
Inductive Theorem Proving meets Dependency Pairs∗

S. Swiderski, M. Parting, J. Giesl, C. Fuhs
LuFG Informatik 2

RWTH Aachen University
Aachen, Germany

P. Schneider-Kamp
Dept. of Mathematics & CS

University of Southern Denmark
Odense, Denmark

Abstract
Current techniques and tools for automated termination analysis of term rewrite systems (TRSs)

are already very powerful. However, they fail for algorithms whose termination is essentially due to
an inductive argument. Therefore, we show how to couple one of the most popular techniques for
TRS termination (thedependency pair method) with inductive theorem proving. As confirmed by
the implementation of our new approach in the toolAProVE, now TRS termination techniques are
also successful on this important class of algorithms.

1 Introduction

All current termination tools for TRSs fail on a certain class of natural algorithms like the TRSRsort . It
consists of the usual rules foreq andge on natural numbers represented using0 ands and of the rules:

max(nil) → 0

max(co(x,nil)) → x
max(co(x,co(y,xs))) → if1(ge(x,y),x,y,xs)

if1(true,x,y,xs) → max(co(x,xs))
if1(false,x,y,xs) → max(co(y,xs))

del(x,nil) → nil

del(x,co(y,xs)) → if2(eq(x,y),x,y,xs)

if2(true,x,y,xs) → xs (1)
if2(false,x,y,xs) → co(y,del(x,xs))

sort(nil) → nil

sort(co(x,xs)) → co(max(co(x,xs)),
sort(del(max(co(x,xs)), co(x,xs))))

For any listxs, max(xs) computes its maximum
anddel(n,xs) deletes the first occurrence ofn from
xs. To sort a non-empty listys, sort(ys) reduces to
“co(max(ys),sort(del(max(ys),ys))”. So sort(ys)
starts with the maximum ofys and thensort is called
recursively on the list that results fromys by delet-
ing the first occurrence of its maximum. Note that

every non-empty list contains its maximum. (2)

Hence, the listdel(max(ys),ys) is shorter thanys
and thus,Rsort is terminating. So (2) is the main
argument needed for termination ofRsort . For au-
tomation, one faces two problems:

(a) One has to detect the main argument needed for termination and one has to find out that the TRS
is terminating provided that this argument is valid.

(b) One has to prove that the argument detected in (a) is valid.

Here, (2) requires a non-trivial induction proof that relies on themax- anddel-rules. Such proofs
cannot be done by TRS termination techniques, but they could be performed by state-of-the-art induc-
tive theorem provers. So we would like to use an inductive theorem prover to solve Problem (b) and
combine it with TRS termination provers to solve Problem (a). Thus, one has to extend the TRS ter-
mination techniques such that they can automatically synthesize an argument like (2) and find out that
this argument suffices to complete the termination proof. Sect. 2 gives the main idea for our improve-
ment. To be powerful in practice, we need the new result that innermost termination of many-sorted term
rewriting and of unsorted term rewriting is equivalent. We expect that this observation will be useful also
for other applications in term rewriting. In Sect. 3, we couple the DP method with inductive theorem
proving to show termination of TRSs likeRsort automatically. We implemented our new technique in
the termination proverAProVE [1], which we also extended by a small inductive theorem prover. Note
that our results allow to coupleany termination prover implementing DPs withany inductive theorem
prover. Thus, by using a more powerful theorem prover, one could further increase the power of our new
method. In Sect. 4, we evaluate our contributions.

∗Supported by the DFG Research Training Group 1298 (AlgoSyn), the DFG grant GI 274/5-2, and the G.I.F. grant 966-116.6.

1

Dagstuhl Seminar Proceedings 09411 
Interaction versus Automation: The two Faces of Deduction 
http://drops.dagstuhl.de/opus/volltexte/2010/2422



2 Many-Sorted Rewriting for Innermost Termination

Here, we only regard theinnermost rewrite relation i→ and prove innermost termination, For large classes
of TRSs (e.g., TRSs resulting from programming languages or non-overlapping TRSs likeRsort), inner-
most termination also implies termination. We use the DP method [2] to prove innermost termination.
The setDP(Rsort) contains, e.g., the following DP, whereSORT is the tuple symbol forsort:

SORT(co(x,xs)) → SORT(del(max(co(x,xs)),co(x,xs))) (3)

Standard techniques suffice to simplify the initial DP problem(DP(Rsort),Rsort) to ({(3)},R ′
sort ).

Here,R ′
sort is Rsort without the twosort-rules. Now, however, standard techniques like the reduction pair

processor all fail, since termination of this DP problem essentially relies on the inductive argument (2).
To conclude innermost termination of the original TRS, our goal is to prove the absence of infinite

innermost(P,R)-chainss1σ i→P t1σ i→!
R

s2σ i→P t2σ i→!
R

. . . wheresi → ti are variable-renamed
DPs fromP and “ i→!

R
” denotes zero or more reduction steps to a normal form. The “classical” reduction

pair processor ensuress1σ
(
%

)
t1σ % s2σ

(
%

)
t2σ % . . . and removes DPs withsiσ ≻ tiσ .

However, instead of requiring a strict decrease when going from the left-hand sidesiσ of a DP to the
right-hand sidetiσ , it would also suffice to require a strict decrease when going from the right-hand side
tiσ to thenext left-hand sidesi+1σ . In other words, ifevery reduction oftiσ to normal form makes the
term strictly smaller w.r.t.≻, then we also havetiσ ≻ si+1σ . Hence, then the DPsi → ti cannot occur
infinitely often and can be removed from the DP problem. Our goal is to formulate a new processor
based on this idea. We can remove a DPs → t from a DP problem(P,R) whereP ∪R ⊆ % if

for every normal substitutionσ , tσ i→!
R

q impliestσ ≻ q. (4)

To remove (3) from({(3)},R ′
sort ) with the criterion above, we must use a reduction pair satisfying

(4). Here,t is the right-hand side of (3), i.e.,t = SORT(del(max(co(x,xs)),co(x,xs))).
Towards automation, we will weaken (4) step by step. We currently have to regard substitutions like

σ(x) = true and require thattσ ≻ q holds, although intuitively, herex stands for a number (and not a
Boolean value). However, it suffices to consider “well-typed” terms. So far, we regarded untyped TRSs.
We now extend the signatureF by (monomorphic) types. For any TRSR over a signatureF , one can
use a standard type inference algorithm to compute a typed variantF ′ of the original signatureF such
thatR is well typed: All terms inR are well typed w.r.t.F ′ and for eachℓ → r ∈ R, the termsℓ andr
have the same type. By using the most general typed variant, fewer terms are considered to be well typed
and (4) has to be required for fewer substitutionsσ . E.g., to make{(3)}∪R ′

sort well typed, we use:

0 : nat del,co : nat× list→ list ge,eq : nat×nat → bool

s : nat → nat true, false : bool SORT : list → tuple

max : list → nat nil : list if1, if2 : bool×nat×nat× list → list

The following theorem shows that innermost termination is apersistent property.

Theorem 1. Let R be a TRS over F and V , let R be well typed w.r.t. the typed variants F ′ and V ′. R is
innermost terminating f. all well-typed terms w.r.t. F ′ and V ′ iff R is innermost terminating f. all terms.

As noted by [4], this property follows from [5]. To our knowledge, it has never been explicitly stated
or applied before. We expect several points where Thm. 1 could simplify innermost termination proofs.1

Here, we use Thm. 1 to weaken the condition (4) to remove a DP from a DP problem(P,R). Now one
can use any typed variant whereP ∪R is well typed. To removes → t from P, it suffices if

for every normal substitutionσ where tσ is well typed, tσ i→!
R

q impliestσ ≻ q. (5)

1For example, by Thm. 1 one could switch to termination methods like [3] exploiting sorts.

2



3 Coupling DPs and Inductive Theorem Proving

Condition (5) is still too hard. We show (in Thm. 2) that one can often relax (5) to ground substitutionsσ .
Moreover, we require that for all instantiationstσ as above, every reduction oftσ to its normal form uses
a strictly decreasing ruleℓ → r on a monotonic positionπ. A positionπ in a termu is monotonic w.r.t.≻
iff t1 ≻ t2 impliesu[t1]π ≻ u[t2]π for all t1, t2. To removes → t from P, now it suffices if

for every normalσ wheretσ is well-typed and ground, every reduction “tσ i→!
R

q” has the form

tσ i→∗
R s[ℓδ ]π

i→R s[rδ ]π
i→!

R q

for a ruleℓ → r ∈ R whereℓ ≻ r and where the positionπ in s is monotonic w.r.t.≻.

(6)

A popular class of reduction pairs(%,≻) is based onpolynomial interpretations. E.g., consider
the interpretationPol with sPol = 1+ x1, coPol = 1+ x1 + x2, SORTPol = maxPol = x1, if1Pol = 1+
x2 + x3 + x4, delPol = x2, if2Pol = 1+ x3 + x4, and fPol = 0, otherwise. For(%Pol,≻Pol), all rules of
R ′

sort and (3) are weakly decreasing, and (6) is satisfied for the right-hand sidet of (3): In every reduction
tσ i→!

R
q wheretσ is well-typed and ground, eventually one has to apply the strictly decreasing rule (1).

Thedel-algorithm uses (1) to delete an element, i.e., reduce the length of the list. Note that (1) is applied
within a contextSORT(co(..., . . . co(...,2))), so (1) is used on a monotonic position w.r.t.≻Pol.

To check automatically whether every reduction oftσ to normal form uses a strictly decreasing rule
on a monotonic position, we add new rules and function symbols toR to get an extended TRSR≻, and
for every termu we define a corresponding termu≻. For non-overlapping TRSsR, we then have: If
u≻ i→∗

R≻ tt, then for allq, u i→!
R

q implies u ≻ q. To getR≻, we first introduce a new symbolf≻ for
every defined symbolf in R. Now f≻(u1, ...,un) should reduce tott in R≻ whenever the reduction of
f (u1, ...,un) in R uses a strictly decreasing rule on a monotonic position. Iff (ℓ1, ..., ℓn) → r ∈ R was
strictly decreasing, then we addf≻(ℓ1, ..., ℓn) → tt in R≻. Otherwise, a strictly decreasing rule will be
used on a monotonic position to reduce an instance off (ℓ1, . . . , ℓn) if this holds for the corresponding
instance of the right-hand sider. So then we addf≻(ℓ1, ..., ℓn) → r≻ in R≻ instead. Next, we defineu≻

for any termu over the signature ofR. For u ∈ V , let u≻ = ff. If u = f (u1, ...,un), then we regard the
subterms on the monotonic positions ofu and check whether their reduction uses a strictly decreasing
rule. For anyn-ary symbol f , let mon≻( f ) contain those positions from{1, . . . ,n} where f (x1, ...,xn) is
monotonic. Ifmon≻( f ) = {i1, ..., im}, then foru = f (u1, ...,un) we obtainu≻ = u≻i1 ∨ ...∨ u≻im , if f is a

max≻(nil) → ff

max≻(co(x,nil)) → tt

max≻(co(x,co(y,xs))) → tt

if≻1 (true,x,y,xs) → max≻(co(x,xs))
if≻1 (false,x,y,xs) → max≻(co(y,xs))

del≻(x,nil) → ff

del≻(x,co(y,xs)) → if≻2 (eq(x,y),x,y,xs)

if≻2 (true,x,y,xs) → tt

if≻2 (false,x,y,xs) → del≻(x,xs)

constructor. Iff is defined, then a strictly decreasing
rule could also be applied at the root ofu. Hence, then
we haveu≻ = u≻i1 ∨ ...∨u≻im ∨ f≻(u1, ...,un). Of course,
R ⊆ R≻, andR≻ also contains rules for “∨”.

The only rules ofR ′
sort with a strict decrease are

the last twomax-rules and (1). SoR ′≻Pol
sort contains,

among others, the rules given on the right.
Now we can again reformulate the condition (6).

To removes → t from P, now it suffices if

for every normal substitutionσ wheretσ is well typed and ground, we havet≻σ i→∗
R≻ tt. (7)

To remove (3) using(%Pol,≻Pol), we require “t≻Pol σ i→∗
R′≻Pol

sort
tt”, where t is the right-hand side of (3).

Here,t≻Pol is del≻Pol(max(co(x,xs)),co(x,xs)) when simplifying disjunctions withff. So to remove (3),
we require the following for allσ wheretσ is well typed and ground:del≻Pol (max(co(x,xs)),co(x,xs))σ
i→∗

R′≻Pol
sort

tt. Note thatdel≻Pol computes themember-function, i.e.,del≻Pol (x,xs) holds iff x occurs in the

list xs. Thus, the conjecture is equivalent to the main termination argument (2) forRsort , i.e., that every

3



non-empty list contains its maximum. Hence, we can now use termination arguments like (2) with DPs.
Conditions like (7) correspond to the question if a suitable conjecture isinductively valid: For a TRS

R and termst,s overF andV , t = s is inductively valid (“R |=ind t = s”) iff there exist typed variantsF ′

andV ′ such thatR, t, s are well typed, andtσ i↔∗
R

sσ holds for all substitutionsσ overF ′ wheretσ , sσ
are well-typed ground terms. While undecidable,R |=ind t = s can often be proved by inductive theorem
provers. From (7), we get that in a DP problem(P,R) with P ∪R ⊆ %, a pairs → t can be removed
from P if R≻ |=ind t≻ = tt. Now we formulate a new DP processor based on this criterion. It trans-
forms(P,R) not only into(P \{s → t},R), but it also generates the problem(DP(R),R) to ensure
innermost termination ofR. Moreover,(P,R) must have thetuple property, i.e., for all s → t ∈ P,
root(s) and root(t) are tuple symbols and tuple symbols occur nowhere else inP or R.

Theorem 2 (Induction Processor). Let (%,≻) be a reduction pair, let (P,R) have the tuple property, let
R be non-overlapping, and let there be no critical pairs between R and P . Then Proc is sound:

Proc((P,R)) =

{

{ (P \{s → t}, R), (DP(R), R) }, if R≻ |=ind t≻ = tt and P ∪R ⊆ %

{ (P,R) }, otherwise

In our example, we want to remove the DP (3) from the DP problem({(3)},R ′
sort ). We proveR ′≻Pol

sort
|=ind del≻Pol (max(co(x,xs)),co(x,xs)) = tt by an inductive theorem prover. The small induction prover
in AProVE, e.g., find this proof automatically. Then the induction processor returns the trivial problem
(∅,R ′

sort) and the easily solved problem(DP(R ′
sort),R

′
sort). Thus, termination ofRsort is verified.

4 Experiments and Conclusion

We introduced a new DP processor for TRSs that terminate because of an inductive property. This proper-
ty is extracted automatically and transformed into a conjecture that can be verified by current inductive
theorem provers. To increase power, we showed that it suffices to prove this conjecture only for well-
typed terms, even if the original TRS is untyped. We implemented our contributions in our termination
tool AProVE [1] and evaluated it on 19 typical TRSs for classical algorithms where the termination
proof requires an inductive argument. So far, all tools in theTermination Competition failed on these
examples, whereas our new version ofAProVE automatically proves termination of 16 of them within
a timeout of 1 minute per example. Thus, our method substantially advances automated termination
proving, since it allows the first combination of powerful TRS termination tools with inductive theorem
provers. For details on our experiments and to run our implementation, we refer tohttp://aprove.

informatik.rwth-aachen.de/eval/Induction/. A longer version of this paper appeared in [6].

Acknowledgements. We are very grateful to Aart Middeldorp and Hans Zantema for suggesting the
proof idea of Thm. 1 and for pointing us to [5].

References
[1] J. Giesl, P. Schneider-Kamp, and R. Thiemann.AProVE 1.2: Automatic termination proofs in the DP

framework. InProc. IJCAR’06, LNAI 4130, pp. 281-286, 2006.

[2] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and improving dependency pairs.
Journal of Automated Reasoning, 37(3):155-203, 2006.

[3] S. Lucas and J. Meseguer. Order-sorted dependency pairs. InProc. PPDP’08, pp. 108-119, ACM Press, 2008.

[4] A. Middeldorp and H. Zantema. Personal communication, 2008.

[5] J. van de Pol. Modularity in many-sorted term rewriting. Master’s Thesis, Utrecht University, 1992.

[6] S. Swiderski, M. Parting, J. Giesl, C. Fuhs, and P. Schneider-Kamp. Termination analysis by dependency
pairs and inductive theorem proving. InProc. CADE’09, LNAI 5663, pp. 322-338, 2009.

4


	Introduction
	Many-Sorted Rewriting for Innermost Termination
	Coupling DPs and Inductive Theorem Proving
	Experiments and Conclusion



