
On automated reasoning about recursively

defined functions and homomorphisms

Viorica Sofronie-Stokkermans

Max Planck Institut für Informatik, Saarbruecken, Germany
sofronie@mpi-inf.mpg.de

Abstract. We study possibilities of reasoning about extensions of base
theories with functions which satisfy certain recursion (or homomor-
phism) properties. Our focus is on emphasizing possibilities of hierarchi-
cal and modular reasoning in such extensions and combinations thereof.
We present practical applications in verification and cryptography.

Keywords. Combinations of decision procedures, Hierarchical reason-
ing, Recursive functions, Homomorphisms.

1 Introduction

In this paper we study possibilities of reasoning in extensions of theories with
functions which satisfy certain recursion (or homomorphism) axioms. This type
of axioms is very important in verification – for instance in situations in which we
need to reason about functions defined by certain forms of primitive recursion,
such as for instance the function computing the size of a tree formed using a
binary constructor c and a constant c0:

{

size(c0) = 1
size(c(x1, x2)) = 1 + size(x1) + size(x2)

and in cryptography, where one may need to model homomorphism axioms of
the form

∀x, y, z(encodez(x ∗ y) = encodez(x) ∗ encodez(y)).

Decision procedures for recursive data structures exist. In [13], Oppen gave a
PTIME decision procedure for absolutely free data structures based on bidirec-
tional closure; methods which use rewriting and/or basic equational reasoning
were given e.g. by Barrett et al. [2] and Bonacina and Echenim [3]. Some ex-
tensions of theories with recursively defined functions and homomorphisms have
also been studied. In [1], Armando, Rusinowitch, and Ranise give a decision
procedure for a theory of homomorphisms. In [19], Zhang, Manna and Sipma
give a decision procedure for the extension of a theory of term structures with a
recursively defined length function. In [8] tail recursive definitions are studied.
It is proved that tail recursive definitions can be expressed by shallow axioms
and therefore define so-called “)-5.8887(stably local extensions”. Locality properties have

Dagstuhl Seminar Proceedings 09411
”Interaction versus Automation: The two Faces of Deduction”
http://drops.dagstuhl.de/opus/volltexte/2010/2424

2 V. Sofronie-Stokkermans

also been studied in a series of papers on the analysis of cryptographic protocols
(cf. e.g. [4,5,6]).

In this paper we show that many extensions with recursive definitions (or with
generalized homomorphism properties) satisfy locality conditions. This allows us
to significantly extend existing results on reasoning about functions defined using
certain forms of recursion, or satisfying homomorphism properties [1,8,19], and
at the same time shows how powerful and widely applicable the concept of local
theory (extension) is in automated reasoning. As a by-product, the methods we
use provide a possibility of presenting in a different light (and in a different form)
locality phenomena studied in cryptography in [4,5,6]; we believe that they will
allow to better separate rewriting from proving, and thus to give simpler proofs.

The main results are summarized below:

(1) We show that the theory of absolutely free constructors is local, and locality
is preserved also in the presence of selectors. These results are consistent
with existing decision procedures for this theory [13] which use a variant of
bi-directional closure in a graph formed starting from the subterms of the
set of clauses whose satisfiability is being checked.

(2) We show that, under certain assumptions, extensions of the theory of abso-
lutely free constructors with functions satisfying a certain type of recursion
axioms satisfy locality properties, and show that for functions with values in
an ordered domain we can combine recursive definitions with boundedness
axioms without sacrificing locality. We also address the problem of only con-
sidering models whose data part is the initial term algebra of such theories.

(3) We analyze conditions which ensure that similar results can be obtained if we
relax some assumptions about the absolute freeness of the underlying theory
of data types, and illustrate the ideas on an example from cryptography.

The locality results we establish allow us to reduce the task of reasoning about
the class of recursive functions we consider to reasoning in the underlying theory
of data structures (possibly combined with the theories associated with the co-
domains of the recursive functions). This paper is an extended version of [18].

Structure of the paper. In Section 2 we present the results on local theory exten-
sions and hierarchical reasoning in local theory extensions needed in the paper.
We start Section 3 by considering theories of absolutely free data structures,
and extensions of such theories with selectors. We prove locality results for such
theories, and for variants thereof in which the acyclicity axioms are ommitted for
some of the constructors. In Section 4 we consider extensions of theories of ab-
solutely free constructors with functions defined using certain types of recursion
axioms (we also consider functions having values in a different – e.g. numeric –
domain). We show that in these cases locality results can also be established.
In Section 5 we show that similar results can be obtained if we relax some as-
sumptions about the absolute freeness of the underlying theory of data types.
In Section 6 we illustrate the ideas on a simple example from cryptography.

Reasoning about recursively defined functions and homomorphisms 3

2 Preliminaries

We start with presenting some definitions and results needed in the paper.

2.1 Theories and theory extensions

We will consider theories over possibly many-sorted signatures Π = (S, Σ, Pred),
where S is a set of sorts, Σ a set of function symbols, and Pred a set of predicate
symbols. For each function f ∈ Σ (resp. predicate P ∈ Pred), we denote by
a(f) = s1, . . . , sn → s (resp. a(P) = s1, . . . , sn) its arity, where s1, . . . , sn, s ∈ S,
and n ≥ 0. In the one-sorted case we will simply write a(f) = n (resp. a(P) = n).

First-order theories are sets of formulae (closed under logical consequence),
typically the set of all consequences of a set of axioms. When referring to a theory,
we can also consider the set of all its models. We here consider theories specified
by their sets of axioms, but – usually when talking about local extensions of a
theory – we will refer to a theory, and mean the set of all its models.

Theory extensions. We here also consider extensions of theories, in which the
signature is extended by new function symbols (i.e. we assume that the set of
predicate symbols remains unchanged in the extension1). Let T0 be an arbitrary
theory with signature Π0 = (S, Σ0, Pred). We consider extensions T1 of T0 with
signature Π = (S, Σ, Pred), where the set of function symbols is Σ = Σ0∪Σ1. We
assume that T1 is obtained from T0 by adding a set K of (universally quantified)
clauses in the signature Π .

2.2 Total and partial models

Let Π = (S, Σ, Pred). A partial Π-structure is a structure

({As}s∈S, {fA}f∈Σ, {PA}P∈Pred)

in which for every f∈Σ, with a(f)=s1, . . ., sn→s, fA is a (possibly partially
defined) function from As1 × · · · ×Asn

to As, and for every P ∈ Pred with arity
a(P) = s1 . . . sn, PA ⊆ As1 × · · · × Asn

.

Definition 1 A weak Π-embedding between partial structures A = ({As}s∈S ,
{fA}f∈Σ, {PA}P∈Pred) and B = ({Bs}s∈S , {fB}f∈Σ, {PB}P∈Pred) is an S-sorted
family i = (is)s∈S of injective maps is : As → Bs which is an embedding
w.r.t. Pred, s.t. if a(f) = s1, . . . , sn → s and fA(a1, . . . , an) is defined then
fB(is1(a1), . . . , isn

(an)) is defined and is(fA(a1, . . ., an))=fB(is1(a1), . . ., isn
(an)).

We now define truth and satisfiability in partial structures of Π-literals and
(sets of) clauses with variables in a set X .

1 In a many-sorted framework we can regard predicates as functions of boolean output
sort, thus the framework presented here can, in fact, be also used for considering
extensions with new predicate symbols.

4 V. Sofronie-Stokkermans

Definition 2 If A is a partial structure, β : X → A is a valuation2 and L =
(¬)P (t1, . . . , tn) is a literal (with P ∈ Pred∪{=}) we say that (A, β) |=w L if

(i) either β(ti) are all defined and (¬)PA(β(t1), . . . , β(tn)) is true in A, or
(ii) β(ti) is not defined for some argument ti of P .

Weak satisfaction of clauses ((A, β) |=w C) is defined in the usual way. A is a
weak partial model of a set K of clauses if (A, β)|=wC for every β : X→A and
every clause C ∈ K.

Definition 3 A weak partial model of T0∪K is a weak partial model of K whose
reduct to Π0 is a total model of T0.

2.3 Local theories and local theory extensions

Local theories. The notion of local theory was introduced in [9,10] by Givan
and McAllester. A local theory is a set of Horn clauses K such that, for any
ground Horn clause C, K |= C only if already K[C] |= C (where K[C] is the set
of instances of K in which all terms are subterms of ground terms in either K or
C). The size of K[G] is polynomial in the size of G for a fixed K. Since satisfiability

of sets of ground Horn clauses can be checked in linear time, it follows that for
local theories, validity of ground Horn clauses can be checked in polynomial time.
Givan and McAllester proved that every problem which is decidable in PTIME
can be encoded as an entailment problem of ground clauses w.r.t. a local theory
[10]. In [7], Ganzinger established a link between proof theoretic and semantic
concepts for polynomial time decidability of uniform word problems which had
already been studied in algebra. He defined two notions of locality for equational
Horn theories, and established relationships between these notions of locality and
corresponding semantic conditions, referring to embeddability of partial algebras
into total algebras.

Local theory extensions. We now consider extensions of theories in which the
signature is extended by new function symbols.

Let T0 be an arbitrary theory with signature Π0 = (S, Σ0, Pred). We consider
extensions T1 of T0 with signature Π = (S, Σ, Pred), where the set of function
symbols is Σ = Σ0 ∪ Σ1. We assume that T1 is obtained from T0 by adding a
set K of (universally quantified) clauses in the signature Π .

Consider the following condition (in what follows we refer to sets G of ground
clauses and assume that they are in the signature Πc = (S, Σ∪Σc, Pred), where
Σc is a set of new constants):

(Loc) For every finite set G of ground clauses T1∪G |=⊥ iff T0∪K[G]∪G
has no weak partial model with all terms in st(K, G) defined

where if T is a set of terms, K[T] is the set of instances of K in which all terms
starting with a symbol in Σ1 are in T , and K[G] := K[st(K, G)], where st(K, G)
is the family of all subterms of ground terms in K or G.

2 We denote the canonical extension to terms of a valuation β : X→A again by β.

Reasoning about recursively defined functions and homomorphisms 5

Definition 4 We say that an extension T0 ⊆ T1 is local if it satisfies condition
(Loc). We say that it is local for clauses with a property P if it satisfies the
locality conditions for all ground clauses G with property P .

A more general locality condition (ELoc) refers to situations when K consists
of formulae (Φ(x1, . . . , xn) ∨ C(x1, . . . , xn)), where Φ(x1, . . . , xn) is a first-order
Π0-formula with free variables x1, . . . , xn, and C(x1, . . . , xn) is a clause in the
signature Π . The free variables x1, . . . , xn of such an axiom are considered to be
universally quantified [14].

(ELoc) For every formula Γ = Γ0 ∪ G, where Γ0 is a Πc
0-sentence and G is

a finite set of ground Πc-clauses, T1 ∪ Γ |=⊥ iff T0 ∪ K[G] ∪ Γ has
no weak partial model in which all terms in st(K, G) are defined.

A more general notion, namely Ψ -locality of a theory extension (in which the
instances to be considered are described by a closure operation Ψ) is introduced
in [11].

Definition 5 Let K be a set of clauses. Let ΨK be a closure operation associating
with any set T of ground terms a set ΨK(T) of ground terms such that all ground
subterms in K and T are in ΨK(T). Let ΨK(G) := ΨK(st(K, G)). We say that the
extension T0 ⊆ T0 ∪ K is Ψ -local if it satisfies:

(LocΨ) for every finite set G of ground clauses, T0∪K∪G|=⊥ iff T0∪K[ΨK(G)]∪G
has no weak partial model in which all terms in ΨK(G) are defined.

(ELocΨ) is defined analogously. In (Ψ -)local theories and extensions satisfying
(ELocΨ), hierarchical reasoning is possible.

Theorem 6 ([14,11]) Let K be a set of clauses. Assume that T0 ⊆ T1 = T0∪K
is a Ψ -local theory extension, and that for every finite set T of terms ΨK(T)
is finite. For any set G of ground clauses, let K0 ∪ G0 ∪ Def be obtained from
K[ΨK(G)]∪G by flattening and purification3. Then the following are equivalent:

(1) G is satisfiable w.r.t. T1.
(2) T0∪K[ΨK(G)]∪G has a partial model with all terms in st(K, G) defined.
(3) T0 ∪ K0 ∪ G0 ∪ Con[G]0 has a (total) model, where

Con[G]0 = {
n
∧

i=1

ci = di → c = d | f(c1, . . . , cn) = c, f(d1, . . . , dn) = d ∈ Def}.

3 K[ΨK(G)]∪G can be flattened and purified by introducing, in a bottom-up manner,
new constants ct for subterms t = f(g1, . . . , gn) with f ∈ Σ1, gi ground Σ0∪Σc-terms
(where Σc is a set of constants which contains the constants introduced by flattening,
resp. purification), together with corresponding definitions ct = t. We obtain a set
of clauses K0 ∪ G0 ∪ Def, where Def consists of ground unit clauses of the form
f(g1, . . . , gn) = c, where f ∈ Σ1, c is a constant, g1, . . . , gn are ground Σ0∪Σc-terms,
and K0 and G0 are Σ0∪Σc-clauses. Flattening and purification preserve satisfiability
and unsatisfiability w.r.t. total algebras, and w.r.t. partial algebras in which all
ground subterms which are flattened are defined [14]. In what follows, we explicitly
indicate the sorts of the constraints in Def by using indices, i.e. Def=

S

s∈S
Defs.

6 V. Sofronie-Stokkermans

A similar hierarchical reduction to satisfiability tests in T0 can be proved for the-
ory extensions satisfying conditions (ELoc and (ELocΨ and sets Γ of Π-formulae
satisfying the conditions in the definition of condition (ELoc.

Theorem 6 allows us to transfer decidability and complexity results from the
theory T0 to the theory T1:

Theorem 7 ([14]) Assume that the extension T0 ⊆ T1 satisfies condition (LocΨ)
– where Ψ has the property that Ψ(T) is finite for every finite T – and that every
variable in any clause of K occurs below some function symbol from Σ1.

(1) If testing satisfiability of ground clauses in T0 is decidable, then so is testing
satisfiability of ground clauses in T1.

(2) Assume that the complexity of testing the satisfiability w.r.t. T0 of a set of
ground clauses of size m can be described by a function g(m). Let G be a set
of T1-clauses such that ΨK(G) has size n. Then the complexity of checking
the satisfiability of G w.r.t. T1 is of order g(nk), where k is the maximum
number of free variables in a clause in K (but at least 2).

A similar transfer of decidability and parameterized complexity results can be
obtained for theory extensions satisfying condition (ELoc) or (ELocΨ)

Theorem 8 ([11]) Assume that K consists of axioms of the form C = (ΦC(x)∨
C(x)), where ΦC(x) is in a fragment (class of formulae) F of T0 and C(x) is a
Π-clause, and Γ = Γ0 ∧ G, where Γ0 is a formula in F without free variables,
and G is a set of ground Πc-clauses, both containing constants in Σc. Assume
that the theory extension T0 ⊆ T1 satisfies (ELoc), or (ELocΨ).

Satisfiability of formulae of the form Γ0 ∪ G as above w.r.t. T1 is decidable
provided K[G] (resp. K[ΨK(G)]) is finite and K0 ∪ G0 ∪ Γ0 ∪ N0 belongs to a
decidable fragment of T0.

Locality allows us to obtain parameterized decidability and complexity results:

Case 1: If for each C = ΦC(x)∨C(x) ∈ K all free variables occur below some
extension symbol, then K[G] (resp. K[ΨK(G)]) contains only formulae of the form
ΦC(g)∨C(g), where g consists of ground Σ0-terms, so K0∪G0∪Γ0∪N0 ∈ Fg, the
class obtained instantiating all free variables of formulae in F with ground Σ0-
terms.

Decidability and complexity: If checking satisfiability for the class Fg w.r.t. T0

is decidable, then checking satisfiability of goals of the form above w.r.t. T1 is
decidable. Assume that the complexity of a decision procedure for the fragment
Fg of T0 is g(n) for an input of size n. Let m be the size of K0∪G0∪Γ0∪N0. Then
the complexity of proving satisfiability of Γ0 ∪ G w.r.t. T1 is of order g(m).

For local extensions, K0 = (K[G])0; the size m of K0∪G0∪Γ0∪N0 is of order
|G|k for some 2 ≤ k ∈ Z for a fixed K (at least quadratic because of N0).

Similarly for Ψ -local extensions (with st(K, G) replaced by ΨK(G), and |G|k

replaced by |Ψ(G)|k).

Reasoning about recursively defined functions and homomorphisms 7

Case 2: If not all free variables in K occur below an extension symbol, then the
instances in K[G] (resp. K[ΨK(G)]) contain free variables, so K0∪G0∪Γ0∪N0 is
in the universal closure ∀F of F . The decidability and complexity remarks above
apply w.r.t. the complexity of checking satisfiability of formulae in the fragment
∀F of T0 with constants in Σc (viewed as existentially quantified variables).

2.4 Examples of local extensions

The locality of an extension can either be proved directly, or by proving embed-
dability of partial into total models. We give here some examples which will be
used later in the paper.

Theorem 9 ([14,16,11,17]) The following theory extensions are local:

(1) Any extension of a theory with free function symbols;
(2) Extensions of any base theory T0 with functions satisfying axioms of the form

GBounded(f)
∧n

i=1(φi(x) → si ≤ f(x) ≤ ti)

where Π0 contains a sort s for which a reflexive binary relation ≤ exists, si, ti
are Σ0-terms of sort s and φi are Π0-formulae s.t. for i 6= j, φi ∧ φj |=T0⊥,
and T0 |= ∀x(φi(x) → si(x) ≤ ti(x)).

3 Theories of constructors and selectors

Let AbsFreeΣ0 = (
⋃

c∈Σ0
(Injc) ∪ (Acycc)) ∪

⋃

c,d∈Σ

c 6=d
Disjoint(c, d), where:

(Injc) c(x1, . . . , xn) = c(y1, . . . , yn) →
n
∧

i=1

xi = yi

(Acycc) c(t1, . . . , tn) 6= x if x occurs in some ti

Disjoint(c, d) c(x1, . . . , xn) 6= d(y1, . . . , yk) if c 6= d

Note that (Acycc) is an axiom schema (representing an infinite set of axioms).

Theorem 10 The following theories are local:

(1) Theories of one constructor:
(a) The theory AbsFreec of an absolutely free constructor.
(b) The theory (Injc) of an injective constructor.
(c) Theories AbsFreec∪

⋃n
i=1 Sel(si, c) of an absolutely free constructor c and

selectors s1, . . . , sn corresponding to c, satisfying the axioms:

Sel(si, c) ∀x, x1, . . . , xn x = c(x1, . . . , xn) → si(x) = xi.

(d) Theories (Injc)∪
⋃n

i=1 Sel(si, c) of an injective constructor c and selectors
s1, . . . , sn corresponding to c.

(2) Theories of several constructors:

8 V. Sofronie-Stokkermans

(a) The theory AbsFreeΣ0 of absolutely free constructors in Σ0.
(b) Any theory AbsFreeΣ0\Σ obtained from AbsFreeΣ0 by dropping the acyclic-

ity condition for a set Σ ⊆ Σ0 of constructors.
(c) T ∪Sel(Σ′), where T is one of the theories in 2(a) or 2(b), and Sel(Σ′) =

⋃

c∈Σ′

⋃n

i=1 Sel(sc
i , c) axiomatizes a family of selectors sc

1, . . . , s
c
n, where

n = a(c), corresponding to constructors c ∈ Σ′ ⊆ Σ0.

In addition, K = AbsFreeΣ0 ∪ Sel(Σ0) ∪ IsC, where

(IsC) ∀x
∨

c∈Σ0

x = c(sc
1(x), . . . , sc

a(c)(x))

has the property that for every set G of ground Σ0 ∪ Sel ∪ Σc-clauses (where
Σc is a set of additional constants), K ∧ G |=⊥ iff K[Ψ(G)] ∧ G |=⊥, where
Ψ(G) = st(G) ∪

⋃

a∈Σc∩st(G)

⋃

c∈Σ0
({sc

i(a) | 1≤i≤a(c)}∪{c(sc
1(a), . . . , sc

n(a))}).

Proof : (1) The result is proved by showing that every weak partial model of the
axioms for (a)–(d) weakly embeds into a total model of the axioms. The locality
then follows from the link between embeddability and locality established in [7].

(1.a) Let P be a partial algebra which weakly satisfies the axioms (Injc) ∪
(Acycc) of an absolutely free constructor. Starting from the elements of P seen
as (different) constants, we define the following term rewrite system:

c(p1, . . . , pn) → p if cP (p1, . . . , pn) is defined and equal to p.

It is easy to see that this term rewrite system is convergent, as it is noetherian
(since the terms are finite, there are no infinite rewrite chains) and there are no
critical pairs, and that the canonical form t↓ of a term t is an element in P iff
all the subterms of t are defined in P (this can be proved by induction on the
length of the term, taking into account the form of rewrite rules).
Let Tc(P) be the term {c}-algebra freely generated by the elements of P . Let
≡P be the equivalence relation generated by the rewrite relation → on Tc(P),
and let i : P→Tc(P)/≡P be the canonical projection, which associates with
every element of P its equivalence class. Note that the canonical extension of i
to terms associates with every term t the equivalence class [t↓] of its canonical
form t↓ modulo → in Tc(P). We show that

(i) i is a (weak) embedding and
(ii) Tc(P)/≡P satisfies the axiom Injc and
(iii) Tc(P)/≡P satisfies the axiom Acycc.

(i) The injectivity of i is a consequence of the fact that every element in P is
already in canonical form. Thus, for every p, q ∈ P if i(p) = i(q) then [p↓] = [q↓],
so p = p↓ = q↓ = q. Assume now that cP (p1, . . . , pn) is defined in P and equals p.
Then [c(p1, . . . , pn)] = [p]. Therefore, i(cP (p1, . . . , pn)) = [p] = [c(p1, . . . , pn)] =
c(i(p1), . . . , i(pn)).

(ii) We show that Injc holds. Let t1, . . . , tn, s1, . . . , sn ∈ Tc(P) be such that
[c(t1, . . . , tn)] = [c(s1, . . . , sn)] (i.e. the canonical forms of the two terms w.r.t.

Reasoning about recursively defined functions and homomorphisms 9

→ are equal). We prove that [ti] = [si] for all i = 1, . . . , n. We proceed by
induction on the length of the (common) canonical form of c(t1, . . . , tn) and
c(s1, . . . , sn). Assume first that c(t1, . . . , tn)↓ = c(s1, . . . , sn)↓ = p ∈ P . Then
cP (t1P , . . . , tnP) is defined, so is cP (s1P , . . . , snP), and they are both equal to p.
As P weakly satisfies Injc it follows that tiP and siP are defined and equal for all
i, hence [ti] = [si], for all i = 1, . . . , n. Assume now that cP (t1P , . . . , tnP) is not
defined. Then cP (s1P , . . . , snP) is undefined and c(t1, . . . , tn)↓ = c(t1↓, . . . , tn↓),
c(s1, . . . , sn)↓ = c(s1↓, . . . , sn↓), and therefore ti↓ = si↓ for all i = 1, . . . , n, i.e.
[si] = [ti] for i = 1, . . . , n.

(iii) We now prove that Acycc holds. Let X = {x1, . . . , xm} be the variables in
c(t1, . . . , tn), and let x = xi be one of these variables. Let v : X → Tc(P)/≡P be
defined by v(xj) = [sj], where s1, . . . , sm ∈ Tc(P). Assume [c(v(t1), . . . , v(tn))] =
[si], i.e. (if we denote v(ti) by t′i) [c(t′1, . . . , t

′
n)] = [si] and [si] = [s′j] for some j

and some subterm s′j of t′j . We show that if t = c(t′1, . . . , t
′
n) and s is a subterm

of some t′i then t and s must have different canonical forms. We proceed by
induction on the length of the canonical form of c(t′1, . . . , t

′
n).

Assume first that c(t′1, . . . , t
′
n)↓ = p ∈ P . Then cP (t′1P , . . . , t′nP) is defined

(hence also siP is defined). As P weakly satisfies the axiom schema Acycc, it
follows that cP (t′1P , . . . , t′nP) 6= siP . Contradiction.

If cP (t1P , . . . , tnP) is not defined, then c(t′1, . . . , t
′
n)↓ = c(t′1↓, . . . , t

′
n↓) = si↓.

Therefore, siP is also undefined in P , and si↓ = c(u1, . . . , un), where uj = tj↓
for all j = 1, . . . , n. We know that [si] = [s′j] for some j and some subterm s′j of
t′j . Then si↓ = c(u1, . . . , un) = s′j↓. As siP is undefined P , s′j is also undefined
in P . As s′j is a subterm of t′j , uj = t′j ↓, and s′j is undefined in P , we know
that the canonical form of s′j , c(u1, . . . , un), is a subterm of the canonical form
c(t′1↓, . . . , t

′
n↓) of t′j , i.e. that uj is a proper subterm of t′j ↓. By the induction

hypothesis, [t′j] 6= [uj], so it follows that c([t′1], . . . , [t
′
n]) 6= c([u1], . . . , [uk]) = [si].

(1.b) Follows from the proof of (1.a), since for proving that Tc(P)/≡P satisfies
Injc only the fact that P weakly satisfies Injc is needed.

(1.c) Assume that on P also partial selectors s1, . . . , sn are defined. We extend
them to total functions on Tc(P)/≡P by defining

sc
i (x) =

[ti] if x = [c(t1, . . . , tn)]
[sc

i (p)] if x = [p], p ∈ P and sc
i(p) is defined

ac otherwise,

where ac is an arbitrary, but fixed, element of Tc(P)/≡P .
We first show that sc

i is well-defined. Assume that [c(t1, . . . , tn)] = [p] and
sc

i (p) is defined. Then p is the canonical form of c(t1, . . . , tn) w.r.t. the term
rewrite system defined starting from P at the beginning of the proof of 1(a), so
there exist pi ∈ P such that ti↓ = p1 and cP (p1, . . . , pn) = p. Since P is a weak
model of the selector axioms, it follows that sc

i (p) = pi = ti↓.
Assume now that [c(t1, . . . , tn)] = [c(s1, . . . , sn)]. Then, by injectivity of c,

[ti] = [si].

10 V. Sofronie-Stokkermans

From the definition, it is easy to see that sc
i satisfies all selector axioms.

We need to show that the canonical projection i : P → Tc(P)/≡P is also a
weak homomorphism w.r.t. the selectors sc

i . This follows from the fact that if
sc

i (p) is defined in P then i(sc
i(p)) = [sc

i(p)] = sc
i ([p]).

(1.d) Follows from the proof of (1.c) which only uses the injectivity of c.

(2) can be proved analogously. All the constructions are similar in all cases
(2.a), (2.b) and (2.c). In addition to (1) we need to show that TΣ(P)/≡P has
the property that for c 6= d ∈ Σ, c([t1], . . . , [tn]) 6= d([s1], . . . , [sm]) for all terms
t1, . . . , tn, s1, . . . , sm. Assume that there exist terms t1, . . . , tn, s1, . . . , sm such
that c([t1], . . . , [tn]) = [c(t1, . . . , tn)] = [d(s1, . . . , sn)] = d([s1], . . . , [sm]). Thus,
c(t1, . . . , tn) and d(s1, . . . , sn) have the same canonical form. This can happen
only if the canonical form is an element p ∈ P . Thus, tiP , sjP

are all defined
in P and cP (t1P , . . . , tnP) = p = dP (s1P , . . . , smP). This means that there exist
elements in P which contradict axiom (Disjoint(c, d)). Contradiction.

In order to prove the last claim in the theorem, assume that K[Ψ(G)] ∧G has a
weak partial model P in which all terms in Ψ(G) are defined. Let P = {tP | t ∈
TΣ0(Σc∩st(G))}. Let cP (t1P , . . . , tnP) be defined iff cP (t1P , . . . , tnP) is defined (and
in this case they are equal). It is easy to see that P is itself a weak partial model
of K[Ψ(G)]∧G in which all terms in Ψ(G) are defined. We complete P as showed
previously to a total model TΣ0(P)/ ≡P of AbsFreeΣ0 ∪Sel(Σ0). We show that it
also satisfies IsC. Let x ∈ TΣ0(P)/ ≡P . Then x = [t], where t ∈ TΣ0(P), i.e. x = t,
where t ∈ TΣ0({aP | a ∈ Σc}). If t = c(t1, . . . , tn) for some c ∈ Σ0 then obviously
x = [t] = [c(sc

1(t), . . . , s
c
n(t))]. Assume now that t = aP ∈ Σc∩st(G). Since we

know that P weakly satisfies IsC[Ψ(G)], and c(sc
1(a), . . . , sc

n(a)) ∈ Ψ(G) for every
c ∈ Σc, aP = cP (sc

1(aP), . . . , sc
n(aP)) for some c ∈ Σ0. Thus, TΣ0(P)/ ≡P is a

model of IsC. 2

The reduction to the pure theory of equality made possible by Theorem 10 is very
similar to Oppen’s method [13] for deciding satisfiability of ground formulae for
free recursive data structures by bi-directional closure. Quantifier elimination (cf.
[13]) followed by the reduction enabled by Theorem 10 can be used to obtain
a decision procedure for the first-order theory of absolutely free constructors
axiomatized by AbsFreeΣ0 ∪ Sel(Σ0) ∪ IsC.

4 Theories of absolutely free constructors and recursively

defined functions

We consider extensions of AbsFreeΣ0 with new function symbols, possibly with
codomain of a different sort, i.e. theories over the signature S={d, s1, . . ., sn},
where d is the “data” sort; we do not impose any restriction on the nature of
the sorts in si (some may be equal to d). The function symbols are:

– constructors c∈Σ (arity dn→d), and corresponding selectors sc
i (arity d→d);

– all functions Σsi
in the signature of the theory of sort si, for i = 1, . . . , n;

Reasoning about recursively defined functions and homomorphisms 11

– for every 1 ≤ i ≤ n, a set Σi of functions of sort d → si.

In what follows we will analyze certain such extensions for which decision pro-
cedures for ground satisfiability exist4. We will assume for simplicity that S =
{d, s}, where d is the “data” sort and s is a different sort (output sort for some
of the recursively defined functions).

Let Ts be a theory of sort s. We consider extensions of the disjoint combination
of AbsFreeΣ0 and Ts with functions in a set Σ = Σ1 ∪ Σ2, where the functions
in Σ1 have arity d → d and those in Σ2 have arity d → s. We will make the
following notational conventions:

– If f has sort d → b, with b ∈ S, we denote its output sort b by o(f).
– Σo(f) denotes Σ0 if o(f) = d, or Σs if o(f) = s,
– To(f) is the theory AbsFreeΣ0 if o(f) = d, or Ts if o(f) = s.

For every f ∈ Σ we assume that a subset Σr(f) ⊆ Σ0 is specified (a set of
constructors for which recursion axioms for f exist).

We consider theories of the form T = AbsFreeΣ0 ∪ Ts ∪ RecΣ , where RecΣ =
⋃

f∈Σ Recf is a set of axioms of the form:

Recf

{

f(k) = kf

f(c(x1, . . . , xn)) = gc,f(f(x1), . . . , f(xn))

where k, c range over all constructors in Σr(f) ⊆ Σ0, with a(k) = 0, a(c) = n,
kf are ground Σo(f)-terms and the functions gc,f are expressible by Σo(f)-terms.

We also consider extensions with a new set of functions satisfying definitions by
guarded recursion of the form Rec

g
Σ =

⋃

f∈Σ Rec
g
f :

Rec
g
f

f(k) = kf

f(c(x1, . . . , xn)) =

gc,f
1 (f(x1), . . . , f(xn)) if φ1(f(x1), . . . , f(xn))

. . .

gc,f
k (f(x1), . . . , f(xn)) if φk(f(x1), . . . , f(xn))

where k, c range over all constructors in Σr(f) ⊆ Σ0, with a(k) = 0, a(c) = n,

kf are ground Σo(f)-terms and the functions gc,f
i are expressible by Σo(f)-terms,

and φi(x1, . . . , xn) are Σo(f)-formulae with free variables x1, . . . , xn, where φi ∧
φj |=To(f)

⊥ for i 6= j.

Definition 1. A definition of type Recf is exhaustive if Σr(f) = Σ0 (i.e. Recf

contains recursive definitions for terms starting with any c ∈ Σ0). A definition
of type Rec

g
f is exhaustive if Σr(f) = Σ0 and for every definition, the dis-

joint guards φ1, . . ., φn are exhaustive, i.e. To(f)|=∀x(φ1(x)∨. . .∨φn(x)). Quasi-
exhaustive definitions are defined similarly, by allowing that Σ0\Σr(f) may con-
tain constants (but no function of arity greater than, or equal to 1).

4 In this paper we only focus on the problem of checking the satisfiability of sets of
ground clauses, although it appears that when adding axiom IsC decision procedures
for larger fragments can be obtained using arguments similar to those used in [19].

12 V. Sofronie-Stokkermans

4.1 Examples

We illustrate the type of recursive definitions we consider on the following ex-
amples.

Example 1 Let Σ0 = {c0, c} with a(c0) = 0, a(c) = n. Let T0 = AbsFreeΣ0 ∪ Ts

be the disjoint, many-sorted combination of the theory AbsFreeΣ0 (sort d) and
Tnum, the theory of natural numbers with addition (sort num).

(1) A size function can be axiomatized by Recsize:
{

size(c0) = 1
size(c(x1, . . . , xn)) = 1 + size(x1) + · · · + size(xn)

(2) A depth function can be axiomatized by the following definition Rec
g
depth:

{

depth(c0) = 1
depth(c(x1, . . . , xn)) = 1 + max{depth(x1), . . . , depth(xn)}

This definition is of type Recg because although max{depth(x1), . . . , depth(xn)}
cannot be expressed as a term function, the condition

depth(c(x1, . . . , xn)) = 1 + max{depth(x1), . . . , depth(xn)}

can alternatively be expressed as:

depth(c(x1, . . . , xn)) =

1 + depth(x1) if depth(x1) ≥ depth(xj)∀j, 1 < j ≤ n
. . .

1 + depth(xi) if depth(xi) ≥ depth(xj)∀j, i < j ≤ n
and depth(xi) > depth(xj)∀j, 1 ≤ j ≤ i − 1

. . .
1 + depth(xn) if depth(xn) > depth(xj)∀j, 1 ≤ j ≤ n − 1

Example 2 Let Σ0={c0, d0, c} with a(c0) = a(d0) = 0, a(c) = n, and let T0 =
AbsFreeΣ0 ∪ Bool be the disjoint combination of the theories AbsFreeΣ0 (sort d)
and Bool, having as model the two-element Boolean algebra B2=({t, f},⊓,⊔,¬)
(sort bool) with a function hasc0 with output of sort bool, defined by Rechasc0

:

hasc0
(c0) = t

hasc0
(d0) = f

hasc0
(c(x1, . . . , xn)) =

⊔n

i=1 hasc0
(xi) (

⊔

is the supremum operation in B2).

4.2 Problem

We analyze the problem of testing satisfiability of conjunctions G of ground unit
Σ0∪Σ1∪Σ2∪Σc-clauses, where Σc is a set of new constants:

(AbsFreeΣ0 ∪ Ts ∪ Rec
[g]
Σ1

∪ Rec
[g]
Σ2

) ∧ G |=⊥

(If Σ2=∅, Ts can be omitted.) In what follows we use the abbreviations Σ =
Σ1∪Σ2, Rec

g
Σ = Rec

g
Σ1

∪Rec
g
Σ2

, and RecΣ = RecΣ1∪RecΣ2 .

Reasoning about recursively defined functions and homomorphisms 13

4.3 Preprocessing: Formula simplification

The form of the ground formulae to be considered can be simplified as follows:

Lemma 11 For every set G of ground unit Σ0 ∪ Σ ∪ Σc-clauses there exists a
set G′ of Σ-flat ground unit Σ0 ∪ Σ ∪ Σ′

c-clauses (where Σc ⊆ Σ′
c) of the form

G′ = Cd ∧ Cs ∧ CΣ ∧ NCΣ′
c
,

where Cd is a set of pure Σ0-constraints, Cs is a set of (unit) Σs-clauses (if
Σ2 6= ∅) and CΣ , NCΣ′

c
are (possibly empty) conjunctions of literals of the form:

CΣ: (¬)f(td)= t′, where f∈Σ1∪Σ2, td is a Σ0∪Σ′
c-term, t′ a Σo(f)∪Σ′

c-term;
(¬)f(td)= g(t′d), where f, g ∈ Σ2, and td, t

′
d are Σ0 ∪ Σ′

c-terms;
NCΣ′

c
: td 6= t′d, where td, t

′
d are Σ0 ∪ Σ′

c-terms;

such that G and G′ are equisatisfiable w.r.t. AbsFreeΣ0 ∪ Ts ∪ K for any set of
clauses K axiomatizing the properties of the functions in Σ.

Proof : We can transform G into an equisatisfiable set of Σ1 ∪ Σ2-flat clauses
over a possible larger set Σ′

c of constants by replacing, in a bottom-up manner,
the arguments of the Σ1 ∪ Σ2-functions with new constants and adding their
definitions to the positive part of G, and by also replacing every negative clause
of sort d with a disequality between new constants using a similar renaming.
We can then use the properties of the constructors for replacing every conjunct
of the form c(t1, . . . , tn) = d(s1, . . . , sn) with ⊥ (false) if c 6= d resp. with the
conjunction

∧n

i=1 si = ti if c = d, and any conjunct of the form t = c(. . . , t, . . .)
with ⊥ (false). We can therefore assume without loss of generality that G only
contains:

(i) positive clauses of the form:
• ai = aj for ai, aj ∈ Σ′

c; a = c(t1, . . . , tn), where a ∈ Σ′
c does not occur

in any ti;
• f(a) = td, where f ∈ Σ1, a ∈ Σ′

c, and td is a Σ0 ∪Σ ∪Σ′
c-term of sort d;

• f(a) = ts, where f ∈ Σ2, a ∈ Σ′
c, and ts is a term of sort s;

• f(a) = g(b), where f, g ∈ Σ2, a, b ∈ Σ′
c;

(ii) negative clauses of the following forms:
• t 6= s, where t, s are Σ0 ∪ Σ′

c-terms;
• f(a) 6= t, where f ∈ Σ1 ∪ Σ2, a ∈ Σ′

c, and t is a term of sort o(f);
• f(a) 6= g(b), where f, g ∈ Σ2, and a, b ∈ Σ′

c;
(iii) a set Cd of constraints over Σ0-terms, and
(iv) a set Cs of constraints over Σs-terms.

After being brought in this form, G can be simplified further by replacing ai with
aj whenever ai = aj occurs as a conjunct in G and by replacing a by c(t1, . . . , tn)
whenever a = c(t1, . . . , tn) occurs in G, and starting again the simplification
procedure which uses the properties of the free constructors (the procedure ter-
minates because of the acyclicity axiom). Using these additional transformations
we can simplify G to an equisatisfiable set G′ which only consists of unit clauses
of the following forms:

14 V. Sofronie-Stokkermans

– positive clauses of the form f(td) = t, where td is a term of sort d and t is
a term of sort o(f) (possibly containing variables in Σ′

c), and f(a) = g(b),
where f, g ∈ Σ2, a, b ∈ Σ′

c;
– negative clauses of one of the following forms: t 6= s where t, s are Σ0 ∪ Σ′

c-
terms, f(td) 6= t, where td is a term of sort d and t is a term of sort o(f)
(possibly containing variables in Σ′

c); or clauses of the form f(td) 6= g(sd),
where f, g ∈ Σ2 and td, sd are terms of sort d;

– a set Cd of pure Σ0-constraints and
– a set Cs of pure Σs-constraints.

If K = RecΣ then every term of the form f(t), f ∈ Σ is equivalent (w.r.t.
AbsFreeΣ0 ∪ Ts ∪ K) to a term of the form f(t′), where t′ either starts with a
constructor c 6∈ Σr(f), or is equal to some a ∈ Σc. If by making this simplifica-
tion we introduce additional positive constraints between Σ0 ∪Σc-terms we can
eliminate them using the procedure mentioned at the beginning of the proof. 2

Remark 12 If K=RecΣ we can further simplify any set of ground unit clauses
as follows:

– By eagerly applying the recursive definitions as simplification rules we can
ensure that, for every literal in CΣ, the terms td (t′d) either starts with a
constructor c 6∈ Σr(f) (resp. c 6∈ Σr(f

′)) or are equal to some a ∈ Σ′
c.

– If the definition of f ∈ Σ is exhaustive (resp. quasi-exhaustive), we can
ensure that the only occurrence of f in G′ is at the root of a term, in terms
of the form f(a), where a ∈ Σc (resp., if Recf is quasi-exhaustive, a ∈
Σc ∪ (Σ0\Σr(f))).

– We can ensure that each such f(a), with f ∈ Σ1, occurs in at most one posi-
tive clause by replacing any conjunction f(a)= t1∧f(a)= t2 with f(a)= t1∧
t1 = t2. f(a)= t1 ∧ f(a) 6= t2 can also be replaced with the (equisatisfiable)
conjunction: f(a)= t1 ∧ t1 6= t2.

– We can also transform any set of unit ground clauses G containing f(a)
(with f ∈ Σ1) only in negative literals f(a) 6= t into an equisatisfiable set of
unit ground clauses, by introducing a new constant c and replacing f(a) 6= t
with f(a) = c ∧ c 6= t.

4.4 Locality results for extensions with recursively defined functions

We make the following assumptions:

Assumption 1: Either Σ1 = ∅, or else Σ1 6= ∅ and RecΣ1 is quasi-exhaustive.
Assumption 2: G is a set of ground unit clauses with the property that any

occurrence of a function symbol in Σ1 is in positive unit clauses of G of
the form f(a) = t, with a ∈ Σc ∪ (Σ0\Σr(f)), and G does not contain any
equalities between Σ0 ∪ Σc-terms. (By Remark 12, we can assume w.l.o.g.
that for all f ∈ Σ1 and a ∈ Σc ∪ (Σ0\Σr(f)), f(a) occurs in at most one
positive unit clause of G of the form f(a) = t.)

Reasoning about recursively defined functions and homomorphisms 15

Theorem 13 If Assumption 1 holds, then:

(1) AbsFreeΣ0 ∪ Ts ∪ RecΣ2 satisfies the Ψ -locality conditions as an extension
of AbsFreeΣ0 ∪ Ts for all sets G of clauses of the form obtained after the
simplification described in Lemma 11.

(2) If RecΣ1 is quasi-exhaustive, then AbsFreeΣ0∪Ts∪RecΣ1∪RecΣ2 satisfies the
Ψ -locality conditions of an extension of AbsFreeΣ0∪Ts for every set G of unit
clausesof the form obtained after the simplification described in Lemma 11
which satisfy the conditions in Assumption 2;

where Ψ associates with any set T of ground terms the smallest set which contains
T and if f(c(t1, . . . , tn))∈Ψ(T) and c∈Σr(f) then f(ti)∈Ψ(T) for i = 1, . . . , n.

Similar results hold for extensions with Rec
g
Σ (under similar assumptions) pro-

vided the guards φi in the recursive definitions of functions in Σ1 are positive.

Note: We can actually prove a variant of ELocΨ , in which we can allow first-

order Σs-constraints in Rec
[g]
Σ and in G.

Proof : Let P = (Pd, Ps, {fP}P∈Σ, {aP }a∈Σc
) be a (partial) model of AbsFreeΣ0∪

Ts ∪RecΣ ∪G such that Pd is a total model of AbsFreeΣ0 , Ps is a total model of
Ts, and for every f ∈ Σ, fP is partially defined and satisfies RecΣ. We assume
w.l.o.g. that all terms in Ψ(G) are defined in P and only them.

Note that since G is in the canonical form obtained after the simplifications
described in Lemma 11, no non-trivial equality between Σ0 ∪Σ′

c-terms properly
containing Σ′

c terms can be inferred from G. In order to prove this, note first
that in the normal form obtained after the simplification in Lemma 11 does
not contain any equalities between Σ0∪Σ′

c-terms properly containing Σ′
c terms,

and that any equality between such terms can be reduced to an equality of the
form ai = aj where ai, aj ∈ Σ′

c and a = c(t1, . . . , tn). The proof is by induction
on the number of steps needed to infer an equality of the form ai = aj or
a = c(t1, . . . , tn). Clearly, there are no proofs in one step. Any proof in one step
would use transitivity of equality and a positive equality involving a term f(t)
with f ∈ Σ1 containing a f symbol, i.e. would be of the form: ai = f(t)∧ f(t) =
aj → ai = aj , resp. a = f(t) ∧ f(t) = c(t1, . . . , tn) → a = c(t1, . . . , tn). This is
however prevented by the requirement on the form of the clauses we made in
Assumption 2.

Note now that if no non-trivial equality between Σ0 ∪ Σ′
c-terms properly

containing Σ′
c terms can be inferred from G, we can assume w.l.o.g. that in P

no identities of the form ai = aj or a = c(t1, . . . , tn) hold, where ai, aj , a ∈ Σ′
c, c

is a constructor, and t1, . . . , tn are Σ0 ∪Σa-terms. It follows that we can always
choose a model P ′ of AbsFreeΣ0 ∪ Ts ∪ RecΣ [Ψ(G)] ∪ Gwith the property that
all subterms of G are defined in P ′ and if f(c(t1, . . . , tn)) is defined in P ′ then
f(c(t1, . . . , tn)) ∈ Ψ(G), and if c ∈ Σr(f) then f(t1), . . . , f(tn) ∈ Ψ(G) (i.e. they
are defined in P). 5

5 Indeed, we can choose P ′
d = {tP | t ∈ TΣ0(Σc)}. Since P ′

d is a Σ0-subalgebra of
Pd, it is also a model of AbsFreeΣ0 . Therefore, P ′

d is isomorphic to the free algebra

16 V. Sofronie-Stokkermans

We define a total model P = (TΣ0(Σc), Ps, {fP }f∈Σ, {aP}a∈Σc
) of AbsFreeΣ0 ∪

Ts ∪ RecΣ and G as follows. The support of P is the (absolutely) free algebra
freely generated by Σc. Let aP = a for every a ∈ Σc. Let h : TΣ0(Σc) → Pd

be the unique Σ0-homomorphism with the property that h(a) = aP for every
a ∈ ΣA. We define fP on the layers of TΣ0(Σc) =

⋃

i≥0 Pi, where P0 = Σc and
Pi+1 = {c(t1, . . . , tn) | c ∈ Σ0 and ti ∈

⋃

0≤j≤i Pj}. Let cd, cs be arbitrary but
fixed elements in TΣ0(Σc) resp. Ps.

Assume first that f∈Σ2. Then fP is defined on P0 by:

fP (a) :=

{

fP (aP) if fP (aP) is defined
cs if fP (aP) is not defined

Assume that fP is defined on
⋃i

j=0 Pi. We extend it to Pi+1 as follows:

fP (c(t1, . . . , tn)) :=

fP (cP (h(t1), . . . , h(tn))) if fP (cP (h(t1), . . . , h(tn))) defined
gc

f (fP (t1), . . . , fP (tn)) if c ∈ Σr(f) and

fP (c(h(t1), . . . , h(tn))) undefined
cs otherwise

It is easy to see that fP is well-defined. It is also clear, by definition, that if
fP (h(t)) is defined then fP (t) = fP (h(t)). We prove that f satisfies the axioms
in Recf . Let t = c(t1, . . . , tn) with c ∈ Σr(f).

– If fP (tP) = fP (h(t)) is undefined then by definition fP (c(t1, . . . , tn)) =
gc

f (fP (t1), . . . , fP (tn)).
– If fP (tP) = fP (h(t)) is defined then fP (cP (h(t1), . . . , h(tn))) is defined, and

(as c ∈ Σr(f)) fP (h(ti)) are defined for all i and – since P weakly satisfies
Recf – fP (h(t)) = fP (cP (h(t1), . . . , h(tn))) = gc

i (fP (h(t1)), . . . , fP (h(tn))).
It follows that also in this case fP (c(t1, . . . , tn)) = gc

f (fP (t1), . . . , fP (tn)).

The remarks above show that we can reformulate the definition for fP as:

fP (c(t1, . . . , tn)) :=

fP (cP (h(t1), . . . , h(tn))) if fP (cP (h(t1), . . . , h(tn))) defined
gc

f (fP (t1), . . . , fP (tn)) if c ∈ Σr(f)

cs otherwise

If f ∈ Σ1, note that by Assumption 2, every occurrence of f in G is in a
(unique) positive unit clase of the form f(a) = t. By the assumptions we made
on P according to the form of the constraints in G, we can assume w.l.o.g. that
fP (aP) is defined iff f(a) occurs in G.

We define fP on P0 as follows:

fP (a) :=

t if fP (aP) is defined (and t is the unique term
s.t. f(a) = t occurs in G)

cd if fP (aP) is not defined

generated by a subset of Σc – in the absence of entailed constraints of the form
a = a′ or a = c(t1, . . . , tn) we can actually safely assume that P ′

d is isomorphic to
the free algebra generated by Σc.

Reasoning about recursively defined functions and homomorphisms 17

(We use the fact that if fP (aP) is defined then there exists a unique clause in G
of the form f(a) = t. This is the term t we choose in the definition of fP .)

Assume that fP is defined on
⋃i

j=0 Pi. We extend fP to Pi+1 as follows:

fP (c(t1, . . . , tn)) := gc
f (fP (t1), . . . , fP (tn))

if RecΣ0 is exhaustive (if it is quasi-exhaustive, we have to define in the first
step all f(c), where c ∈ Σc ∪ (Σ1\Σr(f)). We now prove that all fP are well-
defined. To prove that it is well-defined on P0, assume that fP (aP) is defined. We
assumed that all occurrences of function symbols in Σ1 in G were in clauses of
the form f(a) = t, where t ∈ TΣ0(Σc), and f(a) occurs in a unique literal of this
form. Thus, the term t is uniquely determined (and also that fP (aP) is defined
and equal to tP). The fact that fP is well-defined on

⋃n

i=1 Pi is immediate.
It is easy to see that, due to the way it is defined, fP satisfies the axioms

in Recf . Note that if t ∈ TΣ0(Σc) and fP (tP) is defined then f(t) ∈ Ψ(G), so
t = a ∈ Σc, and by definition fP (t) = t′ such that t′P = fP (tP).

We show that P is also a model of G. We assumed that G consists of Σ-flat
ground unit Σ0∪Σ∪Σc-clauses of the form:

n
∧

i=1

(¬)fi(t
i
d)=ti ∧

m
∧

j=1

(¬)fj(t
j
d)=f ′

j(s
j
d) ∧

l
∧

k=1

tkd 6= sk
d ∧ Cd ∧ Cs,

where tkd, sk
d, td are Σ0 ∪ Σc-terms; Cd is a set of pure Σ0-constraints and Cs is

a set of (unit) Σs-clauses (if Σ2 6= ∅).

Since G is true in P , all negative Σ0∪Σc-clauses, as well as all pure Σs-formulae
in Cs of G are true in P and hence also in P . If f(t) = s is a positive clause
in G with s a Σs-term, then fP (tP) is defined and equal to sP , hence fP (t) =
fP (tP) = sP . Thus, f(t) = s is true also in P . Similarly for equalities f(t) = g(s),
where a(f) = a(g) = d → s, and for any negative clause of the form f(t) 6= s,
where a(f) = d → s. Assume now that f ∈ Σ1, and f(t) = t′ occurs in G. By
Assumption 2, the clause is of the form f(a) = t. Then fP (aP) = tP and this t
was used for defining fP (a) = t. In this case the clause is true in P . 6

In order to prove that similar results hold for extensions with guarded recursive
definitions, we need to check that if fP weakly satisfies Recg(f) then fP can be
constructed such that Recg(f) holds. We define fP on P0 as before; if f ∈ Σ2

and tk ∈
⋃

0≤j≤i Pi for k = 1, . . . , n we define:

fP (c(t1, . . . , tn)) :=

fP (cP (h(t1), . . . , h(tn))) if fP (cP (h(t1), . . . , h(tn))) is defined
gc

i (fP (t1), . . . , fP (tn)) if c ∈ Σr(f) and φi

P
(fP (t1), . . . , fP (tn))

cs otherwise

6 Note that also the truth of negative literals would be preserved in P : If f(t) 6= t′

occurs in G then fP (tP) 6= t′P . This means that fP (t) = t for some t such that
fP (tP) = tP . Then clearly t 6= t′. Thus, the truth of negative unit clauses of sort d

in G is preserved. However, by Assumption 2 no such occurrences exist.

18 V. Sofronie-Stokkermans

The only point to be proved is that if fP (cP (h(t1), . . . , h(tn))) is defined in P
then the two definitions above agree. This is obvious for P0. Assume that it
holds for all Pj , 0 ≤ j ≤ i. We prove it for Pi+1. Assume that c ∈ Σr(f)
and φi

P
(fP (t1), . . . , fP (tn)). Since the operations and relations in Σs are un-

changed, and by the induction hypothesis, fP (t1)=fP (h(ti)), we know that (in
Ps) φi

P (fP (h(t1)), . . . , fP (h(p1))) is true. Therefore, fP (cP (h(t1), . . . , h(tn))) =
gc

i P (fP (h(t1)), . . . , fP (h(tn))) = gc
i (fP (t1), . . . , fP (tn)).

If f ∈ Σ1 we define f(a) := t (the unique term such that f(a) = t occurs in
G, as previously) and if tk ∈

⋃

0≤j≤i Pi we define:

fP (c(t1, . . . , tn)) := gc
i (fP (t1), . . . , fP (tn)) if φi

P
(fP (t1), . . . , fP (tn)).

We want to prove that if fP (tP) is defined in P then h(fP (t)) = fP (tP). We pro-
ceed again by induction on the level of t. If t ∈ Σc∪(Σ0\Σr(f)) this is clear. As-
sume the property holds for all terms on the levels P0, . . . , Pi. Let t = c(t1, . . . , tn)
be on level Pi+1 such that fP (h(t)) is defined. Then fP (h(ti)) is defined for all
i = 1, . . . , n. Since Recf is quasi-exhaustive, in P φi0(h(t1), . . . , h(tn)) holds for
some i0, and fP (tP) = fP (cP (h(t1), . . . , h(tn))) = gi0

f (fP (h(t1)), . . . , fP (h(tn))).

Assume now that φi

P
(fP (t1), . . . , fP (tn)) is true in P . Since the truth of posi-

tive sentences is preserved under homomorphisms, φi
P (h(fP (t1)), . . . , h(fP (tn)))

is true, thus (using the induction hypothesis): φi
P (fP (h(t1)), . . . , fP (h(tn))) is

true in P . It follows that i = i0, so h(fP (t)) = fP (h(t)) also for t = c(t1, . . . , tn).
2

ELocΨ . Note that in the process of contructing the total model P from the
partial model P the support of sort s of the model did not change. This means
that all pure Σs formulae which were true in P remain true in P . As shown in
[14] this guarantee that the more general notion (ELocΨ) of locality holds, i.e.
we can allow the set G of clauses to contain arbitrary pure Σs-constraints, and
we also can allow arbitrary Σs-formulae φi as guards in the definition Rec

g
Σ2

.

4.5 ERec: locality results

The results in the previous section can be extended to recursive definitions of

the form ERec
[g]
f :

f(k, x) = kf (x)

f(c(x1, . . . , xn), x) =

gc,f
1 (f(x1, x), . . . , f(xn, x), x) if φ1(f(x1), . . . , f(xn))

. . .

gc,f
k (f(x1, x), . . . , f(xn, x), x) if φk(f(x1), . . . , f(xn))

where k, c ∈ Σr(f), a(k) = 0, a(c) = n, kf (x) are Σo(f)-terms with free variable

x, gc,f
i are functions expressible as Σo(f)-terms, and φi(x1, . . . , xn) are Σo(f)-

formulae with free variables x1, . . . , xn, s.t. φi ∧ φj |=To(f)
⊥ for i 6= j.

Definitions of type ERecf are similar, but with no guards in the definition of
f(c(x1, . . . , xn)). In what follows, ERecΣ =

⋃

f∈Σ ERecf and ERec
g
Σ =

⋃

f∈Σ ERec
g
f .

Reasoning about recursively defined functions and homomorphisms 19

Theorem 14 If Assumption 1 holds, then:

(1) AbsFreeΣ0 ∪ Ts ∪ ERecΣ2 satisfies the Ψ -locality conditions as an extension
of AbsFreeΣ0 ∪ Ts for all sets G of clauses of the form obtained after the
simplification described in Lemma 11.

(2) If ERecΣ1 is quasi-exhaustive, then AbsFreeΣ0 ∪ Ts ∪RecΣ1 ∪ RecΣ2 satisfies
the Ψ -locality conditions of an extension of AbsFreeΣ0 ∪ Ts for every set
G of unit clauses of the form obtained after the simplification described in
Lemma 11 which satisfy the conditions in Assumption 2;

where Ψ associates with every set T of ground terms the smallest set containing
T and such that if f(c(t1, . . . , tn), t) ∈ Ψ(T) and c ∈ Σr(f) then f(ti, t) ∈ Ψ(T)
for all i.

Similar results hold for extensions with ERec
g
Σ (under similar assumptions) pro-

vided the guards φi in the recursive definitions of functions in Σ1 are positive.

Proof : We analyze the axioms of type ERec, by only pointing out the changes
which need to be made. The process of constructing a total model P of AbsFreeΣ0∪

Ts∪ERec
[g]
Σ and G from a weak partial model P of AbsFreeΣ0 ∪Ts∪ERec

[g]
Σ [Ψ(G)]

and G is analogous to the one used in the proof of Theorem 13, and uses the
layer structure of TΣ0(Σc). For the sake of simplicity, below we only discuss the
axioms without guards ERecΣ .

Assume first that f ∈ Σ2. We first define it on P0 × TΣ0(Σc):

fP (a, t) :=

{

fP (aP , tP) if fP (aP , tP) is defined
cs if fP (aP) is not defined

Assume that fP is defined on
⋃i

j=0(Pi×TΣ0(Σc)). We extend it to Pi+1×TΣ0(Σc)
as follows:

fP (c(t1, . . . , tn), t) :=

fP (c(h(t1), . . . , h(tn)), h(t)) if fP (c(h(t1), . . . , h(tn)), h(t))
is defined

gc
f (fP (t1), . . . , fP (tn), t) if c ∈ Σr(f)

cs otherwise

If f ∈ Σ1 we define fP on P0 × TΣ0(Σc) by:

fP (a, s) :=

t if fP (aP , sP) is defined and t is the unique term s.t.
f(a, s) = t occurs in G (if such a term exists)

cd if fP (aP , sP) is not defined

Assume that fP is defined on
⋃i

j=0(Pi×TΣ0(Σc)). We extend fP to Pi+1×TΣ0(Σc)
as follows:

fP (c(t1, . . . , tn)) := gc
f (fP (t1), . . . , fP (tn))

if RecΣ1 is exhaustive (if it is quasi-exhaustive, we have to define in the first step
all f(c, t), where c ∈ Σc ∪ (Σ1\Σr(f))). It can be shown again that all fP are
well-defined and that P is the total model of G and AbsFreeΣ0 ∪ Ts ∪ ERecΣ 2

20 V. Sofronie-Stokkermans

4.6 Example

We illustrate the hierarchical reasoning method for checking satisfiability of sets
of ground clauses in extensions of AbsFreeΣ0 with recursively defined functions
on the following example.

Example 3 Let Σ0 = {c0, d0, c}, where c is a binary constructor and c0, d0

are nullary. Consider the recursive definition Rechasc0
of the function hasc0

in
Example 2. We want to show that AbsFreeΣ0 ∪ Bool ∪ Rechasc0

|= G1 where

G1 = ∀x(hasc0
(x)=t ∧ z1=c(y1, c(x1, x)) ∧ z1=c(y2, y3) → hasc0

(y3)=t)

Step 1: Reduction to a satisfiability problem. The problem of checking
the validity of G1 can alternatively expressed as the problem of checking the
satisfiability w.r.t. AbsFreeΣ0 ∪ Bool ∪ Rechasc0

of

G = ¬G1 = (hasc0
(a)=t ∧ c1=c(b1, c(a1, a)) ∧ c1=c(b2, b3) ∧ hasc0

(b3)=f),

where Σc = {a, a1, b1, b2, b3, c1} is a set of new constants obtained by skolemizing
the existentially quantified variables in ¬G1.

Step 2: Simplification. We transform G as explained in Lemma 11 by inferring
all equalities entailed by the equalities between constructor terms in G:

– From c1 = c(b1, c(a1, a)) ∧ c1 = c(b2, b3) we infer: b1 = b2 ∧ c(a1, a) = b3;
– We replace everywhere b2 with b1 and b3 with c(a1, a), and in what follows

ignore the constants b2, b3.

We obtain the equisatisfiable set of ground clauses:

G′ = (hasc0
(a)=t ∧ hasc0

(c(a1, a))=f).

The set of unit clauses G′ has the properties required for establishing the locality
result in Theorem 13.

Step 3: Locality. By the locality property we established in Theorem 13, the
following are equivalent:

(i) AbsFreeΣ0 ∪ Bool ∪ Rechasc0
) ∪ G′ |=⊥

(ii) AbsFreeΣ0 ∪ Bool) ∪ Rechasc0
[Ψ(G′)] ∪ G′ |=⊥,

where Ψ(G′) = {hasc0(c(a1, a)), hasc0
(a1), hasc0

(a)}.

Step 4: Hierarchical reduction. After purification we obtain:

Defbool G0 ∧ Rechasc0
[Ψ(G)]0

hasc0
(a1)=h1 ∧ hasc0

(a)= h2 ∧ hasc0
(c(a1, a))= h3 h2 = t ∧ h3 = f ∧ h3 = h1 ⊔ h2

We immediately obtain a contradiction in Bool, without needing to consider Con0

or a further reduction to a satisfiability test w.r.t. AbsFreeΣ0 .

Reasoning about recursively defined functions and homomorphisms 21

4.7 Combining recursive definitions with boundedness.

We analyze the locality of combinations of Rec
[g]
Σ with boundedness axioms, of

the type:

Bounded(f) ∀x(t1 ≤ f(x) ≤ t2)

Theorem 15 Assume that a(f) = d → s, t1, t2 are Σs-terms with Ts |= t1 ≤ t2,

and all functions gc,f
i used in the definition of f have the property:

∀x1, . . . , xn(

n
∧

i=1

t1 ≤ xi ≤ t2 → t1 ≤ gc,f
i (x1, . . . , xn) ≤ t2), where n = a(c).

If Assumption 1 holds then AbsFreeΣ0∪Ts∪Rec
[g]
f ∪Bounded is a Ψ -local extension

of AbsFreeΣ0 ∪ Ts, where Ψ is defined as in Theorem 13.

Proof : Analyzing the proof of Theorem 13, we note that with small changes
in the construction of the total model P we can guarantee that the recursively
defined functions satisfy axiom Bounded, assuming that the partial functions
satisfied the respective axioms on their domain of definition. For the sake of
simplicity in what follows we will analyze definitions using RecΣ. We only need
to consider functions in Σ2.

The proof proceeds as the proof of Theorem 13, with the difference that in
the definitions we choose the default definitions cs ∈ Ps such that they satisfy
the constraint t1 ≤ cs ≤ t2. Such a value exists because Ts |= t1 ≤ t2 and ≤ is
reflexive. The definition on P0 is:

fP (a) :=

{

fP (aP) if fP (aP) is defined
cs if fP (aP) is not defined

Obviously, with this definition t1 ≤ fP (a) ≤ t2 for all a ∈ A. Assume that fP is

defined on
⋃i

j=0 Pi. We extend it to Pi+1 as follows:

fP (c(t1, . . . , tn)) :=

fP (c(h(t1), . . . , h(tn))) if fP (c(h(t1), . . . , h(tn))) is defined
gc

f (fP (t1), . . . , fP (tn)) if c ∈ Σr(f)

cs otherwise

Assume that the boundedness axioms hold on P0, . . . , Pi. They always hold
whenever fP (c(h(t1), . . . , h(tn))) is defined. Assume c ∈ Σr(f). In this case
fP (c(t1, . . . , tn)) = gc

f(fP (t1), . . . , fP (tn)). Since t1 ≤ fP (t1) ≤ t2 and gc
f satisfies

the condition

∀x

n
∧

i=1

t1 ≤ xi ≤ t2 → t1 ≤ gc
f (x1, . . . , xn) ≤ t2,

it follows that t1 ≤ gc
f (fP (t1), . . . , fP (tn)) ≤ t2. If fP (c(h(t1), . . . , h(tn))) is

undefined and c 6∈ Σr(f) then fP (c(t1, . . . , tn)) = cs and t1 ≤ cs ≤ t2.

22 V. Sofronie-Stokkermans

Similar arguments can be used for definitions of type Rec
g
f if we require that gc

i

satisfy the condition:

∀x

(

φi(x1, . . . , xn) ∧
n
∧

i=1

t1 ≤ xi ≤ t2

)

→ t1 ≤ gc
i (x1, . . . , xn) ≤ t2.

We show that the induction step above can still be proved. Assume the bound-
edness axioms hold on P0, . . . , Pi. They also hold if fP (cP (h(t1), . . . , h(tn))) is
defined. Assume c ∈ Σr(f). If φP (fP (t1), . . . , fP (tn)) is true then, by definition,
fP (c(t1, . . . , tn)) = gc

i (fP (t1), . . . , fP (tn)). Since φPs
(fP (t1), . . . , fP (tn)) is true

and t1 ≤ fP (ti) ≤ t2 it follows that t1 ≤ gc
i (fP (t1), . . . , fP (tn)) ≤ t2.

Similar arguments also hold for definitions of type ERec
[g]
f . 2

Example 4 (1) We want to check whether AbsFreeΣ0 ∪ Z ∪ Recdepth entails

G1 = ∀x1, x2, x3, x4 (depth(x1) ≤ depth(x2) ∧ depth(x4) ≤ depth(x3) ∧ x4 = c(x2)

→ depth(d(x1, e(x2, c
′))) ≤ depth(e(x4, x3))),

where Σ0 contains the constructors c′ (nullary), c (unary), and d, e (binary).

Step 1: Reduction to a satisfiability test. This problem can be reduced to
testing the satisfiability of the following conjunction G of ground clauses contain-
ing the additional constants Σc = {a1, a2, a3, a4} obtained from skolemization.

G = ¬G1 = (depth(a1) ≤ depth(a2) ∧ depth(a4) ≤ depth(a3) ∧ a4 = c(a2)

∧depth(d(a1, e(a2, c
′))) 6≤ depth(e(a4, a3))).

Steps 2, 3: Simplification, flattening, locality. By Ψ -locality, this can be
reduced to testing the satisfiability of the following conjunction of ground clauses
containing the additional constants

Σ′
c = {a1, a2, a3, a4, d1, d2, d3, d4, e1, e2, e3, g1, g2, g3, c

′
2, d

′
2}

(below we present the flattened and purified form), where G = ¬G1:

Defd Defnum G0d G0num Recdepth[Ψ(G)]0
d(a1, e2) = e1 depth(ai) = di(i = 1 − 4) a4 = c′2 d1 ≤ d2 g1 = 1 + max{d1, g2}
e(a2, c

′) = e2 depth(ei) = gi(i = 1, 2, 3) d4 ≤ d3 g2 = 1 + max{d2, 1}
e(a4, a3) = e3 depth(c′2) = d′2 g1 6≤ g3 g3 = 1 + max{d4, d3}
c(a2) = c′2 d′2 = 1 + d2

Let Con0 consist of all the instances of congruence axioms for c, d, e and depth.
G0∪Recdepth[Ψ(G)]0∪Con0 is satisfiable in AbsFreeΣ0∪Z. A satisfying assignment
is described below:

• d1 = d2 = 0;
• d′2 = d4 = d3 = 1 (d′2 and d4 need to be equal due to Con0 because c′2 = a4;

and d4 ≤ d3).

Reasoning about recursively defined functions and homomorphisms 23

• g2 = 1 + max{0, 1} = 2,
• g1 = 1 + max{d1, g2} = 3 and
• g3 = 1 + max{d4, d3} = 1 + d4 = 2.

Thus, AbsFreeΣ0 ∪ Z ∪ Recdepth 6|= G1.

(2) We now show that AbsFreeΣ0 ∪ Z ∪ Recdepth ∪ Bounded(depth) |= G1, where

Bounded(depth) ∀x(depth(x) ≥ 1).

By Theorem 15, we only need to consider the instances of Bounded(depth) con-
taining terms in Defnum, i.e. the constraints:

• di ≥ 1 for i ∈ {1, . . . , 4};
• gi ≥ 1 for i ∈ {1, . . . , 3}, and
• d′2 ≥ 1.

Con0 can be used to derive d4 = d′2. We obtain:

• g1 = 1+max{d1, g2} = 1+max{d1, 1+max{d2, 1}} = 1+max{d1, 1+d2} = 2+d2

• g3 = 1+max{d4, d3} = 1+d3 ≥ 1 + d4 = 1 + d′2 = 2 + d2.

which together with g1 6≤ g3 yields a contradiction.

4.8 Restricting to term-generated algebras

The apparent paradox in the first part of Example 4 is due to the fact that
the axiomatization of AbsFreeΣ0 makes it possible to consider models in which
the constants in Σc are not interpreted as ground Σ0-terms. We would like to
consider only models for which the support Ad of sort d is the set TΣ0(∅) of
ground Σ0-terms (we will refer to them as term generated models)7. We will
assume that the axiomatization of the recursive functions contains a family of
constraints {C(a) | a ∈ Σc} expressed in first order logic on the values the
function needs to take on any element in Σc with the property:

(TG) C(a) iff there exists t ∈ TΣ0(∅) such that for all f ∈ Σ2, f(a) = f(t).

Example 5 Some examples are presented below:

(1) Assume Σ2 = {size} (the size function over absolutely free algebras with
set of constructors {ci | 1 ≤ i ≤ n} with arities a(ci)). The following size
constraints have the desired property (cf. also [19]):

C(a) = ∃x1, . . . , xn(size(a) = (

n
∑

i=1

a(ci) ∗ xi) + 1).

7 For expressing this, we can use axiom IsC (cf. Theorem 10) or the axiom used in [19]:
(IsConstr) ∀x

W

c∈Σ0
Isc(x) where Isc(x) = ∃x1, . . . , xn : x = c(x1, . . . , xn).

24 V. Sofronie-Stokkermans

To prove this, note that for every term t, size(t) = (
∑n

i=1 a(ci)∗n(ci, t)+1),
where n(ci, t) is the number of times ci occurs in t. Thus, if there exists t
such that size(t) = size(a), then C(a) is true. Conversely, if C(a) is true
size(a) = size(t) for every term with xi occurrences of the constructor ci for
i = 1, ..., n.

(2) Consider the depth function (with output sort int) over absolutely free alge-
bras with set of constructors {ci | 1 ≤ i ≤ n}. Then C(a) := depth(a) ≥ 1.

In what follows we will assume that Σ1 = ∅.

Theorem 16 Assume that for every a ∈ Σc, a set C(a) of constraints satisfying

condition (TG) exists. Then AbsFreeΣ0 ∪ Ts ∪ Rec
[g]
Σ2

∪
⋃

a∈Σc
C(a) satisfies the

conditions of a Ψ -local extension of AbsFreec ∪ Ts for all sets G of ground unit
clauses satisfying the conditions mentioned in Theorem 13, where Ψ is defined
as in Theorem 13.

Note: As in Theorem 13, we can prove, in fact, ELocΨ -locality. Hence, the
possibility that C(a) may be a first-order formula of sort s is not a problem.

Proof : Let P be a partial model of AbsFreeΣ0 ∪Ts ∪ (RecΣ2 ∪
⋃

a∈Σc
C(a))[Ψ(G)]

and of a set G of clauses, with the property that all terms in Ψ(G) are defined,
i.e. that if fP (cP (p1, . . . , pn)) is defined and c ∈ Σr(f) then fP (p1), . . . , fP (pn)
are all defined in P . We construct a total model P of AbsFreeΣ0 ∪ Ts ∪ RecΣ2 ∪
⋃

a∈Σc
C(a) and of G as explained in the proof of Theorem 13. We only need to

make sure that the new model satisfies
⋃

a∈Σc
C(a). The constraints obviously

hold for all constants in Σc which occur in G. For all others this can be achieved
by choosing, in the definition of every fP , fP (a) := f(cd) for every f ∈ Σ2,
where cd is an arbitrary but fixed nullary constructor. 2

In order to guarantee that we test satisfiability w.r.t. term generated models, in
general we have to add, in addition to the constraints C(a), for every function
symbol f ∈ Σ2, additional counting constraints describing, for every x ∈ As,
the maximal number of distinct terms t in TΣ0(∅) with f(t) = x. If Σ0 contains
infinitely many nullary constructors the number of distinct terms t in TΣ0(∅)
with f(t) = x is infinite, so no counting constraints need to be imposed.

Counting constraints are important if Σ0 contains only finitely many nullary
constructors and if the set G of ground unit clauses we consider contains negative
(unit) Σ0 ∪ Σc-clauses. For the sake of simplicity, we here only consider sets G
of unit ground clauses which contain only negative (unit) clauses of sort s.

Lemma 17 Assume that Σ1=∅ and for every a∈Σc there exists a set C(a) of
constraints such that condition (TG) holds. The following are equivalent for any
set G of unit Σ0∪Σ2∪Σc-clauses in which all negative literals have all sort s.

(1) There exists a term-generated model A = (TΣ0(∅), As, {fA}f∈Σ2, {aA}a∈Σc
)

of AbsFreeΣ0 ∪ Ts ∪ Rec
[g]
Σ2

and G.
(2) There exists a model F = (TΣ0(Σc), As, {fF}f∈Σ2, {aF }a∈Σc

) of AbsFreeΣ0∪

Ts ∪ Rec
[g]
Σ2

∪
⋃

a∈Σc
C(a) and G, where for every a ∈ Σc, aF = a.

Reasoning about recursively defined functions and homomorphisms 25

(3) There exists a model A = (Ad, As, {fA}f∈Σ2, {aA}a∈Σc
) of AbsFreeΣ0 ∪ Ts ∪

Rec
[g]
Σ2

∪
⋃

a∈Σc
C(a) and G.

Proof : (1) ⇒ (2): Let A = (TΣ0(∅), As, {fA}f∈Σ2, {aA}a∈Σc
) be a model of

AbsFreeΣ0 ∪ Ts ∪ RecΣ1 as in (1). We define the model F as follows. Let h :
Σc → TΣ0(∅) be defined by h(a) = ta, where ta ∈ TΣ0(∅) is the term such that
aA = ta. Let h be the unique extension of h to a Σ0-homomorphism from TΣ0(Σc)
to TΣ0(∅). It can be proved by structural induction that for every t ∈ TΣ0(Σc),
h(t) = tA (where tA is the evaluation of t in A, given the interpretation of the
constants in Σc in A). We define, for every f ∈ Σ2, and t ∈ TΣ0(Σc):

fF (t) = fA(h(t)) = f(t)A.

It is easy to see that fF satisfies RecΣ2 :

fF (c(t1, . . . , tn)) = fA(h(c(t1, . . . , tn))) = fA(cA(h(t1), . . . , h(tn)))

= gc
f (fA(h(t1)), . . . , fA(h(tn))) = gc

f (fF (t1), . . . , fF (tn))).

Note that if f ∈ Σ2 and t ∈ TΣ0(∅) then fF (t) = f(t)A. For every a ∈ Σc,
fF (a) = fA(ta) = fF (ta). It follows that F satisfies condition C(a) for every
a ∈ Σc. It remains to prove that F is a model of G. We analyze the unit
clauses in G. The pure Σ0-clauses and the pure Σs-clauses are obviously true.
If f(td) = ts occurs in G, with td being a Σ0 ∪ Σc-term, and ts a term of sort
s, then f(td)F = fF (td) = fA(h(td)) = f(td)A = tsA = tsF . Similar arguments
can be used for clauses of the form f(td) = g(sd) and for negations thereof.

(2) ⇒ (1): Let F = (TΣ0(Σc), As, {fF }f∈Σ2, {aF}a∈Σc
) be a model of AbsFreeΣ0∪

Ts ∪ RecΣ2 ∪
⋃

a∈Σc
C(a) as in (2). Then for every a ∈ Σc and every f ∈ Σ2,

fF (a) = fF (ta). It can be proved by structural induction that in this case for
every t ∈ TΣ0(Σc), fF (t) = fF (h(t)), where (as before) h : TΣ0(Σc) → TΣ0(∅)
is the unique homomorphism with the property that h(a) = ta. It is easy to see
that for every term ts of sort s, h(t) = tF .

Let A = (TΣ0(∅), As, {fA}f∈Σ2, {aA}a∈Σc
), where for every a ∈ Σc, aA = ta,

where the existence of the term ta is guaranteed by C(a), and fA is the restriction
of fF to TΣ0(∅). It can be seen that if t ∈ TΣc

(Σc) then fA(tdA) = fA(h(t)) =
fF (h(t)), where h is defined as above.

It is easy to see that then fA satisfies RecΣ2 . We prove that G is true in A.
The pure Σ0-clauses and the Σs-clauses are obviously true. If f(td) = ts occurs
in G, where td is a Σ0 ∪ Σc-term, and ts is a term of sort s then f(td)A =
fA(tdA) = fA(h(td)) = fF (h(td)) = fF (td) = tsF = h(ts) = (ts)A. Similar
arguments can be used for clauses of the form f(td) = g(sd) and for negations
thereof.

(2) ⇒ (3) is obvious. We prove (3) ⇒ (2). Let A = (Ad, As, {fA}f∈Σ2, {aA}a∈Σc
)

be a model of AbsFreeΣ0 ∪ Ts ∪ RecΣ2 ∪
⋃

a∈Σc
C(a). For every a ∈ Σc let ta ∈

TΣ0(∅) be the term with the property that fA(aA) = fA((ta)A) for all f ∈ Σ2

(where the existence of the term ta is guaranteed by C(a)). We can define a map

26 V. Sofronie-Stokkermans

h : TΣ0(Σc) → TΣc
(∅) as before, and let i : TΣc

(∅) → Ad be the usual evaluation
map. We define F as follows: The support of sort s of F is As. For every f ∈ Σ2

let fF (t) := fA(i(h(t))). As before, we can prove that F is a model of RecΣ2 and
of
⋃

a∈Σc
C(a), and – due to the form of G – also a model of G.

The proof remains the same if we replace RecΣ2 with Rec
g
Σ2

. 2

From Theorem 16 and Lemma 17 it follows that for every set G of ground unit
clauses with the form in the statement of Theorem 13 in which all negative
(unit) clauses consist of literals of sort s, testing whether there exists a term-

generated model of AbsFreeΣ0 ∪ Ts ∪ Rec
[g]
Σ2

and G can be done by computing

Rec
[g]
Σ2

[Ψ(G)] and then reducing the problem hierarchically to a satisfiability test
w.r.t. AbsFreeΣ0 ∪ Ts.

Example 6 Example 4 provides an example of a ground clause G for which:

• AbsFreeΣ0 ∪ Z ∪ Recdepth 6|= G, and
• AbsFreeΣ0 ∪ Z ∪ Recdepth ∧ Bounded(depth) |= G.

Example 4(2) shows that AbsFreeΣ0∪Z∪Recdepth∪
⋃

a∈Const(G) C(a)|=G. There-
fore, by Lemma 17, G is true in every term-generated model of AbsFreeΣ0∪Z∪Recdepth.

Similar results can be obtained if we relax the restriction on occurrences of
negative clauses in G. If the set of nullary constructors in Σ0 is infinite the
extension is easy; otherwise we need to use equality completion and add counting
constraints as done e.g. in [19] (assuming that there exist counting constraints
expressible in first-order logic for the recursive definitions we consider). A general
study of such aspects (including an analysis of possibilities of automatically
finding counting constraints) is planned for future work.

5 More general data structures

We will now extend the results above to more general data structures. Consider a
signature consisting of a set Σ0 of constructors (including a set C of constants).
Let E be an additional set of identities between Σ0-terms.

Example 7 Let Σ0 = {c, c0}, where c is a binary constructor and c0 is a con-
stant. We can impose that E includes one or more of the following equations:

(A) c(c(x, y), z) = c(x, c(y, z)) (associativity)
(C) c(x, y) = c(y, x) (commutativity)
(I) c(x, x) = x (idempotence)
(N) c(x, x) = c0 (nilpotence)

We consider many-sorted extensions of the theory defined by E with functions
in Σ = Σ1∪Σ2, and sorts S = {d, s}, where the functions in Σ1 have sort d → d,
those in Σ2 have sort d → s, and the functions in Σ satisfy additional axioms

Reasoning about recursively defined functions and homomorphisms 27

of the form RecΣ and ERecΣ as defined in Section 4.8 We therefore consider
two-sorted theories of the form E ∪Ts ∪ (E)RecΣ , where Ts is a theory of sort s.
We make the following assumptions:

Assumption 3: We assume that:
(a) The equations in E only contain constructors c with c ∈

⋂

f∈Σ Σr(f).
(b) For every ∀x t(x) = s(x) ∈ E and every f ∈ Σ1 ∪ Σ2 let t′(x) (resp.

s′(x)) be the Σo(f)-term obtained by replacing every constructor c ∈ Σ0

with the term-generated function9 gc,f . Then for every f ∈ Σ1, E |=
∀x t′(x) = s′(x), and for every f ∈ Σ2, Ts |= ∀x t′(x) = s′(x).

Example 8 Consider the extension of the theory of one binary associative and/or
commutative function c with the size function defined as in Example 1(1). Then

size(c(x, y)) = gc
size(size(x), size(y)), where gc

size(x, y) = 1 + x + y.

Note that gc
size is associative and commutative, so Assumption 3 holds.

gc
size(g

c
size(x, y), z) = 1+(1+x+y)+z = 1+x+(1+y+z) = gc

size(x, gc
size(y, z));

gc
size(x, y) = 1+x+y = 1+y+x = gc

size(y, x).

Example 9 Assume that Σ0 only contains the binary constructor c satisfying
a set E of axioms containing some of the axioms {(A), (C), (I)} in Example 7.
Let enck be a new function symbol (modeling encoding with key k) satisfying

Recenc enck(c(x, y)) = c(enck(x), enck(y)).

It is easy to see that gc
enc = c and hence Assumption 3 is satisfied.

Lemma 18 Under Assumption 3 the following holds. For every f ∈ Σ and
for all ground terms t, s of sort d, containing only constructors in Σr(f) let
t′(x) (resp. s′(x)) be the Σo(f)-term obtained by replacing every constructor c ∈
Σ0 with the term-generated function gc

f . Under these conditions and with this
notations, if t ≡E s then if f ∈ Σ1 then E |= t′ = s′, and if f ∈ Σ2 then
Ts |= t′ = s′.

Proof : We proceed by induction on the number of steps in the proof that t ≡E s.
If the two terms are equal the property is obviously true. Assume now that one
step is needed in the proof. We assume for the sake of simplicity that f ∈ Σ1.
The other case is similar. We distinguish two cases:

Case 1: There exists a substitution σ and ∀x u(x) = v(x) ∈ E such that t =
σ(u) and s = σ(v). From Assumption 3(b), we know that E |= ∀y (u′(y) = v′(y))

8 We restrict to unguarded recursive definitions of type RecΣ and ERecΣ to simplify
the presentation. Similar results can be obtained for definitions of the type Rec

g
Σ

and ERec
g
Σ , with minor changes in Assumption 3.

9 gc,f is the function (expressible as a Σo(f)-term) from the definition
f(c(x1, . . . , xn)) = gc,f (f(x1), . . . , f(xn)) in Recf .

28 V. Sofronie-Stokkermans

with the primed versions of terms defined as in Assumption 3(b). In particular,
(again with the notations in Assumption 3(b)),

E |= u′((σ(x1))
′, . . . , (σ(xn))′) = v′((σ(x1))

′, . . . , (σ(xn))′),

so E |= t′ = s′.

Case 2: Assume that t = C[t1] and s = C[s1], where C is a context and
t1 = s1 ∈ E or t1 = s1 is an instance of an identity in E. Then by Case
1, E |= t′1 = s′1. Since s, t contain only constructors in Σr(f) and possibly
constants, E |= t′ = (C[t1])

′ = C′[t′1] = C′[s′1] = (C[s1])
′ = s′.

The arguments can now easily be extended to encompass deductions with any
number of steps. 2

Lemma 19 Under Assumption 3 the following holds. For every f ∈ Σ and for
all ground terms t, s of sort d, containing only constructors in Σr(f) and possibly
constants in Σ0\Σr(f), let t′ and s′ be defined as in Lemma 18 with the difference
that every constant c not in Σr(f) is replaced with a (new) variable xc. Under
these assumptions and with these notations, if f ∈ Σ1 then E |= ∀xt′(x) = s′(x),
and if f ∈ Σ2 then Ts |= ∀xt′(x) = s′(x).

Proof : We follow the arguments of Lemma 18, and proceed by induction on
the number of steps in the proof that t ≡E s. If the two terms are equal the
property is obviously true. Assume now that one step is needed in the proof.
We assume for the sake of simplicity that f ∈ Σ1. The other case is similar.
As before we distinguish two cases. Since constants in Σ0\Σr(f) can only be
introduced by applying substitutions to equations in E, we will only show how
Case 1 of Lemma 18 can be adapted (the other cases and analogous).

Case 1: There exists a (ground) substitution σ and ∀x u(x) = v(x) ∈ E such
that t = σ(u) and s = σ(v). Let i : Σ0\Σr(f) → X be an injective map, and
let σ′ : TΣr(f)(Σ0\Σr(f)) → TΣr(f)(X) be the unique homomorphism which
extends i. 10 From Assumption 3(b), we know that E |= ∀y (u′(y) = v′(y)). It
follows therefore that E |= ∀x (u′(σ”(y)(x) = v′(σ”(y)(x)).
Case 2, concerning applying rules of E in a context and the case of several steps
can be proved as in Lemma 18. 2

5.1 The problem

In what follows we assume that Assumption 3 holds, and that RecΣ1 is exhaus-
tive. Note that in the presence of axioms such as associativity, the universal
(Horn) theory of E itself may be undecidable. For the sake of simplicity, we here
only consider a very simple class of proof tasks, namely the problem of checking
whether

E ∪ [E]Rec[g]
Σ1

∪ [E]Rec[g]
Σ2

|= G1,

10 σ” = σ′ ◦σ coincides with σ′ except for the fact that in σ′ all constants in Σ0\Σr(f)
are replaced with variables.

Reasoning about recursively defined functions and homomorphisms 29

where G1 is a ground Σ0 ∪ Σ2-clause of the form

n
∧

i=1

fi(t
d
i) = tsi ∧

m
∧

j=1

fj(t
d
j) = f ′

j(t
′d
j) → f(td) = ts (1)

where fi, f
′
i , f are functions in Σ2 (with output sort s different from d), tdk, t′dk , td

are ground Σ0-terms, and tsk, t′sk , ts are Σs-terms.

Remark. Let G1 be a clause of type 1 and let G = ¬G1. If f ∈ Σ2 and Recf is
quasi-exhaustive G is equisatisfiable with a set of (unit) clauses in which every
occurrence of f is in a term of the form f(c), with c ∈ Σ0\Σr(f).

Theorem 20 Assume that RecΣ1 is exhaustive, RecΣ2 is quasi-exhaustive and
Assumption 3 holds. The following are equivalent for any set G of Σ0∪Σ-clauses
of form (1):

(1) E ∪ RecΣ1 ∪ Ts ∪ RecΣ2 |= G.
(2) G is true in all models A = (Ad, As, {fA}f∈Σ) of E ∪ RecΣ1 ∪ Ts ∪ RecΣ2 .
(3) G is true in all models F = (TΣ0(∅)/≡E, As, {fA}f∈Σ) of E∪Ts∪RecΣ1∪RecΣ2 .
(4) G is true in all weak partial models F = (TΣ0(∅)/≡E, As, {fA}f∈Σ) of

E∪Ts∪(RecΣ1∪RecΣ1)[Ψ(G)] in which all terms in Ψ(G) are defined.

Similar results can also be obtained for definitions of type Rec
g
Σ or ERec

[g]
Σ .

Proof : (1) and (2) are equivalent by definition. (2) ⇒ (3) and (4) ⇒ (3) are
obviously true. We prove that (3) implies (2) and that (3) implies (4).

(3)⇒ (2). Assume that there exists a model A = (Ad, As, {fA}f∈Σ) of E ∪
RecΣ∪Ts which is not a model of G (i.e. it satisfies ¬G). Let A = (A0, As, {fA0}f∈Σ),
where A0 is the Σ0-substructure of Ad generated by the empty set, and for every
f ∈ Σ, fA is the reduct of fA to A0. The functions are well-defined:

– If f ∈ Σ1 then for every t ∈ A0, fA(t) ∈ A0 because RecΣ1 is exhaustive.
– If f ∈ Σ2, then there are no problems if we define fA0(t) := fA(t).

Since A0 is a subalgebra of A which contains all the terms in G, and the truth
of universally quantified formulae is preserved under subalgebras, it follows that
A0 is a model of E∪Ts∪RecΣ1∪RecΣ2 and of ¬G. Let h : TΣ(∅)/≡E → A0 be
the canonical Σ-homomorphism; h is obviously onto. We now define a model
F = (TΣ(∅)/≡E, As, {fA}f∈Σ1∪Σ2) of E∪Ts∪RecΣ1∪RecΣ2 as follows: If f ∈
Σ1 we define f(t) as required by the rules in RecΣ1 , which we assumed to be
exhaustive. If f ∈ Σ2, we define fF ([t]) = fA(h([t])). It is easy to check that
F with the operations defined this way is a model of E∪Ts∪RecΣ1∪RecΣ2 . We
show it is a model of ¬G. From the form of G, we know that no f ∈ Σ1 occurs.
From the definition of fF is follows immediately that the truth of all equalities
(disequalities) in F coincides with the truth in A.

(3) ⇒ (4) Assume that there exists a weak partial model P of ¬G and of
E∪Ts∪(RecΣ1∪RecΣ1)[Ψ(G)], with totally defined Σ0 ∪ Σs-functions and par-
tial Σ1 ∪ Σ2-functions, in which all terms in Ψ(G) are defined. Assume P =

30 V. Sofronie-Stokkermans

(TΣ(∅)/≡E, As, {fA}f∈Σ1). We construct a total model P of E∪Ts∪RecΣ1∪RecΣ2

and ¬G. The model is constructed level-wise on the canonical terms in TΣ(∅) =
⋃

i≥0 Pi (where P0 = ∅ and Pi+1 = {c(t1, . . . , tn) | c ∈ Σ0 and ti ∈
⋃

0≤j≤i Pj}),
as in the case of free constructors. If f ∈ Σ1 ∪ Σ2, and c ∈ Σr(f), we define:

fP ([c(t1, . . . , tn)]) = gc
f (fP ([t1]), . . . , fP ([tn])).

If d 6∈ Σr(f) (and hence f ∈ Σ2, and d is a constant constructor) then we define:

fP ([d]) =

{

fP ([d]) if fP ([d]) defined
cs otherwise,

where cs is an arbitrary (but fixed) element of the support of sort s of P .
We first prove that the functions are well-defined. Let t, s ∈ TΣ0(∅) be

such that t = c(t1, . . . , tn), s = d(s1, . . . , sm) and t ≡E s, i.e. [c(t1, . . . , tn)] =
[d(s1, . . . , sm)]. If f ∈ Σ and t, s contain only symbols in Σr(f) then by Lemma 18
we know that To(f) |= t′ = s′, where t′(x) (resp. s′(x)) are the Σo(f)-term ob-
tained by replacing every constructor c ∈ Σ0 with the term-generated function
gc

f , and Td = E. For f ∈ Σ1 we have:

fP ([t]) = fP ([c(t1, . . . , tn)]) = [t′]

fP ([s]) = fP ([d(s1, . . . , sm)]) = [s′]

Similar for f ∈ Σ2. We now analyze the situation when f ∈ Σ2 and t ≡E s
and t, s may contain constants in Σ0\Σr(f). By Lemma 19, in this case To(f) |=
∀xt′(x) = s′(x), where t′ and s′ are defined as before, with the difference that
every constant c not in Σr(f) is replaced with a (new) variable xc. Then

fP ([t]) = fP ([c(t1, . . . , tn)]) = t′(f(c1), . . . , f(cn))

fP ([s]) = fP ([d(s1, . . . , sm)]) = s′(f(c1), . . . , f(cn))

where c1, . . . , cn are the only constants in Σ0\Σr(f) occurring in s, t. We know
that Ts |= ∀x(t′(x) = s′(x)), hence in particular

Ts |= t′(f(c1), . . . , f(cn)) = s′(f(c1), . . . , f(cn)).

This shows that for every f ∈ Σ1 ∪ Σ2, fP is well-defined. The fact that the
axioms in RecΣ are satisfied is clear, by the way the functions are defined. 2

Note: We can impose boundedness conditions on the recursively defined func-
tions without losing locality (as for absolutely free constructors). 11

11 We can also consider axioms which link the values of functions f2 ∈ Σ2 and f1 ∈ Σ1

on the constants, such as e.g. “f2(f1(c))=ts” if we consider clauses G in which if
f1(c)=t occurs then t=c′, where c′ is a constant constructor not in Σr(f2). In the
case of Σ1-functions defined by ERec we can consider additional axioms of the form:
φ(f2(x))→f2(f1(c, x))=t′s, where t′s is a ground term of sort s either containing f2

(and of the form f2(c
′)) or a pure Σs-term.

Reasoning about recursively defined functions and homomorphisms 31

If RecΣ1 is exhaustive, the results can be extended to the more general prob-
lem of checking the satisfiability of sets of clauses of the form:

l
∧

k=1

gk(ck) = tdk ∧
n
∧

i=1

fi(t
d
i) = tsi ∧

m
∧

j=1

fj(t
d
j) = f ′

j(t
′d
j) → f(td) = ts

where gk ∈ Σ1, ck ∈ Σ0\Σr(gk), fi, f
′
i , f are functions in Σ2 (with output sort

s different from d), tdk, t′dk , td are ground Σ0-terms, and tsk, t′sk , ts are Σs-terms.

6 An example inspired from cryptography

In this section we illustrate the ideas on an example inspired by the treatment of
a Dolev-Yao security protocol considered in [4] (cf. also Examples 7 and 9). Let
Σ0 = {c}∪C, where c is a binary constructor, and let enc be a binary function.
We analyze the following situations:

(1) c satisfies a set E of axioms and enc is a free binary function. By Theorem 9,
the extension of E with the free function enc is a local extension of E.

(2) c is an absolutely free constructor, and enc satisfies the recursive definition:

(ERecenc) ∀x, y, z enc(c(x, y), z) = c(enc(x, z), enc(y, z)).

By Theorem 13, the extension AbsFreec⊆AbsFreec∪ERecenc satisfies the Ψ -
locality condition for all clauses satisfying Assumption 2 (with Ψ as in The-
orem 13).

(3) If c is associative (resp. commutative) and enc satisfies axiom ERecenc then
Assumption 3 is satisfied, so, by Theorem 20, E ∪ ERecenc satisfies the con-
dition of a Ψ -local extension of E for all clauses of type (1).

Formalizing the intruder deduction problem. We now formalize the ver-
sion of the deduction system of the Dolev and Yao protocol given in [4]. Let E
be the set of identities which specify the properties of the constructors in Σ0.
We use the following chain of successive theory extensions:

E ⊆ E ∪ ERecenc ⊆ E ∪ ERecenc ∪ Bool ∪ Rec
g
known,

where known has sort d → bool and Rec
g
known consists of the following axioms:

∀x, y known(c(x, y)) = known(x) ⊓ known(y)
∀x, y known(y) = t → known(enc(x, y)) = known(x)

Intruder deduction problem. The general statement of the intruder deduction
problem is: “Given a finite set T of messages and a message m, is it possible to
retrieve m from T ?”.

Encoding the intruder deduction problem. The finite set of known messages, T =
{t1, . . . , tn}, where ti are ground Σ0∪{enc}-terms, is encoded as

∧n

i=1 known(ti)=t.
With this encoding, the intruder deduction problem becomes:

“Test whether E∪Recenc∪Bool∪Recknown |=
∧n

i=1 known(ti)=t → known(m)=t.”

32 V. Sofronie-Stokkermans

Example 10 We illustrate the hierarchical reasoning method we propose on the
following example: Assume that E = {(C)} and the intruder knows the messages
c(a, b) and enc(c(c(e, f), e), c(b, a)). We check if he can retrieve c(f, e), i.e. if

G : (known(c(a, b))=t)∧(known(enc(c(c(e, f), e), c(b, a)))=t)∧(known(c(f, e))=f)

is unsatisfiable w.r.t. E∪Bool∪ERecenc∪Rec
g
known. By Theorem 20, we know that

E∪Recenc∪Bool∪Recknown∧G′ |=⊥ iff (E∪Recenc)∪Bool∪Recknown[Ψ(G)]∧G |=⊥ .
The reduction is illustrated below:

Defbool G′
0∧ Recknown[Ψ(G′)]0

k1 = known(a) k5 = known(enc(c(c(e, f), e), c(b, a))) k6 = k1 ⊓ k2 k6 = t

k2 = known(b) k6 = known(c(a, b)) k7 = k2 ⊓ k1 k5 = t

k3 = known(e) k7 = known(c(b, a)) k10 = k4 ⊓ k3 k10 = f

k4 = known(f) k8 = known(c(c(e, f), e)) k9 = k3 ⊓ k4 k8 = k9 ⊓ k3

k9 = known(c(e, f)) k10 = known(c(f, e)) k7 = t → k5 = k8

(We ignored Con0.) The contradiction in Bool can be detected immediately.

7 Conclusion

We showed that many extensions with recursive definitions (which can be seen
as generalized homomorphism properties) satisfy locality conditions. This allows
us to reduce the task of reasoning about the class of recursive functions we con-
sider to reasoning in the underlying theory of data structures (possibly combined
with the theories attached to the co-domains of the additional functions). We
illustrated the ideas on several examples (including one inspired from cryptogra-
phy). The main advantage of the method we use consists in the fact that it has
the potential of completely separating the task of reasoning about the recursive
definitions from the task of reasoning about the underlying data structures. We
believe that these ideas will make the automatic verification of certain properties
of recursive programs or of cryptographic protocols much easier, and we plan to
make a detailed study of applications to cryptography in future work. An imple-
mentation of the method for hierarchical reasoning in local theory extensions is
available at www.mpi-inf.mpg.de/∼ihlemann/software/index.html (cf. also [12]).
In various test runs it turned out to be extremely efficient, and can be used as a
decision procedure for local theory extensions. We plan to extend the program
to handle the theory extensions considered in this paper; we expect that this
will not pose any problems. There are other classes of bridging functions – such
as, for instance, cardinality functions for finite sets and measure functions for
subsets of R (for instance intervals) – which turn out to satisfy similar locality
properties. We plan to present such phenomena in a separate paper.

Acknowledgments. Many thanks to the referees for their helpful comments.

This work was partly supported by the German Research Council (DFG) as part
of the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS, www.avacs.org).

Reasoning about recursively defined functions and homomorphisms 33

References

1. A. Armando, S. Ranise, and M. Rusinowitch. A rewriting approach to satisfiability
procedures. Information and Computation, 183(2):140–164, 2003.

2. C. Barrett, I. Shikanian, and C. Tinelli. An abstract decision procedure for satis-
fiability in the theory of inductive data types. Journal on Satisfiability, Boolean
Modeling and Computation, 3:1-17, 2007.

3. M.P. Bonacina and M. Echenim. Rewrite-based decision procedures. Electronic
Notes in Theoretical Computer Science, 174(11):27-45, 2007.

4. H. Comon-Lundh, R. Treinen. Easy intruder deductions. In Verification: Theory
and Practice. LNCS 2772, pages 225-242, Springer 2003.

5. H. Comon-Lundh. Challenges in the automated verification of security protocols. In
Automated Reasoning, 4th International Joint Conference, (IJCAR 2008), LNCS
5195, pages 396-409, Springer 2008.

6. S. Delaune. Easy intruder deduction problems with homomorphisms. Information
Processing Letters 97(6), pages 213-218, 2006.

7. H. Ganzinger. Relating semantic and proof-theoretic concepts for polynomial time
decidability of uniform word problems. In 16th Annual IEEE Symposium on Logic
in Computer Science, Boston, MA, USA, 2001, pages 81–90. IEEE Computer So-
ciety, Los Alamitos, CA, USA.

8. H. Ganzinger, V. Sofronie-Stokkermans, and U. Waldmann. Modular proof sys-
tems for partial functions with Evans equality. Information and Computation,
204(10):1453–1492, 2006.

9. R. Givan and D. McAllester. New results on local inference relations. In Principles
of Knowledge Representation and reasoning: Proceedings of the Third International
Conference (KR’92), 1992, pages 403–412. Morgan Kaufmann Press.

10. R. Givan and D.A. McAllester. Polynomial-time computation via local inference
relations. ACM Transactions on Computational Logic, 3(4):521–541, 2002.

11. C. Ihlemann, S. Jacobs, and V. Sofronie-Stokkermans. On local reasoning in veri-
fication. In Proc. TACAS 2008, LNCS 4963, pages 265-281, 2008.

12. C. Ihlemann and V. Sofronie-Stokkermans. System description. H-PiLOT. In In
Automated Deduction (CADE-22), LNAI 5663, pages 131-139, Springer 2009.

13. D.C. Oppen. Reasoning about recursively defined data structures. Journal of the
ACM, 27(3): 403-411, 1980.

14. V. Sofronie-Stokkermans. Hierarchic reasoning in local theory extensions. In
20th Int. Conf. on Automated Deduction (CADE-20), LNAI 3632, pages 219–234.
Springer, 2005.

15. V. Sofronie-Stokkermans. Hierarchical and modular reasoning in complex theories:
The case of local theory extensions. In Proc. 6th Int. Symp. Frontiers of Combining
Systems (FroCos 2007), LNCS 4720, pp. 47–71. Springer, 2007. Invited paper.

16. V. Sofronie-Stokkermans and C. Ihlemann. Automated reasoning in some local
extensions of ordered structures. J. of Multiple-Valued Logics and Soft Computing
13(4–6):397–414, 2007.

17. V. Sofronie-Stokkermans. Efficient hierarchical reasoning about functions over
numerical domains. In Proc. KI 2008: Advances in Artificial Intelligence, LNAI
5243, pages 135-143, Springer, 2008.

18. V. Sofronie-Stokkermans. Locality results for certain extensions of theories with
bridging functions. In In Automated Deduction (CADE-22), LNAI 5663, pages
67–83, Springer, 2009.

19. T. Zhang, H. Sipma, Z. Manna. Decision procedures for term algebras with integer
constraints. Information and Computation 204(10): 1526-1574, 2006.

	On automated reasoning about recursively defined functions and homomorphisms
	Viorica Sofronie-Stokkermans

