a finite number of threads share the global and execute one of the
conditions hold: methods.
1. B[u] o aft] =X° oft] o Blul, with © = 74[t] - Tg[u] = 6.1 Pair Snapshot
5 dalf] V Ya [t]’t Consider the code in Fig. 11. TReadPair procedure is supposed

- pre(Yslu], a[t]) = ¢yl to implement an atomic read of two addresses in the presence of
Let P,7 - « : R denote that is a right-mover at proof state ~ concurrent updates done by theite procedureReadPair suc-
(7371)’_ Similarly, P, T I- « : L denotes that is a left-mover. Be- ceeds and returns the read values along with a status flag denoting

sides the change in the mover definitions, the sequential reductionSUccess, if it observes a consistent state of the memory for two ad-
rule RED-S given in Fig. 10 remains the same in the presence of drésses. Otherwise, it fails and sets its status flag to false denoting
prophecy variable and tressa annotations. failure, along with setting the read values to default valuss).

We close this section by stating the soundness results. The Eachcall of thevrite procedure updates the data value stored inan
lemma below establishes that reduction based on the above moveddress and increments the version number for that address by one.

definitions cannot change a non-vf proof state into a vf proof state. e would like to prove that th@eadPair(a,b) method, when
it returns true, behaves like an instantaneous read of the two ad-

LEMMA 3 (Soundness of Reduction)et p; = (P, Z) be a proof dresses.
state. Letp, be the proof state obtained from by an application
of therRED-s rule. If p, is violation free, therp; is also violation
free.

Intuition for Atomicity. There are two possible execution sce-
narios forReadPair(a,b). Imagine that thread is executing
ReadPair(a,b) and has executed ling, the first read ofa

PROOF3 (Sketch).By contradiction. Without loss of generality, ~(henceforthinitial read). Until the second read of line, which

assumen; of the RED-S rule to be a right-mover. Assuma to we will call the confirming read if some other thread executes
be non-violation free ang, to be violation free. Then, there must ~ Write(a,d), thenReadPair will observe two distinct states af
exist a violation inp; in which for some, (¢, 1) are not(t, a:2) and hence will return false, representing this inconsistency. Mu-

not consecutive in the violation. Starting from this execution, move tatis mutandis fob, lines2, 5 andwrite (b,d). We will call such
each such(¢, 1) to the right until it either immediately precedes executions asnconsistentIn other words, an inconsistent run of
its matching(z, a2) or (¢, a1) along with its matching, o) is re- ReadPair returns(false,nil,nil). An execution where inter-
moved from the execution. This moving around is feasible due to thefering updates do not occur between the initial and confirming
definitions of the simulation relation and right-mover. The final ex- eads of either address will be callednsistent

ecution, where each occurrence (@f a1) is immediately followed Now each read action conflicts with an update to the same ad-
by (¢, a2) is a violation inp,, establishing the contradiction. dress. As such, neither of the read actionRefdPair are movers

in their current state. Observe thak#adPair is to have an incon-
Finally, the theorem below establishes the soundness of thesistent execution, since the read values do not matter, their values
QED method. We define proof as a sequence of proof states can be abstracted away. Abstracting the read values will make all

9 2009/10/31

procedure ReadPair(a: int, b: int)
returns (s: bool, da: Obj, db: 0bj)
{
pl: atomic { if (p[al) { va := m[al.v; da := m[al.d; }
else { havoc va, da; }
}
p2: atomic { if (p[bl) { vb := m[b]l.v; db
else{ havoc vb, db; }
}
p3: s := true;
p4: atomic { if (va < m[al.v) {
s:= false; plal =: false; }
else { havoc s, plal; } }
p5: atomic { if (vb < m[b].v) {
s:= false; p[b] =: false; }
else { havoc p[bl; if(s) { havoc s; } } }
p6: if (!s) { da := nil; db := nil; }

m[b]l.d; }

Figure 12. Prophecy variable introduction, one per object.

procedure ReadPair(a: int, b: int)
returns (s: bool, da: Obj, db: 0bj)
{
f1: atomic { if (plal) { va := m[al.v; da :=ml[al.d; }
else { havoc va, da; }
tressa pla]l ==> va>=m[a].v; }
£2: atomic { if (p[bl) { vb := m[b]l.v; db
else{ havoc vb, db; }
tressa p[b] ==> vb>=m[b].v; }
£f3: s := true;
f4: atomic { if (va < m[al.v) {
s:= false; plal =: false; }
else { havoc s, plal; } }
£5: atomic { if (vb < m[bl.v) {
s:= false; p[b] =: false; }
else { havoc p[b]; if(s) { havoc s; } }
f6: if (!s) { da := nil; db := nil; }

m[b]l.d; }

Figure 13. Complete annotation with tressa claims included.

procedure ReadPair(a: int, b: int)
returns (s: bool, da: Obj, db: 0bj)
{
atomic {
if (plal) { va := m[al.v; da :=m[al.d; }
else { havoc va, da; }
if (p[bl) { vb := m[bl.v; db
else { havoc vb, db; }
s := true;
if (va < mf[al.v) {
s:= false; plal =: false; }
else { havoc s, plal; } }
if (vb < m[bl.v) {
s:= false; p[b] =: false; }
else { havoc p[bl; if(s) { havoc s; } }
if (!s) { da := nil; db := nil; }

m[b]l.d; }

Figure 14. ReadPair reduced to a single atomic action.

The abstracted confirming reads, lines p5, are left-mover.

For instancep4, coming immediately after a conflicting update is
simulated by executing4 followed by the same update. However,
the initial reads are still non-mover.

Consider the code given in Fig. 13. We have added tressa
claims to the initial reads reflecting our intuition about the value
of the prophecy variables. Singdal equal to true foresees no
interference, we claim that any execution that violates the tressa
predicate cannot terminate. Imagine the contrarfal is true
and va>=m[a] .v is false. Observe thai[a].v is never decre-
mented andra remains the same frofi. onwards. When ling4
is reached, the conditiora<m[a] . v will be true. The then branch
of the if statement will be taken and the current value &1, true,
will not match the reverse assigned value, false, which will block
the execution. It is important to note the role of additional blocking
behavior which we deliberately inserted via the prophecy variable.
Itis also important to note that all this execution based reasoning is
implied in the tressa claim whose main use comes in representing
this kind of information in locally performing mover checks.

The rest of the proof is trivial as it consists of reducing the whole

the read actions both movers. However, we have to also take care ofh€thod into a single action and discharging the tressa claims using
the consistent execution akadPair. In a consistent execution, a ~ Sequential analysis (or applying the definition of composition of
write toa cannot occur between the corresponding initial and con- actions). The final code is given in Fig. 14.
firming reads. Put differently, in a consistent execution, the initial
read is a right-mover, the confirming read is a left-mover, because
no update to the read address can occur between them. Note thaffig. 15 presents theookup and Insert methods for a bounded
in a consistent execution, the read values do matter as they shouldset of non-negative integers. Set elements are stored in an array in
be returned wheReadPair terminates successfully so abstracting Wwhich duplicates are allowed. An array slot is taken to be empty if it
away the read values in this case is not possible. contains -1. Initially, all slots are assumed to be empty. The contents

In the proof we will construct, initial reads will either read Of the set are given by the set of values in non-empty slots. Reads
the exact value (consistent execution) or abstract away the readsand writes to the array are protected by a separate lock per array
(inconsistent execution). The decision will be made according to a index. For simplicity, in the figures we do not refer to this lock.
prophecy variable per address whose value will be set according tolnstead, we indicate what accesses are guaranteed to be atomic by
the presence of a conflicting update before confirming read is done. use of this lock.
The reverse assignment to the prophecy variables will be made in The Insert method starts from an arbitrary array index in or-
the confirming reads. der to reduce conflicts between concurrent executiongnsért

on early array indices. It examines array slots in increasing order of

Prophecy variables. The code with prophecy variables intro- indices and wraps around at the end of the artayert succeeds
duced is given in Fig. 12. As we have hinted above, the prophecy when it either finds an empty slot to which it atomically writes
variable, mapping each address to a boolean value, is reversehe new element, or it finds an occupied slot containing the ele-
assigned in linep4 and p5. For an inconsistent execution, the ment it was trying to insert. The method fails if all array slots are
prophecy variable is set to false. The initial reads are updated totried exactly once and each try finds a non-empty slot containing
make use of the prophecy variable values. Intuitivelja] equal a different element. In this simplified implementation, there is no
to true means that the current execution will not see an interfer- removal.Lookup (x) starts from the first array slot and searches in
ing update until the confirming read af is done. That is why increasing order of indices far. It returns true iff for some array in-
whenpla] is true, the exact value af[a] .d is read. Similarly, dexi, q[i]l == x. Sincelnsert can start from an arbitrary index,
whenp[a] is false, the read values are abstracted away since theLookup must examine the entire array before deciding whether or
prophecy variable foresees interference. not x is in the set.

6.2 Lookup and Insert

10 2009/10/31

procedure Lookup(x: data) procedure Lookup(x: data)

returns result: bool; returns result: bool;
{ {
f := false; i := 0; f := false; i := 0;
while (i<n && 'f) { £ := (q[i] == x); i := i+1; } if (%) {
result = f; while (i<n && 'f) {
} atomic { £ := (ql[i] == x); }
i = i+1;
procedure Insert(x: data) }
returns done: bool; assume !f;
{ } else {
havoc i; assume i<n; while (i<n && 'f) {
cnt := 0; f := false; atomic { £ := (q[i] == x); }
i = i+1;
while (cnt<n && !f) { assume (!'f && i<n);
if (%) { }
atomic { assume q[il==-1; q[i] := x; f := true; } } £ = qlil==x;
else { assume (f || i>=n);
if (%) { atomic { assume q[il==x; f := true; } } assume f;
else { }
atomic { result := f;
assume q[il!=x && q[il!=-1; }
i := (i+1) mod n; cnt := cnt+1l; }
3 ’ Figure 16. The Lookup method after some code transformations.
} The main loop is duplicated with the then branch representing
done := f; the unsuccessful search, the else branch representing the failing

iterations followed by the succeeding iteration.

Figure 15. A bounded set with two methods for searching for an
elementLookup, and adding an elemerinsert. comes—1 again, thus, all actions to the left #f(k) must have left
qlk] == -1 unmodified.

) For Lookup’s that return true, further abstraction is needed. It
_ We would like to prove that theookup method can be summa- s clear thatF (k) does not commute to the right of an action
r.|zed.as an atomic block that returns true iff for some array index ihat writesx to qlk]. Thus, forLookup’s that return true, we need
i,qli]l == x to abstract the loop body so that(k) becomes a right mover.
Intuition for Atomicity. Observe that all actions except the read We accomplish this by allowing the loop body to geto false
of q[1] are thread-local, i.e., they are both movers. Then the only €ven wheng[k] == x. We perform this abstraction for all loop
potential conflict which needs to considered is between the read of itérations except for the last one.

q[i] and the update tq[i] done by theInsert method when This contrived example mimics lookups in more realistic con-
q[i] == -1. cu_rrent data structures. In these examples as well, the com_mlt
Call an iteration of th&.ookup loop for somei. failing if q[i] points and mover types depend.on the method’s return vaI.ue vyhlch

1= x (denoted byF (1)) andsucceedingdenoted byS(i)) other- is only known in the future. In this example, we make only implicit
wise. Executions of.ookup that return false are of the following ~ US€ of prophecy variables. Most importantly, the return value of the

form method (i.e., the value dfat the end of the loop) acts as a prophecy
variable. The two copies of the code after the split correspond to the

e F(0), o, F(1), 0, F(2), o, F(n = 1), ., F(n), .. two different values of the prophecy variable.

while executions that return true are of the following form Code transformation. The code after the transformation ex-
o F(0), ..., FQ),...,F(2),...,F(i—1),..,80),.. plained above is given in Fig. 16. The main loop is duplicated and a
non-deterministic choice, representedilfy(*) and corresponding
to whetherLookup returns true or false, picks either branch. The
statementassume f andassume !f£ (both left-movers, since they
refer to the local variable) are appended to the two copies to mark
them as such. This transformation preserves all executions of the
original Lookup. In the else branch, the final iteration of the loop is
peeled out in order to carry out the reduction proof outlined earlier.

where... represents a sequence of actions by other threads. The,
reduction-based proof is based on the following intuition. The
commit action forLookup (x)’s that return false i¢'(0) because

the set may contain x later in the execution. Eeokup’s that
return true, the commit action i$(:), since the action that writes
the firstx to an array slot may immediately precefig).

In order to reduce the entire execution of the loop to an atomic
action, forLookup’ s that return false, we need dll(k) to be left- Abstraction, prophecy variables and tressa claimsThe anno-
movers in order to group them next £(0), while, for Lookup’s tated code is given in Fig. 17. Let us first analyze the abstraction
that return true, alF’(k)’s must be right movers in order to move done in the failing branch: appendingessa !'f to the read of
immediately to the left o5(z). The two kinds of lookups seemto q[il. This tressa annotation claims that this action can lead to pro-
require different applications of reduction to prove atomicity. gram termination only when it is executed at a state wigdre

To remedy this difficulty, we duplicate the loop. One copy is not equal tox. Note that, this necessary condition for termi-
represents the case wheteokup fails to find the element and nation of the failing branch is due to the very eaglsume !f.

returns false, and the other represents the case hekap finds Executions which violate this tressa annotation have “chosen the
the element and returns true. This split allows us to apply reduction wrong branch”, i.e., in order for these executions to terminate, con-
differently in the two different cases. trol should have gone down the other non-deterministic branch.
After the split, Lookup’s that return false are handled easily. Recall that we were trying to show that failing iterations were
F(k), which requires that[k] != -1, commutes to the left of left-movers. The problematic case for the left-mover check for a
any other action. This is because ongé&] '= -1, it never be- failing iteration that readg [i] occurs when it is preceded by the

11 2009/10/31

procedure Lookup(x: data)
returns result: bool;

procedure Lookup(x: data)
returns result: bool;

{ {
f := false; i := 0; atomic {
f := false; i := 0;
if (%) {
while (i<n && 'f) { if (%) {
atomic { f := (q[i] == x); tressa !f; } while (i<n && 'f) {
i o= i+1; f := (qli] == x);
} i o= i+l
assume !f; }
} else { assume !f;
while (i<n && 'f) { } else {
atomic { havoc f; } havoc f, i;
i o= i+1; assume (!f && i<n);
assume (!'f && i<n); f := qlil==x;
} assume f;
f := qlil==x; }
assume (f || i>=n); result := f;
assume f; ¥
} }
result := f;

Figure 18. The Lookup method reduced to a single atomic action.

Figure 17. The Lookup method after some abstraction and

prophecy-tressa annotation. 7. Conclusion

In this paper, we incorporated prophecy variables into static verifi-
cation. We achieved this by augmenting the static verification tool
QED with a new proof rule for the introduction of prophecy vari-
ables into the program and with a new construct, tressa. We further-
more re-defined correctness and simulation to allow for reasoning
in both forward and backward executions. We have demonstrated
the usage of this new approach in the atomicity proofs of imple-
mentations based on optimistic concurrency.

Our next goal is to statically verify STM (Software Transac-
tional Memory) implementations. Actually, the need for prophecy
variables, and in general backwards reasoning in a static setting,
manifested itself while we were doing preliminary work on STM
verification. The copy and snapshot examples given in this paper
encapsulate the notion of optimistic concurrency used in STM im-
plementations.

actionassume q[i]l==-1; ql[il:=x; executed by another thread
running Insert (x).2 Coming after theInsert, this iteration of
theLookup loop should be succeeding. Coming beforethgert,

the iteration should be failing. This would imply that this failing
iteration F'(7) is not a left-mover. But, intuitively, it should never
be the case that aq[i] := x precede a failing iteratiod’(7) in
Lookup(x). This is precisely what the tressa claim achieves. The
left-mover check requires the simulation to hold only at those next
states that satisfy the tressa predicate, which here is equdl to
But q[i] :=x; followed by f := q[i]l==x; setsf to true. Thus,

the tressa claim allows us to ignore this problematic interleaving
since any execution in which these two actions appear in that order
cannot reach a final state. The tressa claim is discharged with the
assume !f after this branch is proved to be atomic.

Let us now analyze the succeeding (else) branch. Abstracting
the actionf := (q[i] == x) tohavoc f allows loop iterations [1] Elmas, T., Qadeer, S., Tasiran, S.: A calculus of atomic actions. In:
F(i) to commute to the right of actions that write 4di]. The POPL '09, New York, NY, USA, ACM (2009) 2-15
final succeeding iteration is a non-mover and the other actions are [2] Lipton, R.J.: Reduction: a method of proving properties of parallel
left-movers, and are all reduced into a single action. Here, we have programs. Commun. ACM8(12) (1975) 717-721
Imp|ICIt|y made use Of prophecy Val’iable that indicates Whether the [3] Larus, J.R., Rajwar’ R.: Transactional Memory_ Morgan & C|ayp00|
current loop iteration is the final one or not. (2006)

Constituting a typical proof, itis worth repeating what we did in (4] Kesten, Y., Pnueli, A., Shahar, E., Zuck, L.D.: Network invariants in
this example from a more general perspective. We started by adding action. In: CONCUR ’02, London, UK, Springer-Verlag (2002) 101—
annotations in the form of tressa claims so as to make actions of the 115

proper mover type. This can be perceivedagowingtressa’s:an (5] apadi, M., Lamport, L.: The existence of refinement mappings. Theor.
action becomes a mover thanks to the presence of the tressa claim ~ comput. Sci82(2) (1991) 253-284

but the Correct.ness of the proof de.pends on Correctly.discharging [6] Ashcroft, E.A.: Proving assertions about parallel programs. J. Com-
the tressa claim; the proof onus is on the user. This step was put. Syst. Scil0(1) (1975) 110-135

fOHOW.ed by reduction by which ac“of‘s were reduced accordllng [7] Owicki, S., Gries, D.: Verifying properties of parallel programs: an
to their mover types. If the tressa claims were true and sufficient axiomatic approach. Commun. ACMX5) (1976) 279-285

reductior\ occurred, each tre.ssa c!aim woulq be discha.rged by a [8] Wang, L., Stoller 'SD_ Sta;ic analvsis for broarams with non-
sequential (backward) analysis. This sequential analysis is actually ™ [87 = S0€n >0 - e SHEYSIS 0 Brodt (2008)
implied by the definition of action gomposition, given in Sep. 4.4, ol OH 9 I)Dlw- R T ' 4 local g, Th
In our example, we successfully discharged the tressa claims after [°] o earn, iz 1e§°u2“5%s7' "207”1°“?:697”°y' and local reasoning. Theor.
reducing the loop bodies into single atomic actions. omput. Sci3751-3) (2007) 271~

The final reduced and simplified version of the method is given [10] Flanagan, C., Qadeer, S.: A type and effect system for atomicity.
in Fig. 18. SIGPLAN Not.38(5) (2003) 338—349

[11] Freund, S.N., Qadeer, S.: Checking concise specifications for multi-
threaded software. Journal of Object Technol8d2004)

2|magine that both threads agree on the values of the local variatzed [12] Freund, S.N., Qadeer, S., Flanagan, C.: Exploiting purity for atomicity.
x. IEEE Trans. Softw. Eng31(4) (2005) 275-291

References

12 2009/10/31

[13] Marcus, M., Pnueli, A.: Using ghost variables to proverefient. In:
AMAST 96, London, UK, Springer-Verlag (1996) 226-240

13 2009/10/31

A. Proofof Theorem 1

Below, we construct the proof for the soundness of the proof ré®-s. We show that an application &ED-Ss cannot remove violations
from a proof state. We analyze both kinds of violations, backward and forward, separately. In both cases, we assume the existence of a
violation in p and show how to obtain a violation j#f. Roughly speaking, the idea is to show that if a violatiop ixists, then there is also
a violation inp such that for any thread all occurrences oft, v) is immediately preceded ky, «).

In the backward case, we start with an arbitrary backward violation. We show how to obtain a backward violation in whi¢h eyésy
immediately followed by itsnatching(¢,) (Lemma 6). This does not account fsolatedoccurrences oft, v) whose matchingdt, o) does
not occur in the violation at all. We then show how to obtain a backward violation with no such isplatedy introducing their matching
(t,) into the backward violation (Lemma 7). It is then trivial to show that the existence of a backward violatiomplies the existence
of a backward violation ip’.

The forward case follows a similar route. We first prove that if there is a forward violatipntiven there is a forward violation in which
all occurrences oft,), except possibly wheft, «) is the very last label of the violation, imply a succeeding (not necessarily immediately)
(t,) in the same violation (Lemma 13). Then, we show how to obtain a forward violation in which(€achis immediately followed by
its matching(t, v) (Lemma 14).

For the following, we assume thatis a right-mover inp, p’ is obtained fromp by applying the sequential reduction rukgp-s, to «
and its immediate successprUnless explicitly stated otherwise, a backward violation is assumed to be in the form

L1 la In
So — S1 — S2... — Sn

where for eacld) < i < mn, l; = (i, ai).
Preserving backward violations.

LEMMA 4. Leta and 8 be two atomic actiong, # u be two distinct thread id's anel be a program state. L&t (+j0s[.)(s) be false. o is

a right-mover, then)s.joq¢(s) Must also be false. In particular, eithér, [t](s) is false, or there exists a staté such thats’ &) and

Pplu](s') is false.

ProoF4. The only tricky part is the effect @ used in the first condition of right-mover. Observe that, if a state Q€irs) does not satisfy
©, we must havew), [t](s). Butify.[t](s) fails, so does)siyjeap(s). The rest follows from the definition of right-mover, simulation and

Alabell; = (t:,) in a backward violation issolatedif 7 > 1 andl; = (¢;, «) implies thatj > ¢. Call an intervaljj, k] safefor label
(t,a),if 0 < j < k are two index values such that for glk i < k, ¥4, 1,100 (s:) holds andt; # t.

LEMMA 5. Letr = (s;)0<i<n be a backward violation ip. Let[j, k] be safe foi; = (¢;, «). Then, the run’

] lg41

li—1 i+ s Liy2 U j In
55 Sjp1 .. = Sp_1 — Sk —— Skyl... — Sn

3
So —™ S1... Sj—1

is also a backward violation ip.

PROOF5. Sincer’ starts from the same initial statg and ends at the same final statg if it is a run of P, then it necessarily is a backward
violation in p. So, we have to show theltis a run of P. We prove the latter by induction on the differerice j.

e Base Casek — j = 0): r’ is identical tor which by assumption is a backward violation.

e Inductive Hypothesisi(— j < m, m > 0): Assume that for anj, j such that their difference is less than or equahipr’ is a run of P.

¢ Inductive StepX — ;7 = m + 1): Consider the actions of; and /41, o and «;41, respectively. Sincey is a right-mover and
by assumptions., (1, 1]0alt;1(Sj+1) holds, by definition of right-mover and simulation[t;] - 7a, , [tj+1](sj-1,s;+1) implies
Taji1 [ti+1] - Talts](sj-1, 55+1). Then, the sequence

U Lj—1 Gt1 s 4 Lj+2
So — ... —> Sj—1 —>5j — Sj+1 —— ... Sn

is a run inp. Applying the inductive hypothesistandj + 1 which is the new index dt;, o) completes the proof.
Alabell; = (¢;,a;) isunmatchednr, if o; = v, 5 > 1, t;_1 # t;, andl; is not isolated.
LEMMA 6. Letp contain a backward violation. Thep,contains a backward violation which has no unmatched labels.

PROOF6. Let X be the set of backward violations jn LetY C X consist of only those elementsihwith shortest length. Lat, € Y

be such that it has a minimal number of unmatched labels. To prove the lemma by contradiction, we assume that the number of unmatched
labels,m, in ry is greater than 0. Pick the rightmost unmatched lahdbor somek > 1. That is, for anyi > k, t; # t;, anda; = -y implies

that eitherl;—1 = (t;,) or l; is isolated. Let; be the matching label fds,. Leti < k be such thafi, k — 1] is safe, bufi — 1,k — 1] is

not safe, foii;. Consider the following two cases:

® i > j. By the choice of, this means thaﬁlaiil[tiil]oa[tj](51’—1) is false. This in turn implies that either

’ Lj l; In
Si_g — 8i—1 —> 8i... —= Sp

or
l; ln
Si—1 —> Si... —> Sn

is a backward violation irp. Since both have length strictly less tharfn — i + 2 with ¢ > 2), this contradicts the assumption that
belongs tay.

14 2009/10/31

¢ ; < j.Inthis case, we havg, k — 1] safe forl;. By Lemma 5, the following

U1 livi o Ltz / Lo Uy In
50 — ...8j—1 —— 8; — Sj41...5k—2 = Sp_1 — Sk ... — S

is also a backward violation ip. Since this run has one less unmatched label than and the same lengthiesexistence contradicts
the assumption that, had the minimum number of unmatched labels among the backward violations ofdength

The initial assumption that, > 0 is false. So, there exists a backward violation with no unmatched labels.

For a backward violatiom, let len(r) andiso(r) denote the length of and the number of isolated labels iBall a run of lengthn
a, y-matchedf for any j < n, l; = (¢;, «) implies thatl; 1 = (¢;,7).

LEMMA 7. Letp contain a backward violation. Then, there existscan-matched backward violation ip.

PROOF7. Let X be the set of backward violations that do not have unmatched labels. By Lemkas@on-empty. Let” contain all
elements inX that satisfylen(r) + iso(r) is minimal in X. Pickry € Y such that its number of isolated labels is minimalYin Let
n = len(ry) andn; = iso(ry). We will prove that:; = 0. To prove it by contradiction, assume that > 0. Letl, = (¢x,) be the
rightmost isolated label ir,. Then, the matching label fdy, is o = (tx,). Leti < k be such thafi, k — 1] is safe, bufi — 1,k — 1] is
not safe, fory. Consider the following cases:

®i>1,0ri=1andya[tr](s0) is false. By the choice af this means thai., [tx](s:—1) is false, which implies thab, (., joq, [;](s:) 1S
also false, by the definition of By Lemma 4y, [+,]0a(:,,] (5:) IS also false. But, since by the choiceipi). [tx](s:) is true, there exists
a states’ such thaty,, [t;](s') is false ands’ 10, s, holds. This in turn implies that

/ lo lit1 ln
Si—1 —>8 —> Si+1... —> Sn

is a backward violation irp. By Lemma 5, the run above implies the existence of

’ liv1 4 lk—1 4 lo Ly In
Sj_1 —— S ... —— S}_5 — Sp_1 — ... — 8p

which is still a backward violation with no unmatched labels. This run has lengthi + 1, which is at most with ¢ > 0, but at most
n; — 1 isolated labels. But this contradicts with the assumption tiabelongs taY” and has minimal number of isolated labels.

e i = 1 andy.[tk](so) is true. Sincery is a backward violation, there must exist a lalfe| 3) such that)s[u](so) is false. Because is a
right-mover, and the choice 6f Lemma 4 implies that there existssuch that)s[u](s’) is false ands’ 10, o holds. Then, the following

) 3 In
S —Sop —S81... — Snp

is a backward violation with length + 1 andn,; — 1 isolated labels. By Lemma 5,

!
Y ;2 lpg—1 / lo Uy In
s =8y — ... —— Sp_9 — Sk_1 — Sk ... — Sp

is also a backward violation. Observe that this run has no unmatched labels and hence is an elexheinee the sum of its length and
the number of isolated labels it containgis- 1 +n, — 1 = n+n;, by assumption it is also an elemenfi6f And since it contains fewer
isolated labels tham,, it contradicts with the assumption theg contained the minimum number of isolated labels among the elements
of Y.

Thus, the assumption that > 0 is false. Sincery, is a backward violation with no unmatched labels and no isolated labels, it is by
definitionc, y-matched.

LEMMA 8. Letp contain anc, y-matched backward violation. Thepl, contains a backward violation.

PROOF8. Let r be anca,y-matched backward violation ip. First, consider the initial transition/:. If i1 = (¢1,7), there are two
possibilities:

* a[t1](s0) is false. In this case, the definition @fmplies thatyao~[t1](s1) is false.
® 1o [t1](s0) is true. Then, there must exist a lalfel 3) such thatu # ¢1 andts[u](so) is false. By Lemma 4, there exists a stdtsuch
thaty[u] (') is false ands’), holds.
So, without loss of generality, we can assume thatathg-matched backward violation does not start with a labely) for any ¢t. The

backward violation ino’, r’, starts from the same statg and makes the same transitionsaas long as the label does not contain an

t,a t, . t,ao
Whenever; Lo, Sit1 L, Sit+2 OCcurs inr, we lets; (o), si+2 in v’ and continue froms; ;2. That this constructs a run ip’

follows from the definition of and the construction oP’.
LEMMA 9. Letp contain a backward violation. Thep, contains a backward violation.

PROOF9. By Lemma 7p contains anx, y-matched backward violation. By Lemmag8gcontains a backward violation.

15 2009/10/31

Preserving forward violations.

A run is aminimalforward violation inp, if it is a forward violation inp and any of its prefix is not. A run isshortestforward violation
in p if there does not exist a forward violation jnof a shorter length.

LEMMA 10. A shortest forward violation is also minimal.
ProOOF10. Follows from the definitions of shortest and minimal.

LEMMA 11. Letr = (s;)o<i<n be a shortest forward violation. lf, = (¢n, «), then(u, 8) € fst(s,) and —¢s[u](sn) imply thatu = ¢,
andg = .

PrROOF11. Assume the contrary. Lét, 8) be such that, # t, and¢g[u](s,) evaluates to false. By the definition of right-mover (second
condition),¢g[u](s»—1) must also be false. This contradicts the minimality.of

Alabell; = (t;,«) in arunisisolatedif I; = (¢;,~) implies thatj < . Theisolating distanceof a run is given as — j wheren is the
length of the runj is the index of the rightmost isolated label (for all isolated labgls r, we havej > k).

LEMMA 12. If there is an isolated label in a shortest forward violation, then there is a shortest forward violation which has an isolated label
as the last label of the run.

PrRoOOF12. ConsiderX, the set of all shortest forward violations which contain an isolated label. Ot ,gbick a runr’ with a minimal
isolation distance. Showing that has isolation distance 0 will prove the lemma. Assume contrary and let the isolation distarickeof
m > 0. Setj = n — m. This means that; = (¢;,). First, observe that since’ is a minimal forward violationg. [t;](s;) evaluates to
true. Sincej < n, there is a label ;11 = (¢;41,3). Sincel; is isolatedt; # t;+1. Sincea is a right-mover,

altj] o Bltj+1] X Bltj+1] o afty]

must hold. Note that9(s;, s;+2) evaluates to true becausg.[t;](s;) evaluates to true. Since is a shortest forward violation, the

simulation given above can only hold when RCEEEICLON s;j+2. Thus, the run which differs frond only in the order of thgi*" and

(5 + 1)™" labels is also a forward violation. However, this new run has an isolation distanegn — m 4 1) = m — 1. This contradicts
the initial assumption that' has a minimal non-zero isolation distance. Thus, there exis inforward violation whose isolation distance
is 0.

LEMMA 13. Letr = (s;)0<i<n be a shortest forward violation. Thencontains at most one isolated label.

PROOF13. Letl; = (¢;,), lx = (tx, @) be isolated labels. Then, following the argument in the previous lemma, we can obtain a shortest
forward violation which has,, = (¢;, «). By Lemma 11, this implies that the only labefst(s,) whose assertion is violated &4 is (¢;, 7).
Similarly, we can obtain a shortest forward violation which= (¢x,). Again, by Lemma 11, this implies that the only labefsir{s)

whose assertion is violated a4, is (¢,). Sincey is the unique successor afand!;, i, are isolated labels, we must haye= k.

Call a labell; = (t;, «) unmatchedif /; is not isolated and; 1 # ;.
LEMMA 14. Letp contain a forward violation. Then, there is a shortest forward violatibahich isc, yv-matched.

ProOF14. By Lemma 13, we can assume that in a shortest forward violation there is at most one isolated label and in case it exists, we can
assume that it occurs as the last labkl, LetY be the set of all shortest forward violations. OutYof pick a runr,, which has the least
number of unmatched labels. We need to proverthais o, v-matched. Assume the contrary andddde the number of unmatched labels in
rm. Letl; be the rightmost unmatched labehip,. Sincel; is not isolated, there exists sorhe> j + 1 such that, = (¢;,). Choosek such
thatj < o < kimplies thatt, # ¢;. In other words, all the labels betwegrand k& belong to different threads. Sineeis a right-moverr,
is a shortest violation (no assertions can fail at intermediate states), the first condition of right-mover must hold. Using the same reasoning
as was done in the proof of Lemma 12, we obtain the run
L Liv1 o / L Uk In

SO —> S1...85 —>Sj+1...8k,2 — Skg—1 —> Sk ... —> Sn
which is a shortest forward violation. Since the relative ordering of labels arfbrig.:; remains the same, this run has one less unmatched
label, contradicting the assumption that, has a non-zero number of unmatched labels. Thulsis «, y-matched.

LEMMA 15. If ris ana, y-matched forward violation ip, then there is a forward violation ip’.
PROOF15. Similar to Lemma 9.

LEMMA 16. If p contains a forward violation, thep’ contains a forward violation.

PROOF16. Follows from Lemma 14 and Lemma 15.

LEMMA 17. Let (P,Z) --» (P',Z) be a proof step which applies the sequential reduction reep-s. If (P’,Z) does not contain a
violation, neither doe¢P, 7).

PROOF17. We have shown how to obtain a violationghfrom a violation inp when we tookx as a right-mover. The case ofof the

proof rule RED-S being a left-mover is similar. This is due to the duality between forward and backward reasoning and the accompanying
definitions. More explicitly, when is a left-mover, a forward violation ip’ is constructed in the same way as a backward violatiop’in

was constructed whemwas a right-mover. Similarly, whepis a left-mover, a backward violation j#f is constructed in the same way as a
forward violation inp’ was constructed whem was a right-mover.

16 2009/10/31

PrROOF18 (Theorem 1) Proof is by induction on the length of the proof. The base case, a proof of length 0, is trivial. The inductive step
has to show that soundness is preserved for each rule application. The prowfofr-H is similar to the proof of Lemma 2 whose sketch is
given in the paper. The proof afiv is trivial. The proof ofsim is again sketched in the paper (Lemma 1). The pro&if-c follows from

the proofsimM sincey of RED-C simulatesxO~. The proof oRED-Sis given above. The proof efeD-L follows from the proofs akED-sand

SIM (think of 8 of the ruleRED-L as simulating zero or more iterations aj.

17 2009/10/31

