
Deterministic Approximation Algorithms for the
Nearest Codeword Problem

Noga Alon1,?, Rina Panigrahy2, and Sergey Yekhanin3

1 Tel Aviv University, Institute for Advanced Study, Microsoft Israel
nogaa@tau.ac.il

2 Microsoft Research Silicon Valley
rina@microsoft.com

3 Microsoft Research Silicon Valley
yekhanin@microsoft.com

Abstract. The Nearest Codeword Problem (NCP) is a basic algorithmic
question in the theory of error-correcting codes. Given a point v ∈ Fn2
and a linear space L ⊆ Fn2 of dimension k NCP asks to find a point
l ∈ L that minimizes the (Hamming) distance from v. It is well-known
that the nearest codeword problem is NP-hard. Therefore approximation
algorithms are of interest. The best efficient approximation algorithms
for the NCP to date are due to Berman and Karpinski. They are a
deterministic algorithm that achieves an approximation ratio of O(k/c)
for an arbitrary constant c, and a randomized algorithm that achieves
an approximation ratio of O(k/ logn).
In this paper we present new deterministic algorithms for approximating
the NCP that improve substantially upon the earlier work. Specifically,
we obtain:
– A polynomial time O(n/ logn)-approximation algorithm;
– An nO(s) time O(k log(s) n/ logn)-approximation algorithm, where

log(s) n stands for s iterations of log, e.g., log(2) n = log logn;
– An nO(log∗ n) time O(k/ logn)-approximation algorithm.

We also initiate a study of the following Remote Point Problem (RPP).
Given a linear space L ⊆ Fn2 of dimension k RPP asks to find a point
v ∈ Fn2 that is far from L. We say that an algorithm achieves a remoteness
of r for the RPP if it always outputs a point v that is at least r-far from
L. In this paper we present a deterministic polynomial time algorithm
that achieves a remoteness of Ω(n log k/k) for all k ≤ n/2. We motivate
the remote point problem by relating it to both the nearest codeword
problem and the matrix rigidity approach to circuit lower bounds in
computational complexity theory.

1 Introduction

The Nearest Codeword Problem (NCP) is a basic algorithmic question in the
theory of error-correcting codes. Given a point v ∈ Fn2 and a linear space L ⊆ Fn2
? Research supported in part by an ERC advanced grant, by NSF grant CCF 0832797

and by the Ambrose Monell Foundation.

Dagstuhl Seminar Proceedings 09421
Algebraic Methods in Computational Complexity
http://drops.dagstuhl.de/opus/volltexte/2010/2413

1

of dimension k NCP asks to find a point l ∈ L that minimizes the (Hamming)
distance from v. The nearest codeword problem is equivalent to the problem of
finding a vector x ∈ Fk2 that minimizes the number of unsatisfied linear equations
in the system xG = v, given a matrix G ∈ Fk×n2 and a vector v ∈ Fn2 . It is well-
known that the NCP is NP-hard. Therefore approximation algorithms are of
interest.

The best efficient approximation algorithms for the NCP to date are due to
Berman and Karpinski [3]. They are a deterministic algorithm that achieves an
approximation ratio of O(k/c) for an arbitrary constant c, and a randomized
algorithm that achieves an approximation ratio of O(k/ log n).4 There has been
a substantial amount of work on hardness of approximation for the NCP [2, 4,
1]. The best result to date is due to Arora et al. [2]. It shows that one can-
not approximate the NCP to within 2log0.5−ε n, for any ε > 0 unless NP is in
DTIME

(
npoly(logn))

)
. Alekhnovich [1] has made a conjecture that implies inap-

proximability of the NCP to within n1−ε, for every ε > 0.

In this paper we develop new deterministic algorithms for approximating the
NCP. Specifically, we obtain:

1. A polynomial time O(n/ log n)-approximation algorithm;
2. An nO(s) time O(k log(s) n/ log n)-approximation algorithm, where log(s) n

stands for s iterations of log, e.g., log(2) n = log log n;
3. An nO(log∗ n) time O(k/ log n)-approximation algorithm.

Our first algorithm matches the performance of the randomized algorithm
of [3] for k = Ω(n). This is the regime that is of primary importance for the
coding theory applications. Our second algorithm improves substantially upon
the deterministic algorithm of [3], and nearly matches the randomized algorithm
of [3] in terms of the approximation ratio. Finally, our third algorithm has the
same approximation ratio as the randomized algorithm of [3] and a slightly super-
polynomial running time. All our algorithms (as well as other known algorithms
for the NCP in the literature) can be easily generalized to fields other than F2.

Remote point problem. In this work we also initiate a study of the fol-
lowing Remote Point Problem (RPP). Given a linear space L ⊆ Fn2 of dimension
k RPP asks to find a point v ∈ Fn2 that is far from L. We say that an algorithm
achieves a remoteness of r for the RPP if it always outputs a point v that is at
least r-far from L. We present a deterministic polynomial time algorithm that
achieves a remoteness of Ω(n log k/k) for all k ≤ n/2. Our algorithm for the
remote point problem is closely related to our first approximation algorithm for
the nearest codeword problem.

We motivate the remote point problem by relating it to the matrix rigidity
approach to circuit lower bounds in computational complexity theory. The notion
4 In fact, Berman and Karpinski [3] only claim that their randomized algorithm

achieves a O(k/ log k) approximation. However it is immediate from their analysis
that they also get a O(k/ logn) approximation.

2

of matrix rigidity was introduced by Leslie Valiant in 1977 [10]. In what follows
we say that a set A ⊆ Fn2 is r-far from a linear space L ⊆ Fn2 if A contains a point
that is r-far from L. (Observe, that this is quite different from the usual notion
of distance between sets.) Valiant called a set A ⊆ Fn2 rigid if for some fixed
ε > 0, A is nε-far from every linear space L ⊆ Fn2 , dimL = n/2. Valiant showed
that if a set A ⊆ Fn2 is rigid and |A| = O(n); then the linear transformation from
n bits to |A| bits induced by a matrix whose rows are all elements of A can not
be computed by a circuit of XOR gates that simultaneously has size O(n) and
depth O(log n).5

Valiant’s work naturally led to the challenge of constructing a small explicit
rigid set A, (since such a set yields an explicit linear map, for that we have
a circuit lower bound). This challenge has triggered a long line of work. For
references see [5, 7–9]. Unfortunately, after more than three decades of efforts, we
are still nowhere close to constructing an explicit rigid set with the parameters
needed to get implications in complexity theory. The smallest known explicit
sets A ⊆ Fn2 (presented in the appendix) that are d-far from every linear space
L ⊆ Fn2 , dimL = n/2 have size 2O(d)n/d.

In particular there are no known constructions of sets A ⊆ Fn2 of size O(n)
that are ω(1)-far from linear spaces dimension n/2. Moreover if we restrict our-
selves to sets A of size n; then we do not know how to construct an explicit
set that is just 3-far from every linear space of dimension n/2, despite the fact
that a random set A of cardinality n is Ω(n)-far from every such space with an
overwhelming probability.

In this paper we propose the remote point problem as an intermediate chal-
lenge that is less daunting than the challenge of designing a small rigid set, and
yet could help us develop some insight into the structure of rigid sets. Recall
that a rigid set is a set that is simultaneously nε-far from every linear space
L, dimL = n/2. Given the state of art with constructions of explicit rigid sets
we find it natural to consider an easier algorithmic Remote Set Problem (RSP)
where we are given a single linear space L, and our goal is to design an O(n)-
sized set AL ⊆ Fn2 that is nε-far from L. Clearly, if we knew how to construct
explicit rigid sets, we could solve the RSP without even looking at the input.
The remote point problem is a natural special case of the remote set problem.
Here we are given a linear space L ⊆ Fn2 and need to find a single point that is
far from L.

In this paper we present an algorithm that for every linear space L ⊆ Fn2 ,
dimL = n/2 generates a point that is Ω(log n)-far from L. (For spaces L
of dimension k < n/2, our algorithm generates a point of distance at least
Ω(n log k/k) from L.) We are not aware of efficient algorithms to generate points

5 The original paper of Valiant [10] and the follow-up papers use a somewhat different
language. Specifically, they talk about matrices A whose rank remains no less than
n/2 even after every row is modified in less than nε coordinates; rather than about
sets A that for every linear space L ⊆ Fn2 , dimL = n/2 contain a point a ∈ A that
is nε-far from L. However, it is not hard to verify that the two concepts above are
equivalent.

3

(or O(n)-sized collections of points) further away from a given arbitrary linear
space of dimension n/2.

The remote point problem can be viewed as a search variant of the covering
radius problem: finding a point in space that is as far away as possible from
a given code. The complexity of the covering radius problem has been studied
in [6].

Organization. We present our first approximation algorithm for the NCP
in section 2. We present our second and third algorithms in section 3. We present
our algorithm for the remote point problem in section 4. We present a family of
explicit subsets of Fn2 that are d-far from all linear spaces L ⊆ Fn2 , dimL = n/2
in the appendix.

2 An O(n/ log n)-approximation algorithm

We start with the formal statements of the NCP and of our main result.
Nearest codeword problem.

– INSTANCE: A linear code L = {xG | x ∈ Fk2} given by a generator matrix
G ∈ Fk×n2 and a vector v ∈ Fn2 .

– SOLUTION: A codeword l ∈ L.
– OBJECTIVE FUNCTION (to be minimized): The Hamming distance d(l, v).

Theorem 1. Let c ≥ 1 be an arbitrary constant. There exists a deterministic
nO(c) time dn/c log ne-approximation algorithm for the NCP.

In order to proceed with the proof we need the following notation:

– For a positive integer d, let Bd = {x ∈ Fn2 | d(0n, x) ≤ d} denote a Hamming
ball of radius d.

– For a collection of vectors M ⊆ Fn2 , let Span(M) denote the smallest linear
subspace of Fn2 containing M.

– For sets A,B ⊆ Fn2 , we define A+B = {a+ b | a ∈ A, b ∈ B}.

The next lemma is the core of our algorithm. It shows that a d-neighborhood
of a linear space L can be covered by a (small) number of linear spaces MS of
larger dimension, in such a way that no linear space MS contains points that
are too far from L.

Lemma 1. Let L be a linear space, and d ≤ t be positive integers. Let B1 \

{0n} =
t⋃
i=1

Bi1 be an arbitrary partition of the set of n unit vectors into t disjoint

classes each of size dn/te or bn/tc. For every S ⊆ [t] such that |S| = d let
MS = Span

(
L ∪

(⋃
i∈S B

i
1

))
. Then

L+Bd ⊆
⋃
S

MS ⊆ L+Bddn/te, (1)

where S runs over all subsets of [t] of cardinality d.

4

Proof. We first show the left containment. Let v be an arbitrary vector in L+Bd.
We have v = l+ ej1 + . . .+ ejd′ , where d′ ≤ d, all ejr are unit vectors and l ∈ L.
For every r ∈ [d′] let ir ∈ [t] be such that jr ∈ Bir1 . Consider a set S ⊆ [t] such
that |S| = d and i1, . . . , id′ ∈ S. It is easy to see that v ∈MS .

We proceed to the right containment. Let S = {i1, . . . , id} be an arbitrary
subset of [t] of cardinality d. Recall that the cardinality of every set Bir1 , r ∈ [d]
is at most dn/te. Therefore every element v ∈ MS can be expressed as a sum
v = l + y, where l ∈ L and y is a sum of at most ddn/te unit vectors. Thus
v ∈ L+Bddn/te.

We are now ready to proceed with the proof of the theorem.

Proof (of theorem 1). Observe that if the point v is more than c log n-far from
L; then any vector in L (for instance, the origin) is an dn/c log ne-approximation
for v. Let us assume that d(v, L) ≤ c log n and set t = dc log ne. Our algorithm
iterates over values d ∈ [0, dc log ne]. For each d we generate all linear spaces
MS , S ⊆ [t], |S| = d as defined in lemma 1. We check whether v is contained in
one of those spaces. Lemma 1 implies that after at most d(v, L) iterations we get
v ∈MS , for some S = {i1, . . . , id}. We expand v as a sum v = l+ y where l ∈ L
and y is a sum of at most ddn/c log ne unit vectors from

⋃d
r=1B

ir
1 . Obviously,

d(v, l) ≤ d(v, L)dn/c log ne. We report l as our dn/c log ne-approximation for v.
The pseudo-code is below.

Set t = dc log ne;
For every d ∈ [0, c log n]

For every S = {i1, . . . , id} ⊆ [t] such that |S| = d
If v ∈MS Then

Begin
Represent v as v = l + y,

where l ∈ L and y is a sum of unit vectors from
⋃d
r=1B

ir
1 ;

Output l;
Terminate;

End
Output 0n;
It is easy to see that the algorithm above runs in time nO(c). The first loop

makes O(c log n) iterations. The second loop makes at most 2dc logne = nO(c)

iterations. Finally, the internal computation runs in nO(1) time.

3 A recursive O(k log(s) n/ log n)-approximation
algorithm

The goal of this section is to prove the following

Theorem 2. Let s ≥ 1 be an integer and c ≥ 1 be an arbitrary constant. There
exists a deterministic nO(cs) time dk log(s) n/c log ne-approximation algorithm
for the NCP, where the constant inside the O-notation is absolute and log(s) n
denotes s iterations of the log function.

5

Proof. Our proof goes by induction on s and combines ideas from ourO(n/ log n)-
approximation algorithm of section 2 with ideas from the deterministic approx-
imation algorithm of Berman and Karpinski [3]. We start with some notation.

– Let x∗G = l∗ ∈ L denote some fixed optimal approximation of v by a vector
in L.

– Let E = {i ∈ [n] | l∗i 6= vi} be the set of coordinates where l∗ differs from v.
– In what follows we slightly abuse the notation and use the letter G to denote

the multi-set of columns of the generator matrix of L (as well as the generator
matrix itself).

– We call a partition of the multi-set G =
h⋃
i

Gi into disjoint sets regular if for

every i ∈ [h], the vectors in Gi are linearly independent and:

Span(Gi) = Span

 h⋃
j≥i

Gj

 . (2)

Again, in what follows we slightly abuse the notation and use symbols Gi, i ∈
[h] to denote the sets of columns of the generator matrix, the corresponding
subsets of [n], and the sub-matrices of the generator matrix of L.

– We denote the restriction of a vector u ∈ Fn2 to coordinates in a set S ⊆ [n],
by u |S ∈ F|S|2 .

The following claim (due to Berman and Karpinski [3]) constitutes the base
case of the induction. We include the proof for the sake of completeness.

Base case of the induction: Let c ≥ 1 be an arbitrary constant. There
exists a deterministic nO(c) time dk/ce-approximation algorithm for the NCP.

Proof of the base case: We start with an informal description of the
algorithm. Our goal is to ”approximately” recover x∗ from v (which is a ”noisy”
version of l∗). Recall that l∗ and v differ in coordinates that belong to E. We
assume that |E| < n/dk/ce since otherwise any vector in the space L is a valid
dk/ce-approximation for v. The algorithm has two phases. During the first phase
we compute a regular partition of the multi-set G. Note that such a partition
necessarily has at least h ≥ n/k classes. Therefore there is a class Gi, i ∈ [h]
such that

|Gi ∩ E| ≤ (n/dk/ce)/(n/k) ≤ c.

During the second phase we iterate over all classes Gi, i ∈ [h] of the regular
partition, trying to ”fix” the differences between v |Gi and l∗ |Gi and thus ”ap-
proximately” recover x∗. More specifically, for every i ∈ [h] we solve the system
xGi = u for x, for every u that differs from v |Gi in up to c coordinates. (In cases
when the system xGi = u happens to be under-determined we take an arbitrary
single solution.) This way every class in the regular partition gives us a number
of candidate vectors x. In the end we select a single vector that yields the best
approximation for v.

6

To see that the algorithm indeed produces a valid dk/ce-approximation for v,
consider the smallest index i such that |Gi ∩E| ≤ c. Note that one of the linear
systems that we are going to solve while processing the i-th class of the regular
partition is xGi = l∗ |Gi . Let x be an arbitrary solution of the above system.
Clearly,

d(xG, v) =
i−1∑
j=1

d
(
xGj , v |Gj

)
+

h∑
j=i

d
(
xGj , v |Gj

)
. (3)

However for every j ≤ i− 1 we have

d
(
xGj , v |Gj

)
≤ k ≤ cdk/ce ≤ d

(
l∗ |Gj , v |Gj

)
dk/ce, (4)

by our choice of i. Also, xGi = l∗ |Gi and formula (2) yield

xGj = l∗ |Gj , (5)

for all j ≥ i. Combining formulae (4), (5) and (3) we get d(xG, v) ≤ d(l∗, v)dk/ce
and thus xG is a dk/ce-approximation for v. The pseudo-code of the algorithm
is below:

Obtain a regular partition G =
⋃
i∈hGi;

Set xbest = 0k;
For every i ∈ [h]

For every vector y in F|Gi|2 of Hamming weight at most c
Begin

Find an x ∈ Fk2 such that xGi = v |Gi + y;
If d(xG, v) < d(xbestG, v) Then Set xbest = x;

End
Output xbestG;
It is easy to see that the algorithm above runs in time nO(c). The first loop

makes O(n) iterations. The second loop makes at most nc iterations. Finally,
obtaining a regular partition and the internal computation both run in nO(1)

time.

We now proceed to the induction step.

Induction step: Let s ≥ 1 be an integer and c ≥ 1 be an arbitrary con-
stant. Suppose there exists a deterministic nO(cs−c) time dk log(s−1) n/c log ne-
approximation algorithm for the NCP; then there exists deterministic nO(cs)

time dk log(s) n/c log ne-approximation algorithm for the NCP.

Proof of the induction step: The high level idea behind our algorithm is
to reduce the nearest codeword problem on an instance (G, v) to nO(c) (smaller)
instances of the problem and to solve those instances using the algorithm from
the induction hypothesis.

We start in a manner similar to the proof of the base case. Our goal is to
”approximately” recover the vector x∗ from v (which is a ”noisy” version of l∗).
Recall that l∗ and v differ in coordinates that belong to E. We assume that

7

|E| < n/dk log(s) n/c log ne since otherwise any vector in the space L is a valid
dk log(s) /c log ne-approximation for v. Our algorithm has two phases. During the
first phase we compute a regular partition of the multi-set G. Note that such
a partition necessarily has at least h ≥ n/k classes. Therefore there is a class
Gi, i ∈ [h] such that

|Gi ∩ E| ≤ (n/dk log(s) n/c log ne)/(n/k) ≤ c log n/ log(s) n.

During the second phase we iterate over all classes Gi, i ∈ [h] of the regular
partition, trying to locate a large subset W ⊆ Gi such that l∗ |W = v |W . We
use such a subset to restrict our optimization problem to x ∈ Fk2 that satisfy
xG |W = v |W and thus obtain a smaller instance of the NCP. More formally,
during the second phase we:

1. Set

b =
⌊
c log n

log(s) n

⌋
, t =

⌈
2c log n log(s−1) n

log(s) n

⌉
. (6)

2. Set xbest = 0k.
3. For every i ∈ [h] :
4. Set G′ =

⋃
j≥iGj .

(a) If k ≥ t then

i. Split the class Gi into a disjoint union of t sets Gi =
t⋃

r=1
Gri , each of

size d|Gi|/te or b|Gi|/tc.
ii. For every S ⊆ [t] such that |S| = b, set W =

⋃
r∈[t]\S G

r
i :

iii. Consider an affine optimization problem of finding an x ∈ Fk2 that
minimizes d (xG′, v |G′) , subject to xG |W = v |W . Properties of the
regular partition imply that here we are minimizing over an affine
space L′ of dimension |Gi| − |W |, in F|G

′|
2 .

iv. Turn the problem above into a form of an NCP (in Fn2 , padding
both the target vector v and the matrix G′ with zeros) and solve
it approximately for x using the algorithm from the induction hy-
pothesis. (Note that every affine optimization problem of minimizing
d(xJ + z, v) over x for J ∈ Fk×n2 and z, v ∈ Fn2 , can be easily turned
into a form of an NCP, i.e., the problem of minimizing d(xJ, v + z)
over x ∈ Fk2 .

v. If d(xG, v) < d(xbestG, v) then set xbest = x.

(b) Else

i. For every vector y in F|Gi|2 such that the Hamming weight of y is at
most b :

ii. Find an x ∈ Fk2 such that xGi = v |Gi + y;
iii. If d(xG, v) < d(xbestG, v) then set xbest = x.

5. Output xbestG.

8

We now argue that the algorithm above obtains a valid dk log(s) n/c log ne-
approximation for the NCP. We first consider (the easier) case when k < t. Our
analysis is similar to the analysis of the base case of the induction. Let i ∈ [h]
be the smallest index such that |Gi ∩E| ≤ bc log n/ log(s) nc = b. Note that one
of the linear systems that we are going to solve while processing the i-th class of
the regular partition is xGi = l∗ |Gi . Let x be an arbitrary solution of the above
system. We need to bound d(xG, v) from above. Clearly,

d(xG, v) =
i−1∑
j=1

d
(
xGj , v |Gj

)
+ d (xG′, v |G′) . (7)

However for every j ≤ i− 1 we have

d
(
xGj , v |Gj

)
≤ k ≤ c logn

log(s) n

⌈
k /
(
c logn
log(s) n

)⌉
≤

d
(
l∗ |Gj , v |Gj

)⌈
k log(s) n
c logn

⌉
,

(8)

by our choice of i. Also, xGi = l∗ |Gi and formula (2) yield

xG′ = l∗ |G′ , (9)

Combining formulae (8), (9) and (7) we get d(xG, v) ≤ d(l∗, v)dk log(s) n/c log ne.
We now proceed to the k ≥ t case. Again, let i ∈ [h] be the smallest index

such that |Gi ∩ E| ≤ b. Note that one of the sets W ⊆ Gi considered when
processing the class Gi will necessarily have an empty intersection with the set
E. Let x ∈ Fk2 be an approximate solution of the corresponding problem of mini-
mizing d (xG′, v |G′) , subject to xG |W = v |W , produced by an algorithm from
the induction hypothesis. We need to bound d(xG, v) from above. Formulae (7)
and (8) reduce our task to bounding d (xG′, v |G′) . Observe that when minimiz-
ing d (xG′, v |G′) , subject to xG |W = v |W , we are minimizing over an affine
space of dimension k′, where

k′ ≤ dk/teb ≤

⌈
k log(s) n

2c log n log(s−1) n

⌉
c log n

log(s) n
.

Note that k ≥ t implies⌈
k log(s) n

2c log n log(s−1) n

⌉
≤ k log(s) n

c log n log(s−1) n
.

Therefore k′ ≤ k/ log(s−1) n and the approximation algorithm from the induction
hypothesis yields a dk/c log ne-approximate solution, i.e.,

d (xG′, v |G′) ≤ d (l∗ |G′ , v |G′) dk/c log ne. (10)

Combining formulae (8), (10) and (7) we get d(xG, v) ≤ d(l∗, v)dk log(s) n/c log ne.

9

To estimate the running time note that the external loop of our algorithm
makes O(n) iterations and the internal loop makes at most

(
t
b

)
iterations where

each iteration involves a recursive nO(cs−c) time call if k ≥ t. It is easy to see
that(

t

b

)
≤ (et/b)b ≤

(
4ec log n log(s−1) n

log(s) n

c log(s) n

log n

)c logn/ log(s) n

= nO(c),

where the second inequality follows from b ≤ t/2 and t ≤ 4c log n log(s−1) n/ log(s) n.
Combining the estimates above we conclude that the total running time of our
algorithm is nO(cs).

Choosing s = dlog∗ ne in theorem 2 we obtain

Theorem 3. Let c ≥ 1 be an arbitrary constant. There exists a deterministic
nO(c log∗ n) time dk/c log ne-approximation algorithm for the NCP.

4 The remote point problem

We start with a formal statement of the remote point problem.
Remote point problem.

– INSTANCE: A linear code L = {xG | x ∈ Fk2} given by a generator matrix
G ∈ Fk×n2 .

– SOLUTION: A point v ∈ Fn2 .
– OBJECTIVE FUNCTION (to be maximized): The Hamming distance d(L, v)

from the code L to a point v.

We start with an algorithm that generates c log n-remote points for linear
spaces of dimension k ≤ n/2.

Theorem 4. Let c ≥ 1 be an arbitrary constant. There exists a deterministic
nO(c) time algorithm that for a given linear space L ⊆ Fn2 ,dimL ≤ n/2 generates
a point v such that d(L, v) ≥ c log n, provided n is large enough.

Proof. At the first phase of our algorithm we set d = dc log ne, t = d4c log ne and
use lemma 1 to obtain a family of

(
t
d

)
= nO(c) linear spaces MS , S ⊆ [t], |S| = d

such that
L+Bdc logne ⊆

⋃
S

MS .

It is readily seen from the construction of lemma 1 that the dimension of every
space MS is at most n/2 + n/3 = 5n/6, provided n is large enough.

At the second phase of our algorithm we generate a point v that is not
contained in the union

⋃
SMS , (and therefore is dc log ne-remote from L.) We

consider a potential function Φ that for every set W ⊆ Fn2 returns

Φ(W) =
∑
S

|W ∩MS |,

10

where the sum is over all S ⊆ [t], |S| = d. We assume that n is large enough, so
that

Φ(Fn2) =
∑
S

|MS | =
(
t

d

)
|MS | < 2n.

We initially set W = Fn2 and iteratively reduce the size of W by a factor of two
(cutting W with coordinate hyperplanes). At every iteration the value of Φ(W)
gets reduced by a factor of two or more. Therefore after n iterations we arrive
at a set W that contains a single point v such that Φ({v}) = 0. That point is
dc log ne-remote from L. For a set W ⊆ Fn2 , i ∈ [n], and b ∈ F2 let W |xi=b denote
the set {x ∈W | xi = b}. The pseudo-code of our algorithm is below:

Set t = d4c log ne and d = dc log ne;
Obtain

(
t
d

)
linear spaces MS as defined in lemma 1.

Set W = Fn2 ;
For every i in [n]

If Φ(W |xi=0) ≤ Φ(W |xi=1) Set W = W |xi=0; Else Set W = W |xi=1;
Output the single element of W ;
Note that every evaluation of the potential function Φ in our algorithm takes

nO(c) time, since all we need to do is compute the dimensions of
(
t
d

)
= nO(c)

affine spacesW∩MS . The algorithm involves 2n such computations and therefore
runs in nO(c) time.

Remark 1. It is easy to see that the algorithm of theorem 4 can be extended to
generate points that are c log n-far from a given linear space of dimension up to
(1− ε)n for any constant ε > 0.

We now present our algorithm for the remote point problem in its full gen-
erality.

Theorem 5. Let c ≥ 1 be an arbitrary constant. There exists a deterministic
nO(c) time algorithm that for a given linear space L ⊆ Fn2 ,dimL = k ≤ n/2
generates a point v such that d(L, v) ≥ bn/2kcd2c log ke, provided n is large
enough.

Proof. We partition the multi-set of columns of the matrix G in h = dn/2ke
multi-sets Gi, i ∈ [h] in such a way that every multi-set Gi, (with possibly a
single exception) has size exactly 2k. Next for all multi-sets Gi of size 2k we
use the algorithm of theorem 4 to obtain a point vi that is 2c log k-remote from
the space {xGi | x ∈ Fk2} ⊆ F2k

2 . Finally, we concatenate all vectors vi together
(possibly padding the result with less than 2k zeros) to obtain a vector v ∈ that
is bn/2kcd2c log ke-remote from L.

5 Conclusion

In this paper we have given three new deterministic approximation algorithms
for the nearest codeword problem. Our algorithms improve substantially upon

11

the (previously best known) deterministic algorithm of [3]. Moreover, our al-
gorithms approach (though do not match) the performance of the randomized
algorithm of [3]. Obtaining a complete derandomization remains a challenging
open problem.

We have also initiated a study of the remote point problem that asks to find
a point far from a given linear space L ⊆ Fn2 . We presented an algorithm that
achieves a remoteness of Ω(n log k/k) for linear spaces of dimension k ≤ n/2. We
consider further research on the remote point problem (and the related remote
set problem) to be a promising approach to constructing explicit rigid matrices
in the sense of Valiant [10].

Acknowledgement

Sergey Yekhanin would like to thank Venkat Guruswami for many helpful dis-
cussions regarding this work.

References

1. M. Alekhnovich, “More on average case vs. approximation complexity,” In Proc.
of the 44rd IEEE Symposium on Foundations of Computer Science (FOCS), pp.
298-307, 2003.

2. S. Arora, L. Babai, J. Stern, and Z. Sweedyk, “Hardness of approximate optima
in lattices, codes, and linear systems,” Journal of Computer and System Sciences,
vol. 54, issue 2, pp. 317-331, 1997.

3. P. Berman and M. Karpinski, “Approximating minimum unsatisfiability of linear
equations,” In Proc. of ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 514-516, 2002.

4. I. Dumer, D. Miccancio, and M. Sudan, “Hardness of approximating the minimum
distance of a linear code,” IEEE Transactions on Information Theory, vol. 49, issue
1, pp. 22-37, 2003.

5. J. Friedman, “A note on matrix rigidity,” Combinatorica, vol. 13, issue 2, pp.
235-239, 1993.

6. V. Guruswami, D. Micciancio, O. Regev, “The complexity of the covering radius
problem,” Computational Complexity, vol. 14, pp. 90-120, 2005.

7. B. Kashin and A. Razborov, “Improved lower bounds on the rigidity of Hadamard
matrices,” Mathematical Notes, vol. 63, issue 4, pp. 471-475, 1998.

8. S. Lokam, “Spectral methods for matrix rigidity with applications to size-depth
trade-offs and communication complexity,” Journal of Computer and System Sci-
ences, vol. 63, issue 3, pp. 449-473, 2001.

9. M. Shokrollahi, D. Speilman, and V. Stemann, “A remark on matrix rigidity,”
Information Processing Letters, vol. 64, issue 6, pp. 283-285, 1997.

10. L. Valiant, “Graph-theoretic arguments in low level complexity,” Proc. of 6th Sym-
posium on Mathematical Foundations of Computer Science (MFCS), pp. 162-176,
1977.

12

6 Appendix: explicit rigid sets

The definition of a rigid set involves three parameters. Specifically, to get im-
plications in complexity theory we want to obtain explicit subsets of Fn2 of size
O(n) that for any linear space L ⊆ Fn2 of dimension n/2 contain a point at
distance at least nε from L.

Given that we are currently very far from constructing explicit sets with the
desired values of all three parameters it is natural to approach the problem by
studying the trade-offs. Historically, the research on matrix rigidity [5, 7–9] has
focused on the trade-off between the values of dimension and distance that can
be obtained by explicit sets of size n.

In the next theorem we initiate a study of a trade-off between the values of
size and distance, when the dimension is set to n/2.

Theorem 6. For every 0 ≤ d ≤ O(n) there exists an explicit set A ⊆ Fn2 of size
2O(d)n/d such that for any linear space L ⊆ Fn2 , dimL = n/2 one of the points
of A is more than d-far from L.

Proof. Observe that there exists a constant c > 0 such that for any linear space
L of dimension n/2 there is a point in Fn2 that is more than cn-far from L.

To obtain the set A, split the coordinates into n/dd1/ce sets of size dd1/ce
each, and in each set take all binary vectors with support on this set. A consists
of all these vectors. Note that every vector in Fn2 is the sum of at most cn/d
vectors of our set A, whose size is 2O(d)n/d.

Now suppose that L is a linear space of dimension n/2 and every vector in
A is at most d-far from L. Then any vector of A is a sum of a vector of L and
at most d unit vectors. Hence any vector in Fn2 is a sum of a vector of L and at
most d(cn/d) unit vectors, contradicting the fact that there exists a vector that
are more than cn-far from L.

13

