PP-DEFINABILITY IS CO-NEXPTIME-COMPLETE

ROSS WILLARD

Abstract

PP-Def is the problem which takes as input a relation r and a finite set Γ of relations on the same finite domain A, and asks whether r is definable by a conjunctive query over (A, Γ), i.e., by a formula of the form $\exists \vec{y} \varphi(\vec{x}, \vec{y})$ where $\varphi(\vec{x}, \vec{y})$ is a conjunction of atomic formulas built using the relations in $\Gamma \cup\{=\}$, and where the variables range over A. (Such formulas $\exists \vec{y} \varphi(\vec{x}, \vec{y})$ are called primitive positive formulas.) PP-DEF is known to be in co-NEXPTIME, and has been shown to be tractable on the boolean domain.

We show that there exists $k>2$ such that PP-DEF is co-NEXPTIME-complete on k-element domains, answering a question of Creignou, Kolaitis and Zanuttini. We also show that two related problems are NEXPTIME-complete.

1. The problems

Let Γ be a finite set of relations on a finite domain A. By a pp-formula over Γ we mean a first-order formula of the form $\exists \vec{y} \bigwedge_{i=1}^{t} \alpha_{i}(\vec{x}, \vec{y})$ where each $\alpha_{i}(\vec{x}, \vec{y})$ is an atomic formula naming a relation from $\Gamma \cup\{=\}$ applied to a tuple of variables from $\vec{x} \cup \vec{y}$. The pp-definability problem (or PP-DEF) is:

Input:

A finite nonempty domain A;
A finite set Γ of relations on A;
Another relation r on A.
Question:
Is r definable by a pp-formula over Γ ?
This problem is also known as \exists-InvSAT in the theoretical computer science literature $[4,3]$. The uniform version is known to be in co-NEXPTIME (folkore?), while the boolean $(|A|=2)$ case was shown to be locally in P by Dalmau [4] and to be globally in P by Creignou, Kolaitis and Zanuttini [3]. At a workshop at the American Institute of Mathematics in April 2008, a working group conjectured that PP-DEF is co-NEXPTIME complete, even on 3 -element domains, and speculated that the lower bound can be proved by interpreting a tiling problem [2].

Date: December 28, 2009.
The support of the American Institute of Mathematics and the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged.

Given A, Γ, and some $m \geq 1$, the set of m-ary relations on A pp-definable over Γ includes A^{m} and is closed under intersections; hence given a relation r on A we can define the $p p$-closure of r over Γ to be the smallest relation of the same arity as r which contains r and is pp-definable over Γ. We denote the pp-closure of r over Γ by $[r]_{\Gamma}$. Thus r is pp-definable over Γ iff $[r]_{\Gamma}=r$.

The pp-closure of a relation over Γ may be conveniently described via polymorphisms, or equivalently, by homomorphisms of relational structures. Given A, Γ as above, let $\mathbf{A}=(A ; \Gamma)$ be the corresponding relational structure. The m-ary polymorphisms of Γ are precisely the homomorphisms from \mathbf{A}^{m} to \mathbf{A}. These include the so-called dictator functions $p_{i}^{m}, 1 \leq i \leq m$, where $p_{i}^{m}\left(x_{1}, \ldots, x_{m}\right)=x_{i}$ for all inputs $x_{1}, \ldots, x_{m} \in A$. Let $\operatorname{Hom}_{\mathbf{A}^{m}, \mathbf{A}}$ denote the set of all homomorphisms from \mathbf{A}^{m} to \mathbf{A}. Suppose now that $\vec{c}_{1}, \ldots, \vec{c}_{n}$ are chosen from A^{m} and let \mathbf{c} denote $\left(\vec{c}_{1}, \ldots, \vec{c}_{n}\right)$. Define

$$
\begin{aligned}
H(\mathbf{c}) & =\left\{\left(h\left(\vec{c}_{1}\right), \ldots, h\left(\vec{c}_{n}\right)\right) \in A^{n}: h \in \operatorname{Hom}_{\mathbf{A}^{m}, \mathbf{A}}\right\} \\
P(\mathbf{c}) & =\left\{\left(p_{i}^{m}\left(\vec{c}_{1}\right), \ldots, p_{i}^{m}\left(\vec{c}_{n}\right)\right) \in A^{n}: 1 \leq i \leq m\right\} .
\end{aligned}
$$

Lemma 1.1. Let A, Γ, m, \mathbf{c} be as above. Suppose r is an n-ary relation satisfying $P(\mathbf{c}) \subseteq r \subseteq H(\mathbf{c})$. Then
(1) $[r]_{\Gamma}=H(\mathbf{c})$.
(2) Hence r is pp-definable over Γ iff $r=H$ (c).

We can now describe two related problems which we will show are NEXPTIMEcomplete.
Related problem \#1: the pp-closure problem (PP-CLS).

Input:

A finite relational structure $\mathbf{A}=(A ; \Gamma)$ with Γ finite;
An n-ary relation r on A (for some $n \geq 1$);
An n-tuple $\vec{a} \in A^{n}$.

Question:

Is $\vec{a} \in[r]_{\Gamma}$?
Related problem \#2: the homomorphism extension problem (Ном-Ехт).

Input:

A finite relational structure $\mathbf{A}=(A ; \Gamma)$ with Γ finite;
A subset $S \subseteq A^{m}$ (for some $m \geq 1$);
A function $h_{0}: S \rightarrow A$.
Question:
Can h_{0} be extended to a homomorphism $\mathbf{A}^{m} \rightarrow \mathbf{A}$ (i.e., a polymorphism of Γ)?
It is not hard to show that both PP-ClS and Hom-Ext are in NEXPTIME. In fact, PP-Cls and Hom-Ext are essentially the same problem ${ }^{1}$, since:

[^0](1) Given an instance (A, Γ, r, \vec{a}) to PP-CLS with $r \cup\{\vec{a}\} \subseteq A^{n}$, let $m=|r|$, choose an enumeration $\left\{\vec{b}_{1}, \ldots, \vec{b}_{m}\right\}$ of r, let M be the $n \times m$ matrix whose j th column is \vec{b}_{j}, let \vec{c}_{i} denote the i th row of this matrix, and put $\mathbf{c}=\left(\vec{c}_{1}, \ldots, \vec{c}_{n}\right)$. Observe that $P(\mathbf{c})=r$ and hence $H(\mathbf{c})=[r]_{\Gamma}$ by Lemma 1.1. If there exist $i \neq j$ such that $\vec{c}_{i}=\vec{c}_{j}$ but $a_{i} \neq a_{j}$, then automatically $\vec{a} \notin[r]_{\mathbf{A}}$. Otherwise, define $S=\left\{\vec{c}_{1}, \ldots, \vec{c}_{n}\right\} \subseteq A^{m}$ and $h_{0}: S \rightarrow A$ by $h_{0}\left(\vec{c}_{i}\right)=a_{i}$. Then $\left(A, \Gamma, S, h_{0}\right)$ is an equivalent instance of Hom-Ext.
(2) Conversely, given an instance (A, Γ, S, h_{0}) of Hom-Ext with $S \subseteq A^{m}$, let $n=|S|$, enumerate S as $\left\{\vec{c}_{1}, \ldots, \vec{c}_{n}\right\}$, and let M be the $n \times m$ matrix whose i th row is \vec{c}_{i}. If we let r be the n-ary relation on A whose members are the columns of this matrix, and put $\vec{a}=\left(h_{0}\left(\vec{c}_{1}\right), \ldots, h_{0}\left(\vec{c}_{n}\right)\right)$, then by a similar argument as in the previous paragraph, (A, Γ, r, \vec{a}) is an equivalent instance of PP-Cls.

PP-Cls and PP-Def ${ }^{\text {co }}$ appear to be closely related. Given an input (A, Γ, r) to PP-Def where r is n-ary, we have that r is not pp-definable from Γ iff there exists $\vec{a} \in A^{k} \backslash r$ such that $\vec{a} \in[r]_{\Gamma}$. (Incidentally, this observation, together with the fact that PP-ClS is in NEXPTIME, gives a proof that PP-DEF is in co-NEXPTIME.) Conversely, given an input (A, Γ, r, \vec{a}) to PP-CLS, we have that $\vec{a} \notin[r]_{\Gamma}$ iff there exists a relation s of the same arity such that $r \subseteq s, s$ is pp-definable from Γ, and $\vec{a} \notin s$. Despite these relationships, we do not see any straightforward polynomial-time reductions of either of PP-CLS, PP-DEF ${ }^{c o}$ to the other. ${ }^{2}$

Nevertheless, to resolve the complexity of PP-Def, we find it fruitful to first study PP-Cls via Ном-Еxt. In section 3 we will show that there is a fixed finite relational structure $\mathbf{A}=(A ; \Gamma)$ such that the local problems PP-Cls(A) and $\operatorname{Hom}-\operatorname{Ext}(\mathbf{A})$ are NEXPTIME-complete. In section 4 we will give a more complicated construction which shows that there exists an integer $k \geq 3$ such that the restriction of PP-DEF to k-element domains is co-NEXPTIME-complete.

I thank Matt Valeriote for several helpful conversations on this topic.

2. An NEXPTIME-COMPLETE TILING PROBLEM

In this section we define two tiling-of-tori problems that are NEXPTIME-complete. Our presentation is inspired by and uses [1].

Definition 2.1.
(1) A domino system is a triple $\mathcal{D}=(D, H, V)$ where D is a finite non-empty set and $H, V \subseteq D \times D$.
(2) If $n \geq 2$, then $U(n)$ denotes the torus $\mathbb{Z}_{n} \times \mathbb{Z}_{n}$.

[^1]Definition 2.2. Suppose $\mathcal{D}=(D, H, V)$ is a domino system, $1 \leq k \leq n$, and $w=\left(w_{0}, w_{1}, \ldots, w_{k-1}\right) \in D^{k}$ is a word over D of length k. We say that \mathcal{D} tiles $U(n)$ with initial condition w if there exists a mapping $\tau: U(n) \rightarrow D$ such that for all $(i, j) \in U(n):$
(1) If $\tau(i, j)=d$ and $\tau(i+1, j)=e$, then $(d, e) \in H$;
(2) If $\tau(i, j)=d$ and $\tau(i, j+1)=e$, then $(d, e) \in V$;
(3) $\tau(i, 0)=w_{i}$ for $0 \leq i<k$.

The most general tiling problem we consider (call it ExpTile) is:

Input:

A domino system \mathcal{D};
An integer $m \geq 2$ given in unary notation;
A nonempty word w over D of length $k \leq m$.

Question:

Does \mathcal{D} tile $U\left(2^{m}\right)$ with initial condition w ?
The second tiling problem we want is a restriction of ExpTile. Say that a domino system $\mathcal{D}=(D, H, V)$ is full if $D=\operatorname{pr}_{1}(H)=\operatorname{pr}_{2}(H)=\operatorname{pr}_{1}(V)=\operatorname{pr}_{2}(V)$.

Definition 2.3. ExpTile ${ }^{\circ *}$ is the restriction of ExpTile to instances (\mathcal{D}, m, w) where \mathcal{D} is full and m is a power of 2 .

Definition 2.4. Let \mathcal{D} be a full domino system. $\operatorname{ExpTilE}^{\circ *}(\mathcal{D})$ is the local version of ExpTile ${ }^{\circ *}$ in which the inputs are restricted to those whose domino system is \mathcal{D}.

Proposition 2.5. ExpTile and ExpTile ${ }^{\circ *}$ are NEXPTIME-complete with respect to polynomial-time reductions. Moreover, there exists a full domino system \mathcal{D} such that ExpTile ${ }^{\circ *}(\mathcal{D})$ is NEXPTIME-complete.

Proof. See the Appendix.

3. The first construction

Let \mathcal{D} be a full domino system such that $\operatorname{ExpTilE}^{\circ *}(\mathcal{D})$ is NEXPTIME-complete (as promised by Proposition 2.5). In this section we construct a relational structure \mathbf{A} and give polynomial-time reductions of $\operatorname{ExpTile}^{\circ *}(\mathcal{D})$ to $\operatorname{Hom}-\operatorname{Ext}(\mathbf{A})$ and PP-Cls(A).

Let (\mathcal{D}, m, w) be an input to $\operatorname{Exp}^{\operatorname{TiLE}}{ }^{\circ *}(\mathcal{D})$. Since $m \geq 2$ and m is a power of 2 , we can write $m=2^{t+1}$ for some $t \geq 0$. We will use binary strings of length m to address elements of $\left\{0,1, \ldots, 2^{m}-1\right\}$ in the usual way. We will need relations which, when interpreted coordinate-wise on a pair of such binary strings of length m, determine whether they address adjacent $x, x+1$ in $\mathbb{Z}_{2^{m}}$. This can easily be done via a ternary relation which models the action of "adding 1 " to the first binary string to get the second binary string; the third argument takes a special "parameter" string
over a three-character alphabet; the role of this string is to indicate how far down the first string the "carrying of ones" should proceed.

More precisely, for $n>0$ we use $I(n)$ to denote the set of integers $\{0,1, \ldots, n-1\}$, which we also identify with \mathbb{Z}_{n} in the obvious way. For each $x \in I\left(2^{m}\right)$ we let $\lg (x)$ denote the largest integer $k \leq m$ such that 2^{k} divides x. Note in particular that $\lg (0)=m$. For $x \in I\left(2^{m}\right)$, we use \widehat{x} to denote the reverse m-bit binary representation of x. That is, if the usual binary representation of x is $c_{p} \cdots c_{2} c_{1} c_{0}(p<m)$, then

$$
\widehat{x}=(c_{0}, c_{1}, c_{2} \ldots, c_{p}, \underbrace{0, \ldots, 0}_{m-p-1}) \in\{0,1\}^{m} .
$$

Define $\beta_{0}, \beta_{1}, \ldots, \beta_{m} \in\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}^{m}$ by

$$
\begin{aligned}
\beta_{i} & =(\underbrace{\mathrm{a}, \ldots, \mathrm{a}}_{i}, \mathrm{~b}, \underbrace{\mathrm{c}, \ldots, \mathrm{c}}_{m-i-1}), \quad(0 \leq i<m) \\
\beta_{m} & =(\underbrace{\mathrm{a}, \mathrm{a}, \ldots, \mathrm{a}}_{m}) .
\end{aligned}
$$

Define a ternary relation $\prec \subseteq\{0,1\} \times\{0,1\} \times\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ as follows:

$$
\prec=\{(1,0, \mathrm{a}),(0,1, \mathrm{~b}),(0,0, \mathrm{c}),(1,1, \mathrm{c})\} .
$$

Lemma 3.1. For $x, y \in I\left(2^{m}\right)$ and $0 \leq k \leq m$, the following are equivalent:
(1) The triple $\left(\widehat{x}, \widehat{y}, \beta_{k}\right)$ is coordinatewise in \prec.
(2) $\lg (y)=k$ and $x=y-1\left(\bmod 2^{m}\right)$.

We now define the relational structure we wish to associate with (\mathcal{D}, m, w). Define $B=\{0,1\}^{2}, C=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, X=\{\top, \perp\}$, write $\mathcal{D}=(D, H, V)$, and put

$$
A=B \cup C \cup D \cup X \cup\{\infty\} .
$$

Define the following ternary relations on A :

$$
\begin{aligned}
\prec_{H}= & \left\{\left(\left(x_{1}, y\right),\left(x_{2}, y\right), t\right) \in B \times B \times C:\left(x_{1}, x_{2}, t\right) \in \prec, y \in\{0,1\}\right\} \\
& \cup\{(d, e, f) \in D \times D \times X: f=\perp \text { or }(d, e) \in H\}, \\
\prec_{V}= & \left\{\left(\left(x, y_{1}\right),\left(x, y_{2}\right), t\right) \in B^{2} \times B^{2} \times C:\left(y_{1}, y_{2}, t\right) \in \prec, x \in\{0,1\}\right\} \\
& \cup\{(d, e, f) \in D \times D \times X: f=\perp \text { or }(d, e) \in V\} .
\end{aligned}
$$

Definition 3.2. $\mathbf{A}=(A ; \Gamma)$ where $\Gamma=\left\{\prec_{H}, \prec_{V}\right\}$.
Recall that $U\left(2^{m}\right)$ denotes the torus $\mathbb{Z}_{2^{m}} \times \mathbb{Z}_{2^{m}}$. For $(x, y) \in U\left(2^{m}\right)$ we define $[x, y] \in B^{m}$ as follows: if $\widehat{x}=\left(x_{0}, x_{1}, \ldots, x_{m-1}\right)$ and $\widehat{y}=\left(y_{0}, y_{1}, \ldots, y_{m-1}\right)$, then

$$
[x, y]=\left(\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{m-1}, y_{m-1}\right)\right) .
$$

Theorem 3.3. \mathcal{D} tiles the torus $U\left(2^{m}\right)$ with initial condition w iff there exists a homomorphism $h: \mathbf{A}^{m} \rightarrow \mathbf{A}$ satisfying $h\left(\beta_{i}\right)=\top$ for all $i \leq m$ and $h([i, 0])=w_{i}$ for all $i<|w|$.

Proof. Suppose first that such a homomorphism $h: \mathbf{A}^{m} \rightarrow \mathbf{A}$ exists. Given $(i, j) \in$ $U\left(2^{m}\right)$, set $\vec{x}=[i-1, j], \vec{y}=[i, j]$, and $k=\lg (j)$. Then $\left(\vec{x}, \vec{y}, \beta_{k}\right)$ is coordinate-wise in \prec_{H}. As h is a homomorphism and $h\left(\beta_{k}\right)=\top$, we get $(h([i-1, j]), h([i, j]), \top) \in \prec_{H}$. By definition this implies $h([i-1, j]), h([i, j]) \in D$ and $(h([i-1, j]), h([i, j])) \in H$. A similar argument shows that $(h([i, j-1]), h([i, j])) \in V$ for all $(i, j) \in U\left(2^{m}\right)$. Thus we can define $\tau: U\left(2^{m}\right) \rightarrow D$ by $\tau(i, j)=h([i, j])$, and τ is a tiling of $U\left(2^{m}\right)$ by \mathcal{D} with initial condition w.

Conversely, if τ is a tiling of $U\left(2^{m}\right)$ by \mathcal{D} with initial condition w, we can define $h: A^{m} \rightarrow A$ by

$$
h(\vec{u})=\left\{\begin{array}{cl}
\tau(i, j) & \text { if } \vec{u}=[i, j] \in B^{m} \\
T & \text { if } \vec{u} \in\left\{\beta_{0}, \ldots, \beta_{m}\right\} \\
\perp & \text { if } \vec{u} \in C^{m} \backslash\left\{\beta_{0}, \ldots, \beta_{m}\right\} \\
\infty & \text { otherwise }
\end{array}\right.
$$

Then h is a homomorphism $\mathbf{A}^{m} \rightarrow \mathbf{A}$ having the required properties.
Since \mathbf{A} is determined by \mathcal{D} only (that is, not by m, w), and the construction from (m, w) of the set $S:=\left\{\beta_{i}: i \leq m\right\} \cup\{[i, 0]: i<|w|\}$ and the map $S \rightarrow A$ given by $\beta_{i} \mapsto \top,[i, 0] \mapsto w_{i}$ can be done in polynomial-time as a function of the size of (m, w), we have a polynomial-time reduction of $\operatorname{ExpTile}^{\circ *}(\mathcal{D})$ to $\operatorname{Hom}-\operatorname{Ext}(\mathbf{A})$. Hence:
Corollary 3.4. Hom-Ext(A) and $\mathrm{PP}-\operatorname{Cls}(\mathbf{A})$ are NEXPTIME-complete with respect to polynomial-time reductions.
Proof. By Theorem 2.5, the previous construction gives an explicit polynomial-time reduction of $\operatorname{ExpTile}^{\circ *}(\mathcal{D})$ to $\operatorname{Hom}^{-\operatorname{Ext}(\mathbf{A}) \text {. For completeness, we describe the }}$ corresponding reduction of $\operatorname{ExPTile}^{\circ *}(\mathcal{D})$ to $\operatorname{PP}-\operatorname{Cls}(\mathbf{A})$. Given (m, w) with $|w|=$ $k \leq m$, let $\ell=\ulcorner\log k\urcorner$ and define $\vec{c}_{i} \in C^{m+1} \times B^{k}(0 \leq i<m)$ by

$$
\vec{c}_{i}= \begin{cases}(\underbrace{c, \ldots, \mathrm{c}}_{i}, \mathrm{~b}, \underbrace{\mathrm{a}, \ldots, \mathrm{a}}_{m-i}, \underbrace{(0,0), \ldots}_{2^{i}}, \underbrace{(1,0), \ldots}_{2^{i}}, \underbrace{(0,0), \ldots}_{2^{i}}, \mathrm{etc}), & (i<\ell), \\ (\underbrace{\mathrm{c}, \ldots, \mathrm{c}}_{i}, \mathrm{~b}, \underbrace{\mathrm{a}, \ldots, \mathrm{a}}_{m-i}, \underbrace{(0,0), \ldots,(0,0)}_{k}), & (\ell \leq i<m),\end{cases}
$$

and let $r=\left\{\vec{c}_{i}: 0 \leq i<m\right\} \subseteq A^{m+k+1}$. Finally, define $\vec{a} \in X^{m+1} \times D^{k}$ by

$$
\vec{a}=(\underbrace{\top, \ldots, \top}_{m+1}, w_{0}, w_{1}, \ldots, w_{k-1}) .
$$

If M is the $m \times(m+k+1)$-matrix whose rows are $\vec{c}_{0}, \ldots, \vec{c}_{m-1}$, then the columns of M are $\beta_{0}, \beta_{1}, \ldots, \beta_{m},[0,0],[1,0], \ldots,[k-1,0]$. Thus by Theorem 3.3 and the connection described between Hom-Ext and PP-ClS in section $1, \vec{a} \in[r]_{\Gamma}$ iff \mathcal{D} tiles $U\left(2^{m}\right)$ with initial condition w. As $|r|=m$, the space needed to represent r is polynomial in the size of the original input to $\operatorname{ExpTILE}{ }^{\circ *}(\mathcal{D})$. Hence the map $(m, w) \mapsto(r, \vec{a})$ is a polynomial-time reduction of $\operatorname{ExPTile}{ }^{\circ *}(\mathcal{D})$ to $\operatorname{PP}-\operatorname{Cls}(\mathbf{A})$.

4. The second construction

The construction in the previous section does not seem to lead to a proof that PP-DEF is co-NEXPTIME-complete, in part because the relation r constructed in the proof of Corollary 3.4 is such that the cardinality of $[r]_{\Gamma}$ is always exponential in the size of input to the tiling problem being encoded, so is too large to coincide with any relation we might care to test for pp-definability (in the context of the argument in the previous section). In this section we describe a variant of the construction from the previous section which avoids this problem and simultaneously gives polynomialtime reductions of ExpTile ${ }^{\circ *}$ to $\mathrm{PP}-\mathrm{Def}^{c o}$, $\mathrm{PP}-\mathrm{ClS}$ and Hom-Ext.

Let (\mathcal{D}, m, w) be an input to ExpTile ${ }^{\circ *} ;$ write $m=2^{t+1}$ with $t \geq 0$. Again, addresses in $U\left(2^{m}\right)$ will be represented by double-binary strings in B^{m}. The main new idea is to revise the means by which adjacent addresses are recognized. In place of the 3 -ary relation \prec and the $m+1$ "parameter" strings $\beta_{0}, \ldots, \beta_{m} \in C^{m}$ which were used in the previous section, we will use $m+1$ relations each of arity $t+3$, which will jointly require only $t+1$ "parameter" strings $\gamma_{0}, \ldots, \gamma_{t} \in\{0,1\}^{m}$. Since $t+1=\log m$, the number of parameters we will need is now logarithmic in the size of the original input, a crucial fact in ensuring that the relation we will ultimately test for pp-definability is not too large.

More precisely, if $k \in I(m)$ then we'll use $\langle k\rangle$ to denote the reverse $(t+1)$-bit binary representation of k. Define the following $t+1$ elements of $\{0,1\}^{m}$:

$$
\begin{aligned}
\gamma_{0} & =(0,1,0,1,0,1,0,1, \ldots, 0,1,0,1,0,1,0,1) \\
\gamma_{1} & =(0,0,1,1,0,0,1,1, \ldots, 0,0,1,1,0,0,1,1) \\
\gamma_{2} & =(0,0,0,0,1,1,1,1, \ldots, 0,0,0,0,1,1,1,1) \\
& \vdots \\
\gamma_{t} & =(0,0,0,0,0,0,0,0, \ldots, 1,1,1,1,1,1,1,1)
\end{aligned}
$$

In other words, if $\gamma_{i}=\left(c_{0}^{i}, c_{1}^{s} \ldots, c_{m-1}^{i}\right)$, then c_{k}^{i} is the i th bit in $\left.\langle k\rangle\right\rangle$. Note that if M is the $(t+1) \times m$ matrix whose rows are $\gamma_{0}, \ldots, \gamma_{t}$, then the columns of M are $\left\langle\langle 0\rangle,\left\langle\langle 1\rangle, \ldots,\langle\langle m-1\rangle\rangle\right.\right.$, and the set of columns of M is $\{0,1\}^{t+1}$.

For each $q \in I\left(2^{m}\right)$ write $\widehat{q}=\left(c_{0}, c_{1}, \ldots, c_{m-1}\right)$ and define the $(t+2)$-ary relation $P_{q} \subseteq\{0,1\}^{t+2}$ as follows:

$$
P_{q}=\left\{\left(c_{j},\langle\langle j\rangle): 0 \leq j<m\right\} .\right.
$$

For each $0 \leq k<m$ define the $(t+3)$-ary relation $L_{k} \subseteq\{0,1\}^{t+3}$ as follows:

$$
\begin{aligned}
L_{k}= & \{(1,0,\langle\langle j\rangle): 0 \leq j<k\} \cup\{(0,1,\langle k\rangle\rangle)\} \cup \\
& \{(x, x,\langle j\rangle\rangle): x \in\{0,1\} \text { and } k<j<m\} .
\end{aligned}
$$

Also define the $(t+3)$-ary relation $L_{m} \subseteq\{0,1\}^{t+3}$ by

$$
L_{m}=\{(1,0,\langle\langle j\rangle): 0 \leq j<m\} .
$$

Lemma 4.1. Suppose $x, y, q \in I\left(2^{m}\right)$ and $0 \leq k \leq m$.
(1) $\left(\widehat{x}, \gamma_{0}, \gamma_{1}, \ldots, \gamma_{t}\right)$ is coordinate-wise in P_{q} iff $x=q$.
(2) $\left(\widehat{x}, \widehat{y}, \gamma_{0}, \gamma_{1}, \ldots, \gamma_{t}\right)$ is coordinate-wise in L_{k} iff $\lg (y)=k$ and $x=y-1$ $\left(\bmod 2^{m}\right)$.
Proof. By construction.
We now begin the definition of the relational structure we wish to associate with the given input (\mathcal{D}, m, w) to ExpTile ${ }^{\circ *}$. Define $B=\{0,1\}^{2}, C=\{0,1\}, E=\{\mathrm{a}, \mathrm{b}\}$, $X=\{\top, \perp\}$, write $\mathcal{D}=(D, H, V)$, and put

$$
A=B \cup C \cup D \cup E \cup X \cup\{\infty\}
$$

Define $\phi: C^{t+1} \rightarrow E$ by

$$
\phi(\vec{u})=\left\{\begin{array}{ll}
\mathrm{b} & \text { if } \vec{u}=1^{i} 0^{t+1-i} \\
\mathrm{a} & \text { otherwise }
\end{array} \text { for some } 0 \leq i \leq t+1\right.
$$

Note that if we write $\vec{u}=\left\langle\langle k\rangle\right.$ with $k \in I(m)$, then $\vec{u}=1^{i} 0^{t+1-i}$ iff $k=2^{i}-1$.
For each $q \in I\left(2^{m}\right)$ we define the $(t+3)$-ary relation $P_{q}^{0} \subseteq B \times C^{t+1} \times E$ ("row zero" analogue of P_{q}) as follows:

$$
P_{q}^{0}=\left\{((x, 0), \vec{u}, \phi(\vec{u})):(x, \vec{u}) \in P_{q}\right\} .
$$

For each $0 \leq k \leq m$ we define $(t+4)$-ary relations $L_{k}^{H}, L_{k}^{V} \subseteq B^{2} \times C^{t+1} \times E$ ("horizontal" and "vertical" analogues of L_{k}) as follows:

$$
\begin{aligned}
L_{k}^{H} & =\left\{\left(\left(x_{1}, y\right),\left(x_{2}, y\right), \vec{u}, \phi(\vec{u})\right) \in B^{2} \times C^{t+1} \times E:\left(x_{1}, x_{2}, \vec{u}\right) \in L_{k}, y \in\{0,1\}\right\} \\
L_{k}^{V} & =\left\{\left(\left(x, y_{1}\right),\left(x, y_{2}\right), \vec{u}, \phi(\vec{u})\right) \in B^{2} \times C^{t+1} \times E:\left(y_{1}, y_{2}, \vec{u}\right) \in L_{k}, x \in\{0,1\}\right\}
\end{aligned}
$$

For each $d \in D$ define the $(t+3)$-ary relation $T_{d}^{+} \subseteq D \times X^{t+2}$ by

$$
T_{d}^{+}=\left\{(x, \vec{v}) \in D \times X^{t+2}: x=d \text { or } \perp \in\left\{v_{0}, \ldots, v_{t+1}\right\}\right\}
$$

Similarly, define the $(t+4)$-ary relations $H^{+}, V^{+} \subseteq D^{2} \times X^{t+2}$ by

$$
\begin{aligned}
H^{+} & =\left\{(x, y, \vec{v}) \in D^{2} \times X^{t+2}:(x, y) \in H \text { or } \perp \in\left\{v_{0}, \ldots, v_{t+1}\right\}\right\} \\
V^{+} & =\left\{(x, y, \vec{v}) \in D^{2} \times X^{t+2}:(x, y) \in V \text { or } \perp \in\left\{v_{0}, \ldots, v_{t+1}\right\}\right\}
\end{aligned}
$$

We now assemble the relations for our relational structure. For $0 \leq k \leq m$ define the $(t+4)$-ary relations

$$
\begin{aligned}
H_{k} & =L_{k}^{H} \cup H^{+} \cup\{(\infty, \infty, \ldots, \infty)\} \\
V_{k} & =L_{k}^{V} \cup V^{+} \cup\{(\infty, \infty, \ldots, \infty)\}
\end{aligned}
$$

Recall that our input to ExpTile ${ }^{0 *}$ is (\mathcal{D}, m, w). Write $w=w_{0} w_{1} \cdots w_{\ell-1}$ with $|w|=\ell \leq m$, and for each $q<\ell$ define the $(t+3)$-ary relation

$$
T_{q}=P_{q}^{0} \cup T_{w_{q}}^{+} \cup\{(\infty, \infty, \ldots, \infty)\}
$$

Definition 4.2. $\mathbf{A}=(A ; \Gamma)$ where $\Gamma=\left\{H_{0}, \ldots, H_{m}, V_{0}, \ldots, V_{m}, T_{0}, \ldots, T_{\ell-1}\right\}$.
Define $\beta \in\{\mathrm{a}, \mathrm{b}\}^{m}$ by

$$
\beta=(\phi(\langle\langle 0\rangle), \phi(《 1\rangle\rangle), \phi(\langle 2\rangle\rangle), \ldots, \phi(\langle\langle m-1\rangle\rangle)) .
$$

Claim 4.3. Suppose $\vec{x}, \vec{y}, \vec{z}_{0}, \vec{z}_{1}, \ldots, \vec{z}, \vec{u} \in A^{m}, 0 \leq q<\ell$, and $0 \leq k \leq m$, and let σ be a self-map from $\{0,1, \ldots, t\}$ to itself.
(1) If $\left(\vec{x}, \vec{z}_{0}, \ldots, \overrightarrow{z_{t}}, \vec{u}\right)$ is coordinate-wise in T_{q}, then either $\left(\vec{x}, \vec{z}_{0}, \ldots, \overrightarrow{z_{t}}, \vec{u}\right)$ is in $B^{m} \times C^{m} \times \cdots \times C^{m} \times E^{m}$ or $\left\{\vec{x}, \vec{z}_{0}, \ldots, \vec{z}_{t}\right\}$ is disjoint from $B^{m} \cup C^{m} \cup E^{m}$.
(2) If $\left(\vec{x}, \vec{y}, \vec{z}_{0}, \ldots, \vec{z}_{t}, \vec{u}\right)$ is coordinate-wise in H_{k}, then either $\left(\vec{x}, \vec{y}, \vec{z}_{0}, \ldots, \vec{z}_{t}, \vec{u}\right)$ is in $B^{m} \times B^{m} \times C^{m} \times \cdots \times C^{m} \times E^{m}$ or $\left\{\vec{x}, \vec{y}, \vec{z}_{0}, \ldots, \vec{z}_{t}\right\}$ is disjoint from $B^{m} \cup C^{m} \cup E^{m}$. The same is true for V_{k}.
(3) $\left(\vec{x}, \gamma_{0}, \ldots, \gamma_{t}, \beta\right)$ is coordinate-wise in T_{q} iff $\vec{x}=[q, 0]$.
(4) $\left(\vec{x}, \vec{y}, \gamma_{0}, \ldots, \gamma_{t}, \beta\right)$ is coordinate-wise in H_{k} iff there exist $i, j \in I\left(2^{m}\right)$ such that $\lg (i)=k, \vec{x}=[i-1, j]$ and $\vec{y}=[i, j]$.
(5) $\left(\vec{x}, \vec{y}, \gamma_{0}, \ldots, \gamma_{t}, \beta\right)$ is coordinate-wise in V_{k} iff there exist $i, j \in I\left(2^{m}\right)$ such that $\lg (j)=k, \vec{x}=[i, j-1]$ and $\vec{y}=[i, j]$.
(6) If $\left(\vec{x}, \gamma_{\sigma(0)}, \ldots, \gamma_{\sigma(t)}, \beta\right)$ is coordinate-wise in T_{q}, then $\sigma(i)=i$ for all i.
(7) If $\left(\vec{x}, \vec{y}, \gamma_{\sigma(0)}, \ldots, \gamma_{\sigma(t)}, \beta\right)$ is coordinate-wise in H_{k}, then $\sigma(i)=i$ for all i. The same is true for V_{k}.

Proof. Items (1)-(5) follow easily from Lemma 4.1 and the definitions. To prove item (6), assume that $\left(x, \gamma_{\sigma(0)}, \ldots, \gamma_{\sigma(t)}, \beta\right)$ is coordinate-wise in T_{q}. We first prove that σ must be a permutation. Suppose $i<t$ and $i \notin \operatorname{ran}(\sigma)$. Let $k=m-1-2^{i}$. Then $\langle k\rangle=1^{i} 01^{t-i}$. Since $i \neq t$, we have $\left.\phi(\langle k\rangle\rangle\right)=$ a. However, γ_{j} has a 1 at coordinate k for all $j \in \operatorname{ran}(\sigma)$, so $\left(\gamma_{\sigma(0)}, \ldots, \gamma_{\sigma(t)}, \beta\right)$ at coordinate k is $(1, \ldots, 1, \mathrm{a})$, which is not in $\operatorname{graph}(\phi)$. This contradicts the assumption that $\left(x, \gamma_{\sigma(0)}, \ldots, \gamma_{\sigma(t)}, \beta\right)$ is coordinate-wise in T_{q} and hence proves $\{0,1, \ldots, t-1\} \subseteq \operatorname{ran}(\sigma)$. Finally, suppose $t \notin \operatorname{ran}(\sigma)$. Let $k=2^{t}$. Then $\langle k\rangle=0^{t} 1$ and $\left.\phi(\langle k\rangle\rangle\right)=\mathrm{a}$, so $\left(\gamma_{\sigma(0)}, \ldots, \gamma_{\sigma(t)}, \beta\right)$ at coordinate k equals $(0, \ldots, 0, \mathrm{a})$, which again is not in $\operatorname{graph}(\phi)$, contradicting the assumption that $\left(x, \gamma_{\sigma(0)}, \ldots, \gamma_{\sigma(t)}, \beta\right)$ is coordinate-wise in T_{q}. Hence $t \in \operatorname{ran}(\sigma)$, so σ is a permutation.

To prove that σ is the identity map, it now suffices to prove that $\sigma(0) \leq \sigma(1) \leq$ $\cdots \leq \sigma(t+1)$. Suppose instead there exists $j<t$ with $\sigma(j)>\sigma(j+1)$. Let $r=\sigma(j)$ and $k=2^{r}-1$. Then $\left(\gamma_{\sigma(0)}, \ldots, \gamma_{\sigma(t)}, \beta\right)$ at coordinate k has the form $(*, \ldots, *, 0,1, *, \ldots, *, \mathrm{~b})$, which is not in $\operatorname{graph}(\phi)$, again contradicting the assumption that $\left(x, \gamma_{\sigma(0)}, \ldots, \gamma_{\sigma(t)}, \beta\right)$ is coordinate-wise in T_{q}.

Definition 4.4.
(1) $\widehat{\top}=(\top, \top, \ldots, \top) \in A^{t+2}$.
(2) $\widehat{\infty}=(\infty, \infty, \ldots, \infty) \in A^{t+2}$.
(3) $r=\operatorname{graph}(\phi)=\left\{(\vec{u}, \phi(\vec{u})): \vec{u} \in C^{t+1}\right\} \subseteq A^{t+2}$.
(4) $s=r \cup\left(X^{t+2} \backslash\{\hat{\top}\}\right) \cup\{\widehat{\infty}\}$.

Lemma 4.5.

(1) $[r]_{\Gamma}=\left\{\left(a_{0}, \ldots, a_{t}, b\right) \in A^{t+2}:\right.$ there exists a homomorphism $h: \mathbf{A}^{m} \rightarrow \mathbf{A}$ with $h\left(\gamma_{i}\right)=a_{i}$ for $0 \leq i \leq t$ and $\left.h(\beta)=b\right\}$.
(2) $s \subseteq[r]_{\Gamma} \subseteq s \cup\{\hat{\top}\}$.

Proof. Let M be the $(t+2) \times m$ matrix whose columns in order are $(\langle\langle k\rangle, \phi(\langle k\rangle))$, $0 \leq k<m$. Then the columns of M enumerate r, and the rows of M are precisely $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{t}, \beta$. (1) then follows immediately from the connection between PP-CLS and Hom-Ext described on page 2.

Next, we'll show $s \subseteq[r]_{\mathbf{A}}$. Obviously $r \subseteq[r]_{\mathbf{A}}$. It is easy to check that the constant function $A^{m} \rightarrow\{\infty\}$ is a homomorphism $\mathbf{A}^{m} \rightarrow \mathbf{A}$ which, with item (1), proves $\widehat{\infty} \in[r]_{\mathbf{A}}$. Finally, assume $\mathbf{f}=\left(f_{0}, f_{1}, \ldots, f_{t}, f_{t+1}\right) \in X^{t+2} \backslash\{\widehat{T}\}$. Pick any $d_{0} \in D$ and define $h_{\mathbf{f}}: A^{m} \rightarrow A$ by

$$
h_{\mathbf{f}}(\vec{u})=\left\{\begin{aligned}
d_{0} & \text { if } \vec{u} \in B^{m} \\
f_{i} & \text { if } \vec{u}=\gamma_{i} \text { for some } 0 \leq i \leq t \\
f_{t+1} & \text { if } \vec{u}=\beta \\
\perp & \text { if } \vec{u} \in C^{m} \cup E^{m} \backslash\left\{\gamma_{0}, \ldots, \gamma_{t}, \beta\right\} \\
\infty & \text { otherwise. }
\end{aligned}\right.
$$

Clearly $\mathbf{f}=\left(h_{\mathbf{f}}\left(\gamma_{0}\right), \ldots, h_{\mathbf{f}}\left(\gamma_{t}\right), h_{\mathbf{f}}(\beta)\right)$, so to prove $\mathbf{f} \in[r]_{\mathbf{A}}$ it suffices in light of item (1) to show that $h_{\mathbf{f}}$ is a homomorphism $\mathbf{A}^{m} \rightarrow \mathbf{A}$. Suppose first that $q<\ell$; we verify that $h_{\mathbf{f}}$ preserves T_{q}. Assume $\vec{x}, \vec{z}_{0}, \ldots, \vec{z}_{t}, \vec{u} \in A^{m}$ and $\left(\vec{x}, \vec{z}_{0}, \ldots, \overrightarrow{z_{t}}, \vec{u}\right)$ is coordinate-wise in T_{q}, yet $\mathbf{g}=\left(h_{\mathbf{f}}(\vec{x}), h_{\mathbf{f}}\left(\vec{z}_{0}\right), \ldots, h_{\mathbf{f}}\left(\vec{z}_{t}\right), h_{\mathbf{f}}(\vec{u})\right) \notin T_{q}$. Then at least one of $h_{\mathbf{f}}(\vec{x}), h_{\mathbf{f}}\left(\vec{z}_{0}\right), \ldots, h_{\mathbf{f}}\left(\vec{z}_{t}\right), h_{\mathbf{f}}(\vec{u})$ is not equal to ∞. Hence by the definition of $h_{\mathbf{f}},\left\{\vec{x}, \vec{z}_{0}, \ldots, \vec{z}_{t}, \vec{u}\right\}$ is not disjoint from $B^{m} \cup C^{m} \cup E^{m}$, from which it follows that $\left(\vec{x}, \vec{z}_{0}, \ldots, \overrightarrow{z_{t}}, \vec{u}\right) \in B^{m} \times C^{m} \times \cdots \times C^{m} \times E^{m}$ by Claim 4.3(1). Hence $\mathbf{g}=$ $\left(d_{0}, f_{0}^{\prime}, \ldots, f_{t}^{\prime}, f_{t+1}^{\prime}\right)$ for some $f_{i}^{\prime} \in X$, by definition of $h_{\mathbf{f}}$. The only way that \mathbf{g} can fail to be in T_{q} is if $d_{0} \neq w_{q}$ and $f_{i}^{\prime}=\top$ for all i. Since $\vec{z}_{0}, \ldots, \vec{z}_{t} \in C^{m}$ and $\vec{u} \in E^{m}$, and using the definition of $h_{\mathbf{f}}$, we get that $\vec{u}=\beta$ and $f_{t+1}=\top$, and $\left\{\vec{z}_{0}, \ldots, \vec{z}_{t}\right\} \subseteq\left\{\gamma_{i}: 0 \leq i \leq t, f_{i}=\top\right\}$. Since $\mathbf{f} \neq \widehat{\top}$, there exists $\lambda \leq t$ such that $f_{\lambda}=\perp$, so $\left\{\vec{z}_{0}, \ldots, \vec{z}_{t}\right\}$ is a proper subset of $\left\{\gamma_{0}, \ldots, \gamma_{t}\right\}$. But this and the fact that $\left(\vec{x}, \vec{z}_{0}, \ldots, \overrightarrow{z_{t}}, \vec{u}\right)$ is coordinate-wise in T_{q} contradicts Claim 4.3(6). Hence $h_{\mathbf{f}}$ preserves T_{q}. The proofs for H_{k} and V_{k} are similar. Hence $h_{\mathbf{f}}$ is a homomorphism.

The remarks in the preceding paragraph show that $s \subseteq[r]_{\Gamma}$. To finish the proof of (2), note that the pp-formula $\exists z T_{0}\left(z, x_{0}, \ldots, x_{t}, y\right)$ defines the relation $s \cup\{\widehat{\top}\}$. Hence $[r]_{\Gamma} \subseteq s \cup\{\widehat{T}\}$.
Theorem 4.6. The following are equivalent:
(1) \mathcal{D} tiles the torus $U\left(2^{m}\right)$ with initial condition w.
(2) There exists a homomorphism $h: \mathbf{A}^{m} \rightarrow \mathbf{A}$ with $h\left(\gamma_{i}\right)=\top_{i}$ for $0 \leq i \leq t$ and $h(\beta)=T$.
(3) $\widehat{\top} \in[r]_{\Gamma}$.
(4) s is not pp-definable over Γ.

Proof. (2) $\Leftrightarrow(3) \Leftrightarrow(4)$ follows from Lemma 4.5. Thus it suffices to prove (1) $\Leftrightarrow(2)$.
$(1) \Rightarrow(2)$. Assume $\tau: U\left(2^{m}\right) \rightarrow D$ is a tiling of the torus $U\left(2^{m}\right)$ by \mathcal{D} with initial condition w. Define $h_{\tau}: A^{m} \rightarrow A$ by

$$
h_{\tau}(\vec{u})=\left\{\begin{array}{cl}
\tau(i, j) & \text { if } \vec{u}=[i, j] \in B^{m} \\
\top & \text { if } \vec{u} \in\left\{\gamma_{0}, \ldots, \gamma_{t}, \beta\right\} \\
\perp & \text { if } \vec{u} \in C^{m} \cup E^{m} \backslash\left\{\gamma_{0}, \ldots, \gamma_{t}, \beta\right\} \\
\infty & \text { otherwise. }
\end{array}\right.
$$

Clearly $\hat{\top}=\left(h_{\tau}\left(\gamma_{0}\right), \ldots, h_{\tau}\left(\gamma_{t}\right), h_{\tau}(\beta)\right)$, so to prove (2) it suffices to show that h_{τ} is a homomorphism $\mathbf{A}^{m} \rightarrow \mathbf{A}$.

Suppose $q<\ell$; we'll verify that h_{τ} preserves T_{q}. Assume $\vec{x}, \vec{z}_{0}, \ldots, \overrightarrow{z_{t}}, \vec{u} \in A^{m}$ and $\left(\vec{x}, \vec{z}_{0}, \ldots, \overrightarrow{z_{t}}, \vec{u}\right)$ is coordinate-wise in T_{q}, yet $\mathbf{g}=\left(h_{\tau}(\vec{x}), h_{\tau}\left(\vec{z}_{0}\right), \ldots, h_{\tau}\left(\vec{z}_{t}\right), h_{\tau}(\vec{u})\right) \notin$ T_{q}. Then as in the proof of Lemma 4.5, we get $\vec{x} \in B^{m}, \vec{z}_{0}, \ldots, \overrightarrow{z_{t}} \in C^{m}, \vec{u} \in E^{m}$, and $\mathbf{g}=\left(h_{\tau}(\vec{x}), \top, \ldots, \top\right)$ with $h_{\tau}(\vec{x}) \neq w_{q}$. This forces $\vec{u}=\beta$ and $\left\{\vec{z}_{0}, \ldots, \vec{z}_{t}\right\} \subseteq$ $\left\{\gamma_{0}, \ldots, \gamma_{t}\right\}$. Since $\left(\vec{x}, \vec{z}_{0}, \ldots, \overrightarrow{z_{t}}, \vec{u}\right)$ is coordinate-wise in T_{q}, Claim 4.3(6) yields $\vec{z}_{i}=\gamma_{i}$ for each $i \leq t$. Claim 4.3(3) then yields $\vec{x}=[q, 0]$. But the assumption that τ is a tiling of $U\left(2^{m}\right)$ with initial condition w implies $\tau(q, 0)=w_{q}$, contradicting the fact that $\tau(q, 0)=h_{\tau}([q, 0])=h_{\tau}(\vec{x}) \neq w_{q}$. Hence h_{τ} preserves each relation T_{q}. The proof for the relations H_{k} and V_{k} is similar. Hence h_{τ} is a homomorphism, proving (2).
$(2) \Rightarrow(1)$. Assume $h: \mathbf{A}^{m} \rightarrow \mathbf{A}$ is a homomorphism satisfying $h\left(\gamma_{i}\right)=\top$ for all $i \leq t$ and $h(\beta)=\top$. Given $(i, j) \in U\left(2^{m}\right)$, set $\vec{x}=[i-1, j] \in B^{m}, \vec{y}=[i, j] \in B^{m}$, and $k=\lg (i)$. Then $\left(\vec{x}, \vec{y}, \gamma_{0}, \ldots, \gamma_{t}, \beta\right)$ is coordinate-wise in H_{k} by Claim 4.3(4). Since h is a homomorphism, we get $(h(\vec{x}), h(\vec{y}), \top, \ldots, \top) \in H_{k}$, which implies $h(\vec{x}), h(\vec{y}) \in D$ and $(h(\vec{x}), h(\vec{y})) \in H$. Thus we can define a function $\tau_{h}: U\left(2^{m}\right) \rightarrow D$ by $\tau_{h}(i, j)=$ $h([i, j])$. The above argument and its analogue for the relations V_{k} show that τ_{h} is a tiling of $U\left(2^{m}\right)$ by \mathcal{D}. The analagous argument for the relations T_{q} prove that τ_{h} satisfies the initial condition w.
Theorem 4.7. PP-DEF ${ }^{c o}$, PP-ClS and Hom-Ext are NEXPTIME-complete for polynomial-time reductions.

Proof. The preceding construction takes an instance (\mathcal{D}, m, w) of ExpTile ${ }^{\circ *}$ and produces equivalent instances ($\mathbf{A},\left\{\gamma_{0}, \ldots, \gamma_{t}, \beta\right\}, \gamma_{i} \mapsto \top, \beta \mapsto \top$) of Hom-Ext, (A $, r, \widehat{\top})$ of PP-Cls, and (\mathbf{A}, s) of $\mathrm{PP}-\mathrm{DEF}^{c o}$. It suffices to show that the reductions are polynomial-time computable; the only issue is whether the sizes of the constructed instances are polynomially bounded in the size of ($\mathcal{D}, m, w)$.

Because \mathcal{D} is full we certainly have $d+m \leq\|(\mathcal{D}, m, w)\|$, where $\|(\mathcal{D}, m, w)\|$ denotes the size of a standard encoding of (\mathcal{D}, m, w) and $d=|D|$. Analyzing the above construction, we see that

$$
\begin{aligned}
|A| & =d+11 \\
\left|H_{k}\right|,\left|V_{k}\right| & \leq 4 m+d^{2} \cdot 2^{t+2}+1 \leq 2 m(d+1)^{2} \\
\left|T_{q}\right| & \leq m+d \cdot 2^{t+2}+1 \leq 2 m(d+1) \\
|r| & =2^{t+1}=m \\
|s| & =m+\left(2^{t+2}-1\right)+1=3 m
\end{aligned}
$$

Hence

$$
\begin{array}{r}
\|(\mathbf{A}, s)\| \leq \log |A|\left(1+2(m+1) \cdot 2 m(d+1)^{2} \cdot(t+4)+\right. \\
\ell \cdot 2 m(d+1) \cdot(t+3)+3 m \cdot(t+2))
\end{array}
$$

Since $t+1=\log m$ and $\ell \leq m$, the above upper bound is $O\left((d+m)^{5}\right)$, proving $\|(\mathbf{A}, s)\|$ is polynomial in $\|(\mathcal{D}, m, w)\|$. The analysis for $\|(\mathbf{A}, r, \widehat{\top})\|$ is just as easy, and the size of $\left(\mathbf{A},\left\{\gamma_{0}, \ldots, \gamma_{t}, \beta\right\}, \gamma_{i} \mapsto \top_{i}, \beta \mapsto \top\right)$ is essentially the same as $\|(\mathbf{A}, r, \widehat{\top})\|$.
Corollary 4.8. There exists $k \geq 3$ such that the restrictions of PP-DEF ${ }^{c o}$, PP-ClS and Ном-Еxt to k-element domains are NEXPTIME-complete.

Proof. Fix a full domino system \mathcal{D} for which $\operatorname{ExpTile}^{\circ *}(\mathcal{D})$ is NEXPTIME-complete. (Such a \mathcal{D} is promised by Proposition 2.5.) If $\mathcal{D}=(D, H, V)$, then the above argument shows that we can take $k=|D|+11$.

5. Miscellaneous remarks and open questions

Remark 5.1. PP-Def is the relational "dual" of Gen-Clo, the algebraic "clone generation" problem. Kozik [5] proves that there exists a fixed, finite algebra \mathbb{A} for which the local problem GEn-Clo(\mathbb{A}) is EXPTIME-complete.

Question 1: By analogy, is there a fixed finite relational structure \mathbf{A} for which the local problem $\operatorname{PP}-\operatorname{DEF}(\mathbf{A})$ is co-NEXPTIME-complete?

Question 2: Can the parameter k in Corollary 4.8 be reduced to $k=3$ (as conjectured by the working group at AIM)?

Remark 5.2. $\mathrm{PP}-\mathrm{DEF}^{c o}$ and PP-CLS are each polynomial-time reducible to the other, since they are both NEXPTIME-complete with respect to polynomial-time reductions.

Question 3: is there a relatively simple, direct polynomial-time reduction of either problem to the other?

Remark 5.3. The construction in section 4, incorporating the proof of Corollary 4.8, shows that PP-DEF ${ }^{c o}$ and PP-ClS remain NEXPTIME-complete even if the input relations are represented (generally less efficiently) by their characteristic functions (hence a k-ary relation on a d-element set has size d^{k}).

Remark 5.4. The construction in section 4 also shows more specifically that the following variant of PP-DEF is co-NEXPTIME-complete:

Input:

A finite relational structure $\mathbf{A}=\langle A ; \Gamma\rangle$ of finite signature;
A k-ary relation $p \in \Gamma$.
A k-tuple $\vec{a} \in A^{k}$.

Question:

Is $p \backslash\{\vec{a}\}$ primitive-positive definable over Γ ?

6. Appendix: NEXPTIME-completeness for ExpTile and ExpTile ${ }^{\circ *}$

We first prove that both ExpTile and ExpTile ${ }^{\circ *}$ are NEXPTIME-complete. Later we will also prove that there exists a fixed \mathcal{D} such that $\operatorname{ExpTile}^{\circ *}(\mathcal{D})$ is NEXPTIME-complete, completing the proof of Proposition 2.5.

Define two problems intermediate to ExpTile and ExpTile ${ }^{\circ *}$ as follows:

Definition 6.1.

(1) ExpTile* is the restriction of ExpTile to instances ($\mathcal{D}, m, w)$ where m is a power of 2 .
(2) ExpTile ${ }^{\circ}$ is the restriction of ExpTile to instances (\mathcal{D}, m, w) where \mathcal{D} is full (see section 2).

Note first that ExpTile and ExpTile* can be polynomial-time reduced to their full restrictions ExpTile ${ }^{\circ}$ and ExpTile ${ }^{\circ *}$ respectively, by repeatedly deleting dominoes not mentioned in $\operatorname{pr}_{1}(H) \cap \operatorname{pr}_{2}(H) \cap \operatorname{pr}_{1}(V) \cap \operatorname{pr}_{2}(V)$ and re-indexing the remaining input data, immediately answering "no" if the initial condition mentions a deleted domino.

Thus it will suffice to show:
(1) ExpTile ${ }^{\circ}$ is in NEXPTIME.
(2) ExpTile* is NEXPTIME-hard.

Lemma 6.2. ExpTile ${ }^{\circ}$ is in NEXPTIME.

Proof. Suppose (\mathcal{D}, m, w) is an input to ExpTile ${ }^{\circ}$, with $\mathcal{D}=(D, H, V),|D|=d$, and $|w|=k \leq m$. Because \mathcal{D} is full, we can assume $d+m \leq\|(\mathcal{D}, m, w)\|$.

If the answer for this input is "yes," a tiling τ witnessing this can be presented in $2^{2 m} \log d$ space and its correctness can be checked on a multi-tape deterministic Turing machine with additional input tape for τ in time bounded by a polynomial in $2^{m} d$. Since $\log \left(2^{m} d\right)=m+\log d \leq\|(\mathcal{D}, n, w)\|$, this proves ExpTile ${ }^{\circ} \in$ NEXPTIME.

Lemma 6.3. ExpTile* is NEXPTIME-hard for polynomial-time reductions.
Proof. Assume L is a language in NEXPTIME. Let Σ be the alphabet of L, and fix a nondeterministic Turing machine M which accepts the language L in time $f(n) \leq 2^{C n^{k}}$. We can assume (at the expense of increasing C, k) that M works on a single semi-infinite tape, that the alphabet of M contains Σ and at least one other symbol \square (blank), that M never tries to move left from the left-most tape cell, and that at every stage of a computation of M there is never a blank symbol to the left of a non-blank symbol.

Under these assumptions, Börger, Grädel and Gurevich [1] describe a domino system $\mathcal{D}_{L}=(D, H, V)$ and a linear-time reduction which takes any input word $x \in \Sigma^{+}$ to a word $\varphi(x) \in D^{+}$of the same length $k>0$, such that

- If some computation of M accepts x in time less than or equal to $t_{0} \geq k$, then \mathcal{D}_{L} tiles $U(n)$ with initial condition $\varphi(x)$ for all $n \geq t_{0}+2$.
- If M does not accept x, then \mathcal{D}_{L} does not tile $U(n)$ with initial condition $\varphi(x)$ for any $n \geq k+2$.
Thus we can reduce L to ExpTile* be sending $x \mapsto\left(\mathcal{D}_{L}, m(x), \varphi(x)\right)$ where $m(x)$ is the least power of 2 greater than $C|x|^{k}+1$. Since \mathcal{D}_{L}, C and k are fixed (for L), this is clearly a polynomial-time reduction.

Corollary 6.4. ExpTile and ExpTile ${ }^{\circ *}$ are NEXPTIME-complete for polynomialtime reductions.

Corollary 6.5. There exists a full domino system \mathcal{D} such that $\operatorname{ExpTile}^{\circ *}(\mathcal{D})$ is NEXPTIME-complete for polynomial-time reductions.

Proof. Fix a standard encoding $(\mathcal{D}, m, w) \mapsto\ulcorner(\mathcal{D}, m, w)\urcorner$ of inputs to ExpTiLE as strings over a finite alphabet Σ, and define

$$
L=\left\{\ulcorner(\mathcal{D}, m, w)\urcorner: \mathcal{D} \text { tiles } U\left(2^{m}\right) \text { with initial condition } w\right\} \text {. }
$$

L is NEXPTIME-complete by Corollary 6.4. The proof of Lemma 6.3 produces a domino system \mathcal{D}_{L} and a polynomial-time reduction of L to $\operatorname{ExpTile}\left(\mathcal{D}_{L}\right)$. By the comments following Definition 6.1, we can find a full domino system \mathcal{D} and a polynomial-time reduction of $\operatorname{Exp} \operatorname{Tile}^{*}\left(\mathcal{D}_{L}\right)$ to $\operatorname{ExpTile}^{\circ *}(\mathcal{D})$, so $\operatorname{ExpTile}^{\circ *}(\mathcal{D})$ is NEXPTIME-complete.

References

[1] E. Börger, E. Grädel and Y. Gurevich, The Classical Decision Problem, Springer-Verlag (Berlin), 1997.
[2] B. ten Cate, Notes on AIM CSP workshop, April 21, 2008, http://www.aimath.org/WWN/constraintsatis/constraintsatis.pdf
[3] N. Creignou, P. Kolaitis, and B. Zanuttini, "Structure identification of boolean relations and plain bases for co-clones," J. Computer Sys. Sci. 74 (2008), 1103-1115.
[4] V. Dalmau, Computational complexity of problems over generalized formulas. PhD thesis, Universitat Politécnica de Catalunya, 2000.
[5] M. Kozik, "A finite set of functions with an EXPTIME-complete composition problem," Theoret. Comput. Sci. 407 (2008), 330-341.

Pure Mathematics Dept, University of Waterloo, Waterloo, Ontario, Canada

[^0]: ${ }^{1}$ Provided relations are represented as lists, not as $\{0,1\}$-valued tables.

[^1]: ${ }^{2}$ We will see that they are polynomial-time equivalent, since they are both NEXPTIME-complete for polynomial-time reductions.

