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Abstract

We extend the notion of L2 B discrepancy provided in [E. Novak, H. Woźnia-
kowski, L2 discrepancy and multivariate integration, in: Analytic number theory.
Essays in honour of Klaus Roth. W. W. L. Chen, W. T. Gowers, H. Halberstam,
W. M. Schmidt, and R. C. Vaughan (Eds.), Cambridge University Press, Cambridge,
2009, 359 – 388] to the weighted L2 B discrepancy. This newly defined notion allows
to consider weights, but also volume measures different from the Lebesgue measure
and classes of test sets different from measurable subsets of some Euclidean space.

We relate the weighted L2 B discrepancy to numerical integration defined over
weighted reproducing kernel Hilbert spaces and settle in this way an open problem
posed by Novak and Woźniakowski.

1 Introduction

It is known that many notions of geometric L2 discrepancy are intimately related to
multivariate numerical integration over some corresponding reproducing kernel Hilbert
spaces, see, e.g., [Zar68, Woź91, Hic98, SW98, NW01a, NW01b, NW09, NW10] and the
related literature mentioned therein. In particular, Novak and Woźniakowski introduced
in [NW09] (see also [NW10, Chapter 9]) the quite general notion of L2 B discrepancy.
Here B refers to a function that maps elements t from some measurable Euclidean set D
to measurable subsets B(t) of Rd. The L2 B discrepancy of a point set {t1, . . . , tn} is then
taken with respect to the class of test sets B = {B(t) | t ∈ D} and a probability density
ρ on D, see Section 4.1 for more details. Novak and Woźniakowski showed that the L2 B
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discrepancy corresponds to multivariate numerical integration over a Hilbert space with
some reproducing kernel Kd related to the class of test sets B and the probability density
ρ.

Their notion of L2 B discrepancy does not take into account the concept of weights to
model the different importance of distinct subsets of coordinates, which is often helpful to
overcome the curse of dimensionality. In the context of multivariate numerical integration
such weights were probably first studied by Sloan and Woźniakowski in [SW98].

In their new book [NW10] Novak and Woźniakowski posed the open problem to extend
the notion of L2 B discrepancy to include weights and to find relations of the new dis-
crepancy notion to multivariate numerical integration over weighted reproducing kernel
Hilbert spaces (cf. [NW10, Open Problem 35]).

In this paper we introduce the even more general definition of weighted L2 B discrep-
ancy, which allows not only to consider weights, but also addresses numerical integration
with respect to measures that may differ from the Lebesgue measure on domains that are
not necessarily measurable subsets of Rd. We prove relations of this discrepancy notion
to numerical integration over corresponding weighted reproducing kernel Hilbert spaces
and thus settle the open problem posed by Novak and Woźniakowski.

2 Weighted L2 B Discrepancy

Let (M, Σ, µ) be a σ-finite measure space. Let B be a subset of Σ, consisting of sets of
finite measure. We assume that there exists a σ-algebra Σ(B) on B and a probability
measure ω on Σ(B).

Let I be a finite Index set, and for ν ∈ I let (Mν , Σν , µν) be a σ-finite measure
space, which is related to the measure space M in the following way: There exists a
surjective, measurable map Φν : M → Mν such that µν = µ ◦Φ−1

ν . In particular, we have
µν(Mν) = µ(M).

Most important for us is the case that Φν is some kind of projection and thus typically
a non-injective function. Hence we understand Φ−1

ν not as a function on Mν , but as
a function on the power set of Mν – it maps each subset A of Mν to its pre-image
Φ−1

ν (A) := {m ∈ M |Φν(m) ∈ A}.
Let Bν be a subset of Σν , consisting of sets of finite measure, endowed with a σ-algebra

Σ(Bν) and a probability measure ων . We assume for all ν ∈ I that the function

χ : Mν ×Bν → {0, 1} , (xν , Bν) 7→ 1Bν (xν) (1)

is measurable with respect to the product σ-algebra on Mν × Bν . It follows that the
function

Bν 7→ µν(Bν) =

∫
Mν

1Bν (xν) dµν(xν)

is measurable with respect to Σ(Bν). Additionally, we require that∫
Bν

µν(Bν)
2 dων(Bν) < ∞.
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Now let γ := (γν)ν∈I be a family of non-negative weights. For ν ∈ I we define the
discrepancy function of a multiset of points {t1,ν , . . . , tn,ν} in Mν for a multiset of real
coefficients {a1, . . . , an} and a test set Bν ∈ Bν by

disc(Bν , {tj,ν}, {aj}) = µν(Bν)−
n∑

j=1

aj1Bν (tj,ν), (2)

and the weighted L2 B discrepancy for a multiset {t1, . . . , tn} in M by

discB2,γ({tj}, {aj}) =

(∑
ν∈I

γν

∫
Bν

disc(Bν , {Φν(tj)}, {aj})2 dων(Bν)

)1/2

.

By using the short hand tj,ν := Φν(tj) we deduce from (2)

discB2,γ({tj}, {aj}) =

(∑
ν∈I

γν

[∫
Bν

µν(Bν)
2 dων(Bν)− 2

n∑
j=1

aj

∫
Bν

µν(Bν)1Bν (tj,ν) dων(Bν)

+
n∑

i,j=1

aiaj

∫
Bν

1Bν (ti,ν)1Bν (tj,ν) dων(Bν)

])1/2

.

(3)

Let us further define the nth minimal weighted L2 B discrepancy discB2,γ(n) by

discB2,γ(n) = inf{discB2,γ({tj}, {aj}) | t1, . . . , tn ∈ M, a1, . . . , an ∈ R}.

3 Integration on Weighted Reproducing Kernel Hil-

bert Spaces

Let (K̃ν)ν∈I be a family of reproducing kernels K̃ν : Mν ×Mν → R. Then for each ν ∈ I
the function Kν , defined by

Kν(x, y) = K̃ν(Φν(x), Φν(y)) for all x, y ∈ M ,

is a reproducing kernel on M × M (since Kν inherits from K̃ν the sufficient properties
of symmetry and of positive semi-definiteness). Let us define the weighted reproducing
kernel Kγ on M ×M by

Kγ(x, y) =
∑
ν∈I

γνKν(x, y) for all x, y ∈ M , (4)

and let H(Kγ) be the corresponding reproducing kernel Hilbert space of functions defined
on M . We assume that H(Kγ) consists of integrable functions with respect to µ and that
the integral

I(f) =

∫
M

f(x) dµ(x)
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is a bounded linear functional on H(Kγ), i.e, that the function

hγ :=

∫
M

Kγ(x, ·) dµ(x) ∈ H(Kγ).

Note that
I(f) = 〈f, hγ〉H(Kγ) for all f ∈ H(Kγ).

Let Qn be a linear algorithm given by

Qn(f) =
n∑

j=1

ajf(tj)

with {t1, . . . , tn} ∈ M and real coefficients {a1, . . . , an}. Then

I(f)−Qn(f) = 〈f, hγ,n〉H(Kγ) for all f ∈ H(Kγ),

where

hγ,n := hγ −
n∑

j=1

ajKγ(tj, ·).

If we want to approximate the functional I by the linear algorithm Qn, then the worst
case error of the approximation taken over the norm unit ball of H(Kγ) is given by

ewor(I, Qn, H(Kγ)) = sup
‖f‖H(Kγ )≤1

|I(f)−Qn(f)| = ‖hγ,n‖H(Kγ). (5)

This leads to

ewor(I, Qn, H(Kγ))
2

=‖hγ‖2
H(Kγ) − 2

n∑
j=1

aj〈hγ, Kγ(tj, ·)〉H(Kγ) +
n∑

i,j=1

aiaj〈Kγ(ti, ·), Kγ(tj, ·)〉H(Kγ)

=

∫
M

∫
M

Kγ(x, y) dµ(x) dµ(y)− 2
n∑

j=1

aj

∫
M

Kγ(tj, x) dµ(x) +
n∑

i,j=1

aiajKγ(ti, tj)

=
∑
ν∈I

γν

[∫
M

∫
M

Kν(x, y) dµ(x) dµ(y)− 2
n∑

j=1

aj

∫
M

Kν(tj, x) dµ(x) +
n∑

i,j=1

aiajKν(ti, tj)

]
.

Let us also define the nth minimal worst case error ewor(n, H(Kγ)) by

ewor(n, H(Kγ)) = inf{ewor(I, Qn, H(Kγ)) |Qn with arbitrary tj and aj}.

If we want the identity

ewor(I, Qn, H(Kγ)) = discB2,γ({tj}, {aj}) (6)
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to hold no matter how we choose the finite sequences {tj}, {aj}, and γ = {γν}, then we
necessarily have to require that

Kν(x, y) =

∫
Bν

1Bν (Φν(x))1Bν (Φν(y)) dων(Bν) for all x, y ∈ M and all ν ∈ I. (7)

Condition (7) is not only necessary, but also sufficient for (6) to hold independently of
the choice of the finite sequences {tj}, {aj}, and γ = {γν}, since, due to our assumptions
µν = µ ◦Φ−1

ν and the measurability of χ defined in (1), and to the theorem of Fubini and
Tonelli,∫

M

∫
M

Kν(x, y) dµ(x) dµ(y) =

∫
M

∫
M

∫
Bν

1Bν (Φν(x))1Bν (Φν(y)) dων(Bν) dµ(x) dµ(y)

=

∫
Bν

(∫
M

1Bν (Φν(x)) dµ(x)

)2

dων(Bν)

=

∫
Bν

(∫
Mν

1Bν (ξν) dµν(ξν)

)2

dων(Bν)

=

∫
Bν

µν(Bν)
2 dων(Bν).

Furthermore,∫
M

Kν(tj, x) dµ(x) =

∫
Bν

1Bν (Φν(tj))

(∫
M

1Bν (Φν(x)) dµ(x)

)
dων(Bν)

=

∫
Bν

1Bν (Φν(tj))µν(Bν) dων(Bν).

Hence identity (6) follows from identity (3).
Let us still assume that condition (7) holds. If (M, Σ, µ) is a finite measure space, i.e.,

if µ(M) < ∞, then we can prove an upper bound on ewor(n, H(Kγ)) by averaging over all
properly normalized quasi-Monte Carlo algorithms. More precisely, we proceed similarly
as in [NW09] and consider algorithms of the form

Qn(f) =
µ(M)

n

n∑
j=1

f(tj) (8)

and average the square of the worst-case error

f(t1, . . . , tn) := ewor(I, Qn, H(Kγ))
2
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over all n-point multisets {t1, . . . , tn} in M :

1

µ(M)n

∫
Mn

f(t1, . . . , tn) dµ(t1) . . . dµ(tn)

=
1

n

∑
ν∈I

γν

[
µ(M)

∫
M

Kν(x, x) dµ(x)−
∫

M

∫
M

Kν(x, y) dµ(x) dµ(y)

]
=

1

n

∑
ν∈I

γν

[
µν(Mν)

∫
Bν

µν(Bν) dων(Bν)−
∫
Bν

µν(Bν)
2 dων(Bν)

]
≤ 1

n

∑
ν∈I

γνµν(Mν)
2 =

µ(M)2

n

∑
ν∈I

γν .

From this it follows directly that at least for one normalized quasi-Monte Carlo algorithm
Qn of the form (8) we have the estimate

ewor(I, Qn, H(Kγ)) ≤
µ(M)

√∑
ν∈I γν√

n
.

Altogether we have proved the following theorem.

Theorem 3.1. Under the assumptions made above, we have for a weighted reproducing
kernel Kγ defined by equation (4), which satisfies additionally condition (7), that the
identity

ewor(I, Qn, H(Kγ)) = discB2,γ({tj}, {aj})

holds for all linear algorithms Qn(f) =
∑n

j=1 ajf(tj). Consequently, we have

ewor(n, H(Kγ)) = discB2,γ(n).

If additionally µ(M) < ∞ holds, then

ewor(n, H(Kγ)) ≤
µ(M)

√∑
ν∈I γν√

n
.

4 Special Cases

Here we want to discuss some special cases of the quite general notion of weighted L2 B
discrepancy from Section 2.

4.1 L2 B Discrepancy

We start with the L2 B discrepancy as defined in [NW09], see also [NW10]. This dis-
crepancy fits in our more general definition if we make the following choices: Let M be a
measurable subset of Rd, Σ be the Borel σ-algebra and µ be the d-dimensional Lebesgue
measure restricted to M . Let B be a class of measurable subsets of Rd with ∪B∈BB = M .
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For a given function τ : N → N let D ⊆ Rτ(d) be Borel measurable and ρ : D → [0,∞)
a probability density. Let the σ-algebra

∑
(B) on B be induced by a parametrization

T : D → B, t 7→ B(t) such that the mapping (t, x) 7→ 1B(t)(x) is measurable on D × M
with respect to the product σ-algebra. (The last important measurability condition was
indeed forgotten in [NW09], but is added in the more recent and more comprehensive
exposition [NW10, Chapter 9].)

Let the probability measure ω on B be induced by the probability measure ρ(t) dt,
where dt is the τ(d)-dimensional Lebesgue measure. Furthermore, let I = {1}, γ1 = 1,
and let Φ1 : M → M be the identity mapping.

For these special choices the weighted L2 B discrepancy is nothing but the L2 B
discrepancy as defined in [NW09]. In this situation our Theorem 3.1 was already proved
in [NW09].

4.2 Weighted L2 Star Discrepancy

To get from our definition of weighted L2 B discrepancy the special case of the weighted
L2 star discrepancy (which is sometimes also called weighted L2 discrepancy anchored at
0), we just have to make the following choices:

Let M = [0, 1]d, Σ the Borel σ-algebra on [0, 1]d, µ the restriction of the Lebesgue
measure to [0, 1]d, and B = {[0, x) |x ∈ [0, 1]d}, where [0, x) = [0, x1)× · · · × [0, xd) for a
vector x = (x1, . . . , xd). As a measure space we identify B via the mapping ι : [0, 1]d → B,
x 7→ [0, x) with the measure space (M, Σ, µ). (Note that ι is not a bijection, since ι(x) = ∅
for all x ∈ {y ∈ [0, 1]d | ∃i : yi = 0}; but this is irrelevant for our purpose, since the latter
set has Lebesgue measure zero.)

Let I = {u |u ⊆ [d]}, where [d] := {1, . . . , d}. Let Mu = [0, 1]|u|, where |u| denotes the
cardinality of the set u, and let

Φu : [0, 1]d → [0, 1]|u| , x = (xi)
d
i=1 7→ (xν)ν∈u.

Then µu = µ◦Φ−1
u is nothing but the restriction of the |u|-dimensional Lebesgue measure

to [0, 1]|u|. Furthermore, let Bu = {[0, ξu) | ξu ∈ [0, 1]|u|} and identify Bu as a measure
space with (Mu, Σu, µu).

Condition (7) reads now as follows:∫
Bu

1Bu(Φu(x))1Bu(Φu(y)) dωu(Bu) =

∫
[0,1]|u|

1[0,ξu)(Φu(x))1[0,ξu)(Φu(y)) dξu

=
∏
ν∈u

∫ 1

0

1[0,ξ)(xν)1[0,ξ)(yν) dξ

=
∏
ν∈u

(1−max{xν , yν}).

This leads us to the weighted reproducing kernel

Kγ(x, y) =
∑
u⊆[d]

γuKu(x, y),
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where, by using the short hand K̃(ξ, η) = 1−max{ξ, η},

Ku(x, y) =
∏
ν∈u

K̃(xν , yν).

The resulting Hilbert space is the weighted Sobolev space with mixed derivatives of order
1 anchored at 1, and is, e.g., discussed in detail in [NW09, NW10]. In this situation
Theorem 3.1 was proved in [SW98] for so-called product weights. For general weights the
result can be found in [NW09].

Notice that, due to the product structure of the classes of test sets

Bu =

{∏
ν∈u

[0, xν)

∣∣∣∣∣ ∀ν ∈ u : xν ∈ [0, 1]

}
,

the measures ωu = dξu = ⊗ν∈udξ, and of the kernels

Ku(x, y) =
∏
ν∈u

K̃(xν , yν),

condition (7) is equivalent to

K̃(r, s) =

∫ 1

0

1[0,t)(r)1[0,t)(s) ds ∀r, s ∈ [0, 1]. (9)

This observation will be generalized in the extended final version of this draft paper;
there also more examples, like the so-called G-discrepancy and H-discrepancy which have
applications in quasi-Monte Carlo importance sampling and for which µ may differ from
the Lebesgue measure, will be discussed. Furthermore, we will study infinite dimensional
integration—this can formally be done by considering also infinite sets of indices I, but
nevertheless one has to modify the definition of the numerical integration problem given
in this draft paper appropriately.

References

[Hic98] F. J. Hickernell. A generalized discrepancy and quadrature error bound. Math. Comp. 67 (1998),
299–322.
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