Inductive Theorem Proving meets Dependency Pairs

S. Swiderski, M. Parting, J. Giesl, C. Fuhs P. Schneider-Kamp
LUFG Informatik 2 Dept. of Mathematics & CS
RWTH Aachen University University of Southern Denmark
Aachen, Germany Odense, Denmark
Abstract

Current techniques and tools for automated termination analysis of term rewrite systems (TRSs)
are already very powerful. However, they fail for algorithms whose termination is essentially due to
aninductive argument. Therefore, we show how to couple one of the most popular techniques for
TRS termination (theependency pair method) with inductive theorem proving. As confirmed by
the implementation of our new approach in the tABroVE, now TRS termination techniques are
also successful on this important class of algorithms.

1 Introduction

All current termination tools for TRSs fail on a certain class of natural algorithms like theZ&s It
consists of the usual rules feq andge on natural numbers represented udirands and of the rules:

For any listxs, max(xs) computes its maximum max(nil) — 0

anddel(n,xs) deletes the first occurrence wffrom max(co(xnil)) — X

xs. To sort a non-empty lisgs, sort(ys) reduces to | max(co(x,co(y,xs))) — if1(ge(X,y),X.y,Xs)

“co(max(ys),sort(del(max(ys),ys))”. So sort(ys) 1(true,xyxs) — max(co(x X))

starts with the maximum ofsand thersort is called ifl(fa|se:)(: y: Xs) — max(co(y: Xs))

recursively on the list that results froys by delet- _ _

ing the first occurrence of its maximum. Note that del(x ii'g;;;; : ,TZI (eq(y) X yXS)

every non-empty list contains its maximum. (2) ifa(true,X,y,xs) — xs (1)

ifo(false,x,y,xs) — co(y,del(x,xs))

Hence, the listdel(max(ys),ys) is shorter tharys sort(nil) — nil

and thus,Zst is terminating. So[{2) is the mair sort(co(x,xs)) — co(max(co(x,xs)),

argument needed for termination &fy:. For au- sort(del(max(co(X,xs)), co(X,Xs))))

tomation, one faces two problems:

(&) One has to detect the main argument needed for termination and one has to find out that the TRS
is terminating provided that this argument is valid.

(b) One has to prove that the argument detected in (a) is valid.

Here, [2) requires a non-trivial induction proof that relies on rifex- anddel-rules. Such proofs
cannot be done by TRS termination techniques, but they could be performed by state-of-the-art induc-
tive theorem provers. So we would like to use an inductive theorem prover to solve Problem (b) and
combine it with TRS termination provers to solve Problem (a). Thus, one has to extend the TRS ter-
mination techniques such that they can automatically synthesize an argumeft like (2) and find out that
this argument suffices to complete the termination proof. §kct. 2 gives the main idea for our improve-
ment. To be powerful in practice, we need the new result that innermost termination of many-sorted term
rewriting and of unsorted term rewriting is equivalent. We expect that this observation will be useful also
for other applications in term rewriting. In SeEt. 3, we couple the DP method with inductive theorem
proving to show termination of TRSs lik&s,; automatically. We implemented our new technique in
the termination proveAProVE [1], which we also extended by a small inductive theorem prover. Note
that our results allow to couplany termination prover implementing DPs witlmy inductive theorem
prover. Thus, by using a more powerful theorem prover, one could further increase the power of our new
method. In Secfl4, we evaluate our contributions.

*Supported by the DFG Research Training Group 1288¢Syn), the DFG grant Gl 274/5-2, and the G.I.F. grant 966-116.6.

Dagstuhl Seminar Proceedings 09411
Interaction versus Automation: The two Faces of Deduction
http://drops.dagstuhl .de/opus/volltexte/2010/2422

2 Many-Sorted Rewriting for Innermost Termination

Here, we only regard th@nermost rewrite relation> and prove innermost termination, For large classes
of TRSs (e.g., TRSs resulting from programming languages or non-overlapping TRS&Jikeinner-

most termination also implies termination. We use the DP method [2] to prove innermost termination.
The setDP(Z«rt) contains, e.g., the following DP, whe$©RT is the tuple symbol fosort:

SORT(co(x,xs)) — SORT(del(max(co(X,Xs)),co(X,xs))) (3)

Standard techniques suffice to simplify the initial DP probl@®(Zsrt), Zsort) 10 ({(3)}, Zort)-

Here, %54y IS Zsort Without the twosort-rules. Now, however, standard techniques like the reduction pair
processor all fail, since termination of this DP problem essentially relies on the inductive argliment (2).

To conclude innermost termination of the original TRS, our goal is to prove the absence of infinite
innermost(2, #)-chainss,0 5 t10 !, 0 54 t,o 5, ... wheres — t; are variable-renamed
DPs from#” and “»! " denotes zero or more reduction steps to a normal form. The “classical” reduction
pair processor ensurego =, 10 2 $0 2 120 7 ... and removes DPs witho - ;0.

However, instead of requiring a strict decrease when going from the left-hang gidéa DP to the
right-hand sidd;o, it would also suffice to require a strict decrease when going from the right-hand side
tjo to thenext left-hand sides ;10. In other words, ifevery reduction oftjo to normal form makes the
term strictly smaller w.r.t-, then we also havgo - s5.10. Hence, then the DB — t; cannot occur
infinitely often and can be removed from the DP problem. Our goal is to formulate a new processor
based on this idea. We can remove a$P t from a DP problem(#, %) where 2 U% C 7 if

for every normal substitutioo, to L@, gimpliesto >~ q. (4)

To remove (3) from{(3)}, %4) With the criterion above, we must use a reduction pair satisfying
@). Herept is the right-hand side of (3), i.&.= SORT (del(max(co(X,xs)),co(X,xs))).

Towards automation, we will weakeld (4) step by step. We currently have to regard substitutions like
o(X) = true and require thato >~ g holds, although intuitively, here stands for a number (and not a
Boolean value). However, it suffices to consider “well-typed” terms. So far, we regarded untyped TRSs.
We now extend the sighatur# by (monomorphic) types. For any TR over a signature”, one can
use a standard type inference algorithm to compute a typed va¥iaaot the original signature# such
thatZ is well typed: All terms inZ are well typed w.r.t.%#’ and for eaclt — r € #, the termg andr
have the same type. By using the most general typed variant, fewer terms are considered to be well typed
and [3) has to be required for fewer substitutiansE.g., to make(3)} U %4, well typed, we use:

0 : nat del,co : nat x list — list ge,eq : nat x nat — bool
s . nat — nat true,false : bool SORT : list — tuple
max : list — nat nil @ list if1,if2 © bool x nat x nat x list — list

The following theorem shows that innermost termination fierai stent property.

Theorem 1. Let #Z beaTRSover .% and 7, let Z bewell typed w.r.t. the typed variants %' and ¥'. % is
innermost terminating f. all well-typed termsw.r.t. %’ and ¥ iff Z isinnermost terminating f. all terms.

As noted byl[[4], this property follows fromi|[5]. To our knowledge, it has never been explicitly stated
or applied before. We expect several points where Thm. 1 could simplify innermost termination’proofs.
Here, we use Thnlll 1 to weaken the conditioh (4) to remove a DP from a DP pr¢bfe?). Now one
can use any typed variant whegé U % is well typed. To remove — t from &2, it suffices if

for every normal substitutioor whereto iswell typed, to L’&? gimpliesto >~ q. (5)

1For example, by Thnil1 one could switch to termination methods/like [3] exploiting sorts.

3 Coupling DPsand Inductive Theorem Proving

Condition [B) is still too hard. We show (in Thid. 2) that one can often rélbx (5) to ground substitations
Moreover, we require that for all instantiatiors as above, every reduction taf to its normal form uses

a strictly decreasing rule— r on a monotonic positior. A position7Tin a termu is monotonic w.r.t. -

iff t = to impliesulty]; = u[tz]; for all t,t;. To removes — t from &, now it suffices if

for every normals whereto is well-typed and ground, every reductidm“%!gj g’ has the form

to L% Slt8]n -z Sl 4y ©)
for arule/ —r € # wherel > r and where the positiorrin sis monotonic w.r.t>-.

A popular class of reduction paifg-,) is based orpolynomial interpretations. E.g., consider
the interpretatiorPoI with spgy = 1+ X1, copg = 1+ X1 + X2, SORTpy = maxpg = X1, if1pg = 1+
X2 + X3 + X4, delpg = Xo, ifopo = 1+ X3+ X4, and fpy = 0, otherwise. FoKZpgl, =po), all rules of
X4y and (3) are weakly decreasing, afH (6) is satisfied for the right-hant&i@®): In every reduction
to %%, gwhereto is well-typed and ground, eventually one has to apply the strictly decreasing rule (1).
Thedel-algorithm uses (1) to delete an element, i.e., reduce the length of the list. Note that (1) is applied
within a contextSORT (co(..., ... co(...,0))), so (1) is used on a monotonic position W.ty .

To check automatically whether every reductiort@fto normal form uses a strictly decreasing rule
on a monotonic position, we add new rules and function symba#2 to get an extended TR, and
for every termu we define a corresponding tem1. For non-overlapping TRS%, we then have: If
u” L@» tt, then for allg, u LJ% g impliesu = g. To get%Z~, we first introduce a new symbdt~ for
every defined symbal in . Now f~(uy,...,u,) should reduce tet in %~ whenever the reduction of
f(uy,...,un) in Z uses a strictly decreasing rule on a monotonic positiorf.(4f, ..., ¢,) — r € Z was
strictly decreasing, then we add (41, ...,4n) — tt in Z~. Otherwise, a strictly decreasing rule will be
used on a monotonic position to reduce an instanc&(6f, ..., ¢y) if this holds for the corresponding
instance of the right-hand side So then we add ™ (43, ...,4y) — ™ in %~ instead. Next, we defing
for any termu over the signature of#. Foru e 7, letu™ = ff. If u= f(uy,...,un), then we regard the
subterms on the monotonic positionswénd check whether their reduction uses a strictly decreasing
rule. For anyn-ary symbolf, let mon_(f) contain those positions frodt,...,n} wheref(xy,...,Xy) iS
monotonic. Ifmon, (f) = {i,...,im}, then foru= f(uy,...,un) we obtainu™ =u_ v..vu ,if fisa
constructor. Iff is defined, then a strictly decreasing

) max~(nil) — ff
rule could also be applied at the rootwofHence, then max~ (co(x,nil)) — tt
we haveu™ =u7 V...VUu_ V{7 (Uy,...,un). Of course| max~(co(x,co(y,xs))) — tt
Z C %™, andZ”~ also contains rules for/”. if5 (true,x,y,XS) — max™(co(x,xS))
The only rules ofZ,,; with a strict decrease are ifT (false,x,y,xs) — max"(co(Y,xs))
the last twomax-rules and (1). SaZ'y? contains del”(x,nil) — ff
among others, the rules given on the right. del” (x,co(y,xs)) — if5(eq(X,y),X,Y,Xs)
Now we can again reformulate the conditi@h (6). if5 (true,X,y,Xs) — tt
To removes — t from &, now it suffices if if5 (false,X,y,xs) — del™(x,Xs)
for every normal substitutioo whereto is well typed and ground, we hateo %;» tt. (7)

To remove (3) usingpol, =pol), We require t~™ g L};”T"'

Here,t™™ is del”™ (max(co(X,Xs)),co(x,xs)) when simplifying disjunctions witff. So to remove (3),

we require the following for alb wheret o is well typed and grounddel™™ (max(co(X, Xs)),co(X,xs)) 0

-7 p tt. Note thatdel™ computes thenember-function, i.e.,del™™ (x,xs) holds iff x occurs in the
“ sort

list xs. Thus, the conjecture is equivalent to the main termination argurdent (Zjfgar, i.e., that every

tt”, wheret is the right-hand side of (3).

3

non-empty list contains its maximum. Hence, we can now useibation arguments likdl2) with DPs.
Conditions like [¥) correspond to the question if a suitable conjectunglistively valid: For a TRS

2 and termg, sover.# and?/,t =sisinductively valid (“ Z Eingt = 9) iff there exist typed variants?’

and?’ such thatZ, t, sare well typed, antio <l>*% so holds for all substitutions over.#’ whereta, so

are well-typed ground terms. While undecidats#|=i,q t = scan often be proved by inductive theorem

provers. From[{7), we get that in a DP problé¢®?, %) with & UZ C -, a pairs— t can be removed

from &2 if Z~ Eing t~ = tt. Now we formulate a new DP processor based on this criterion. It trans-

forms (22,%) not only into(Z7\ {s— t},#), but it also generates the probld@P (%), %) to ensure

innermost termination ofZ. Moreover,(Z,%) must have theéuple property, i.e., for alls —t € &7,

root(s) and rooft) are tuple symbols and tuple symbols occur nowhere els€ or Z.

Theorem 2 (Induction Processar)et (7Z,>~) be areduction pair, let (22,%) have the tuple property, let
Z be non-overlapping, and let there be no critical pairs between & and &2. Then Proc is sound:

{ (2 \{s—1t}, %), (DP(R), %)}, if B gt =tt and PURC =
{(2,2) }, otherwise

In our example, we want to remove the DP (3) from the DP prokfl(®) }, Z%y). We proveZ/y?
F=ing del™™ (max(co(X,Xs)),co(X,xs)) = tt by an inductive theorem prover. The small induction prover
in AProVE, e.g., find this proof automatically. Then the induction processor returns the trivial problem
(@, %%) and the easily solved problef®P (%%,), Zayt). Thus, termination 02y is verified.

Proc((#, %)) {

4 Experimentsand Conclusion

We introduced a new DP processor for TRSs that terminate because of an inductive property. This proper-
ty is extracted automatically and transformed into a conjecture that can be verified by current inductive
theorem provers. To increase power, we showed that it suffices to prove this conjecture only for well-
typed terms, even if the original TRS is untyped. We implemented our contributions in our termination
tool AProVE [1] and evaluated it on 19 typical TRSs for classical algorithms where the termination
proof requires an inductive argument. So far, all tools in Taemination Competition failed on these
examples, whereas our new versionA®roVE automatically proves termination of 16 of them within

a timeout of 1 minute per example. Thus, our method substantially advances automated termination
proving, since it allows the first combination of powerful TRS termination tools with inductive theorem
provers. For details on our experiments and to run our implementation, we refetjo//aprove.
informatik.rwth-aachen.de/eval/Induction/. A longer version of this paper appeared(in [6].

Acknowledgements. We are very grateful to Aart Middeldorp and Hans Zantema for suggesting the
proof idea of Thm[IL and for pointing us 13 [5].

References

[1] J. Giesl, P. Schneider-Kamp, and R. ThiemankProVE 1.2: Automatic termination proofs in the DP
framework. InProc. IJCAR 06, LNAI 4130, pp. 281-286, 2006.

[2] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and improving dependency pairs.
Journal of Automated Reasoning, 37(3):155-203, 2006.

[3] S.LucasandJ. Meseguer. Order-sorted dependency paiedriPPDP’ 08, pp. 108-119, ACM Press, 2008.
[4] A.Middeldorp and H. Zantema. Personal communication, 2008.
[5] J.van de Pol. Modularity in many-sorted term rewriting. Master’s Thesis, Utrecht University, 1992.

[6] S. Swiderski, M. Parting, J. Giesl, C. Fuhs, and P. Schneider-Kamp. Termination analysis by dependency
pairs and inductive theorem proving. Rnoc. CADE’ 09, LNAI 5663, pp. 322-338, 2009.

	Introduction
	Many-Sorted Rewriting for Innermost Termination
	Coupling DPs and Inductive Theorem Proving
	Experiments and Conclusion

