
Executive Summary

Thomas Ball1, Jürgen Giesl2,
Reiner Hähnle3, and Tobias Nipkow4

1 Microsoft Research, Redmond, WA, USA

tball@microsoft.com
2 RWTH Aachen, Germany

giesl@informatik.rwth-aachen.de
3 Chalmers University of Technology, Gothenburg, Sweden

reiner@chalmers.se
4 Technische Universität München, Germany

nipkow@in.tum.de

Abstract. This seminar was the ninth in the series of the Dagstuhl

“Deduction” seminars held biennially since 1993. Its goal was to bring

together the closely related but unnecessarily disjoint communities of

researchers working in interactive and automatic program verification.

Keywords. Formal Logic, Deduction, Artificial Intelligence

1 Motivation of the Seminar

Throughout the history of modern logic, there have been two strands of research:
finding natural inference systems for a given problem domain and finding au-
tomatic procedures for solving specific logical problems. In computer science,
these two strands became interactive and automated deduction. Powerful sys-
tems emerged in both camps (Coq, Isabelle, etc. versus Spass, Vampire, etc.),
conferences were established, and separate communities developed.

However, none of the two kinds of systems were ideal for program verification,
one of the principal application areas of deduction in informatics. The interactive
tools lacked the necessary automation and the automatic tools failed to cater for
important aspects like arithmetic. And neither scaled well. Therefore a separate
third, application-driven set of techniques and tools were developed. These are
based on powerful automatic procedures for particular logical theories, ranging
from propositional logic to arithmetic, and their combination, most notably in
the form of SMT solvers, such as Simplify, Yices, etc. At the same time they were
integrated with techniques from program analysis and automata theory, resulting
in powerful tools like Microsoft’s SLAM which is used for fully automatically
verifying C programs with thousands of lines of code against low-level properties
of code. Again, a separate scientific community evolved.

Each of the three paradigms and communities has led to impressive achieve-
ments which are briefly highlighted in the following.

Dagstuhl Seminar Proceedings 09411
Interaction versus Automation: The two Faces of Deduction
http://drops.dagstuhl.de/opus/volltexte/2010/2421

2 T. Ball, J. Giesl, R. Hähnle, T. Nipkow

1. Interactive Deduction The interactive approach has been applied successfully
to complex and abstract verification tasks with a strong mathematical flavor:
verification of floating point algorithms (J. Harrison in the HOL Light system at
Intel), the proof of the Four Color Theorem (G. Gonthier in Coq at Microsoft),
verifying the computational parts of Hales’ proof of the Kepler Conjecture (T.
Nipkow in the Isabelle system), etc. On the software side, the verification of a
C Compiler (X. Leroy in Coq) and of an operating system kernel (the Verisoft

project in Isabelle) are outstanding results.

2. Automated Deduction The Automated Theorem Proving (ATP) community
concentrated for many years on solving mathematical problems with first-order
theorem provers. A breakthrough was the automated proof of the long-standing
Robbins conjecture (B. McCune with EQP) in 1996 which had been open for
60 years. Since then ATP focused more on applications from computer science
such as security protocol analysis (C. Weidenbach with Spass in 1999, followed
by others) or web ontology reasoning (I. Horrocks & A. Voronkov with Vam-
pire in 2006). These case studies showed that general first-order theorem provers
have reached a state of maturity where they often outperform dedicated tools in
specific application areas. An important insight that strongly influenced recent
ATP systems is that many practical problems are expressible in restricted forms
of first-order logic. On the other hand, it is essential to be able to recognize sat-
isfiability and to compute models. Daniel Jackson et al.’s Alloy system (2000–)
was from the start conceived as an automatic first-order model analysis tool with
a restricted, but syntactically sugared input language. Propositional logic had
traditionally been considered as too inexpressive for modeling complex deduc-
tion problems, but following the performance leap of SAT solvers in the wake of
Chaff (Malik et al., 2001), the sheer size of problems that can be handled made
SAT interesting as a backend for reduction techniques. In model checking, SAT
solvers became an alternative to BDDs. More recently, first-order (theory) rea-
soning and SAT solving are combined in SMT solvers. These are indispensable
in program analysis tools (SLAM, ESC/Java, Spec#, PVS, KeY, etc., see also the
next paragraph).

3. Deduction Techniques in Program Analysis Program Analysis focuses on prov-
ing properties of programs. Inference of invariants (as well as contracts of sub-
procedures) is a key part of program analysis. An important strand of research
is how to power up SMT solvers and invariant inference from quantifier-free
formulas to quantified formulas (over various theories), which are essential to
describe properties of unbounded collections. Fully automated analyses rely on
abstraction to ensure finite computation of fixed points. In the world of SMT
solvers, McMillan has pioneered the use of interpolants to perform domain ab-
straction (no join operator needed) so that one can compute symbolic fixed
points directly with an SMT solver. In program analysis it is important to take
advantage of the rich structure of programs (procedures, types, control-flow) to
make the search process more efficient. Recent work by Babic shows how to use
program structure to efficiently encode verification conditions, as well as to use

Executive Summary 3

the incremental nature of SMT solvers to perform very efficient interprocedural
analysis via goal-directed inlining. Here, it becomes clear that the very narrow
interface of the SMT solver must be widened to accommodate a richer interac-
tion between the program analysis client and the underlying decision procedures
in an SMT solver. There is much progress in program analysis by combining
dynamic and static approaches. In particular, one performs testing on concrete
inputs with symbolic execution using SMT solvers that have the capability to
go beyond what either technique can accomplish alone, as shown in recent work
by Godefroid et al. Finally, there is increasing programming language support
for program analysis, where a language integrates ways to talk about programs
with ways to talk about formulas and abstractions as in the Saturn system by
Hackett et al. This is related to the integration of verification-condition-based
approaches to program verification, such as in Spec#/Boogie, with interactive
theorem provers or, conversely, as in KeY, to automation of an interactive prover
with SMT techniques.

2 Goals of the Seminar

There is clearly not just competition but also synergy among the three dif-
ferent approaches discussed in the previous section. For example, SMT solvers
are successfully applied in program analysis and first-order provers are used in
interactive systems. The KeY system is the result of combining an interactive ap-
proach to program verification with a high degree of automation. However, such
combinations often raise questions and problems that require more interaction
between the communities involved. These include

– exchange of formats for theories and proofs
– encoding of higher-order problems into first-order logic
– extension of automatic first-order provers with specific theories or abstrac-

tion techniques
– using automatic provers as servers that allow to incrementally add and delete

formulas
– orchestration of interleaved automated and interactive inference
– rendering results of automated tools in human-readable form
– generation of proof certificates
– exploiting synergies between Abstract Interpretation and SMT solvers
– invariant inference, especially for quantified formulas
– exploiting program structure for efficient search
– test generation and support from SMT solvers
– programming language support for program analysis

The Dagstuhl seminar brought together the best researchers working on in-
teractive and automatic deduction methods and tools, with a special emphasis
on applications to program analysis and verification.

In total we had 52 participants, mostly from Europe, but also from USA, Is-
rael, and Australia. A good balance between more senior and junior participants

4 T. Ball, J. Giesl, R. Hähnle, T. Nipkow

was maintained. The program consisted of 39 relatively short talks, which gave
ample time for discussion, both during and after the talks as well as during the
meals and in the evenings. Altogether, we perceived the seminar as a very suc-
cessful one, which allowed for cross-fertilization between research on interactive
and on automated deduction. Moreover, it also helped to bridge gaps between
foundational research on these topics and application-driven approaches; e.g.,
the transfer of new theoretical results into applications, or the discovery of new
research problems motivated by applications.

	Executive Summary
	Thomas Ball, Jürgen Giesl, Reiner Hähnle, and Tobias Nipkow

