PP-DEFINABILITY IS CO-NEXPTIME-COMPLETE

ROSS WILLARD

ABSTRACT. PP-DEF is the problem which takes as input a relation r and a finite set Γ of relations on the same finite domain A, and asks whether r is definable by a conjunctive query over (A, Γ) , i.e., by a formula of the form $\exists \vec{y}\varphi(\vec{x}, \vec{y})$ where $\varphi(\vec{x}, \vec{y})$ is a conjunction of atomic formulas built using the relations in $\Gamma \cup \{=\}$, and where the variables range over A. (Such formulas $\exists \vec{y}\varphi(\vec{x}, \vec{y})$ are called *primitive positive* formulas.) PP-DEF is known to be in co-NEXPTIME, and has been shown to be tractable on the boolean domain.

We show that there exists k > 2 such that PP-DEF is co-*NEXPTIME*-complete on k-element domains, answering a question of Creignou, Kolaitis and Zanuttini. We also show that two related problems are *NEXPTIME*-complete.

1. The problems

Let Γ be a finite set of relations on a finite domain A. By a *pp-formula over* Γ we mean a first-order formula of the form $\exists \vec{y} \bigwedge_{i=1}^{t} \alpha_i(\vec{x}, \vec{y})$ where each $\alpha_i(\vec{x}, \vec{y})$ is an atomic formula naming a relation from $\Gamma \cup \{=\}$ applied to a tuple of variables from $\vec{x} \cup \vec{y}$. The *pp-definability problem* (or PP-DEF) is:

Input:

A finite nonempty domain A;

A finite set Γ of relations on A;

Another relation r on A.

Question:

Is r definable by a pp-formula over Γ ?

This problem is also known as \exists -INVSAT in the theoretical computer science literature [4, 3]. The uniform version is known to be in co-*NEXPTIME* (folkore?), while the boolean (|A| = 2) case was shown to be locally in *P* by Dalmau [4] and to be globally in *P* by Creignou, Kolaitis and Zanuttini [3]. At a workshop at the American Institute of Mathematics in April 2008, a working group conjectured that PP-DEF is co-*NEXPTIME* complete, even on 3-element domains, and speculated that the lower bound can be proved by interpreting a tiling problem [2].

Date: December 28, 2009.

The support of the American Institute of Mathematics and the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged.

Given A, Γ , and some $m \geq 1$, the set of *m*-ary relations on A pp-definable over Γ includes A^m and is closed under intersections; hence given a relation r on A we can define the *pp-closure of* r over Γ to be the smallest relation of the same arity as r which contains r and is pp-definable over Γ . We denote the pp-closure of r over Γ by $[r]_{\Gamma}$. Thus r is pp-definable over Γ iff $[r]_{\Gamma} = r$.

The pp-closure of a relation over Γ may be conveniently described via polymorphisms, or equivalently, by homomorphisms of relational structures. Given A, Γ as above, let $\mathbf{A} = (A; \Gamma)$ be the corresponding relational structure. The *m*-ary polymorphisms of Γ are precisely the homomorphisms from \mathbf{A}^m to \mathbf{A} . These include the so-called *dictator* functions p_i^m , $1 \leq i \leq m$, where $p_i^m(x_1, \ldots, x_m) = x_i$ for all inputs $x_1, \ldots, x_m \in A$. Let $\operatorname{Hom}_{\mathbf{A}^m, \mathbf{A}}$ denote the set of all homomorphisms from \mathbf{A}^m to \mathbf{A} . Suppose now that $\vec{c}_1, \ldots, \vec{c}_n$ are chosen from A^m and let \mathbf{c} denote $(\vec{c}_1, \ldots, \vec{c}_n)$. Define

$$\begin{aligned} H(\mathbf{c}) &= \{ (h(\vec{c}_1), \dots, h(\vec{c}_n)) \in A^n : h \in \operatorname{Hom}_{\mathbf{A}^m, \mathbf{A}} \} \\ P(\mathbf{c}) &= \{ (p_i^m(\vec{c}_1), \dots, p_i^m(\vec{c}_n)) \in A^n : 1 \le i \le m \}. \end{aligned}$$

Lemma 1.1. Let A, Γ, m, \mathbf{c} be as above. Suppose r is an n-ary relation satisfying $P(\mathbf{c}) \subseteq r \subseteq H(\mathbf{c})$. Then

(1) $[r]_{\Gamma} = H(\mathbf{c}).$

(2) Hence r is pp-definable over Γ iff $r = H(\mathbf{c})$.

We can now describe two related problems which we will show are *NEXPTIME*-complete.

Related problem #1: the *pp-closure problem* (PP-CLS).

Input:

A finite relational structure $\mathbf{A} = (A; \Gamma)$ with Γ finite; An *n*-ary relation *r* on *A* (for some $n \ge 1$);

An *n*-tuple $\vec{a} \in A^n$.

Question:

Is $\vec{a} \in [r]_{\Gamma}$?

Related problem #2: the homomorphism extension problem (HOM-EXT).

Input:

A finite relational structure $\mathbf{A} = (A; \Gamma)$ with Γ finite; A subset $S \subseteq A^m$ (for some $m \ge 1$); A function $h_0 : S \to A$.

Question:

Can h_0 be extended to a homomorphism $\mathbf{A}^m \to \mathbf{A}$ (i.e., a polymorphism of Γ)?

It is not hard to show that both PP-CLS and HOM-EXT are in *NEXPTIME*. In fact, PP-CLS and HOM-EXT are essentially the same problem¹, since:

¹Provided relations are represented as lists, not as $\{0, 1\}$ -valued tables.

- (1) Given an instance (A, Γ, r, \vec{a}) to PP-CLS with $r \cup \{\vec{a}\} \subseteq A^n$, let m = |r|, choose an enumeration $\{\vec{b}_1, \ldots, \vec{b}_m\}$ of r, let M be the $n \times m$ matrix whose jth column is \vec{b}_j , let \vec{c}_i denote the *i*th row of this matrix, and put $\mathbf{c} = (\vec{c}_1, \ldots, \vec{c}_n)$. Observe that $P(\mathbf{c}) = r$ and hence $H(\mathbf{c}) = [r]_{\Gamma}$ by Lemma 1.1. If there exist $i \neq j$ such that $\vec{c}_i = \vec{c}_j$ but $a_i \neq a_j$, then automatically $\vec{a} \notin [r]_{\mathbf{A}}$. Otherwise, define $S = \{\vec{c}_1, \ldots, \vec{c}_n\} \subseteq A^m$ and $h_0 : S \to A$ by $h_0(\vec{c}_i) = a_i$. Then (A, Γ, S, h_0) is an equivalent instance of HOM-EXT.
- (2) Conversely, given an instance (A, Γ, S, h_0) of HOM-EXT with $S \subseteq A^m$, let n = |S|, enumerate S as $\{\vec{c}_1, \ldots, \vec{c}_n\}$, and let M be the $n \times m$ matrix whose *i*th row is \vec{c}_i . If we let r be the *n*-ary relation on A whose members are the columns of this matrix, and put $\vec{a} = (h_0(\vec{c}_1), \ldots, h_0(\vec{c}_n))$, then by a similar argument as in the previous paragraph, (A, Γ, r, \vec{a}) is an equivalent instance of PP-CLS.

PP-CLS and PP-DEF^{co} appear to be closely related. Given an input (A, Γ, r) to PP-DEF where r is n-ary, we have that r is not pp-definable from Γ iff there exists $\vec{a} \in A^k \setminus r$ such that $\vec{a} \in [r]_{\Gamma}$. (Incidentally, this observation, together with the fact that PP-CLS is in NEXPTIME, gives a proof that PP-DEF is in co-NEXPTIME.) Conversely, given an input (A, Γ, r, \vec{a}) to PP-CLS, we have that $\vec{a} \notin [r]_{\Gamma}$ iff there exists a relation s of the same arity such that $r \subseteq s$, s is pp-definable from Γ , and $\vec{a} \notin s$. Despite these relationships, we do not see any straightforward polynomial-time reductions of either of PP-CLS, PP-DEF^{co} to the other.²

Nevertheless, to resolve the complexity of PP-DEF, we find it fruitful to first study PP-CLS via HOM-EXT. In section 3 we will show that there is a fixed finite relational structure $\mathbf{A} = (A; \Gamma)$ such that the local problems PP-CLS(\mathbf{A}) and HOM-EXT(\mathbf{A}) are *NEXPTIME*-complete. In section 4 we will give a more complicated construction which shows that there exists an integer $k \geq 3$ such that the restriction of PP-DEF to k-element domains is co-*NEXPTIME*-complete.

I thank Matt Valeriote for several helpful conversations on this topic.

2. An NEXPTIME-COMPLETE TILING PROBLEM

In this section we define two tiling-of-tori problems that are *NEXPTIME*-complete. Our presentation is inspired by and uses [1].

Definition 2.1.

- (1) A domino system is a triple $\mathcal{D} = (D, H, V)$ where D is a finite non-empty set and $H, V \subseteq D \times D$.
- (2) If $n \ge 2$, then U(n) denotes the torus $\mathbb{Z}_n \times \mathbb{Z}_n$.

 $^{^{2}}$ We will see that they are polynomial-time equivalent, since they are both *NEXPTIME*-complete for polynomial-time reductions.

Definition 2.2. Suppose $\mathcal{D} = (D, H, V)$ is a domino system, $1 \leq k \leq n$, and $w = (w_0, w_1, \ldots, w_{k-1}) \in D^k$ is a word over D of length k. We say that \mathcal{D} tiles U(n) with initial condition w if there exists a mapping $\tau : U(n) \to D$ such that for all $(i, j) \in U(n)$:

- (1) If $\tau(i, j) = d$ and $\tau(i + 1, j) = e$, then $(d, e) \in H$;
- (2) If $\tau(i, j) = d$ and $\tau(i, j + 1) = e$, then $(d, e) \in V$;
- (3) $\tau(i, 0) = w_i$ for $0 \le i < k$.

The most general tiling problem we consider (call it EXPTILE) is:

Input:

A domino system \mathcal{D} ;

An integer $m \ge 2$ given in *unary* notation;

A nonempty word w over D of length $k \leq m$.

Question:

Does \mathcal{D} tile $U(2^m)$ with initial condition w?

The second tiling problem we want is a restriction of EXPTILE. Say that a domino system $\mathcal{D} = (D, H, V)$ is full if $D = \mathrm{pr}_1(H) = \mathrm{pr}_2(H) = \mathrm{pr}_1(V) = \mathrm{pr}_2(V)$.

Definition 2.3. EXPTILE^{°*} is the restriction of EXPTILE to instances (\mathcal{D}, m, w) where \mathcal{D} is full and m is a power of 2.

Definition 2.4. Let \mathcal{D} be a full domino system. EXPTILE^{$\circ*$}(\mathcal{D}) is the local version of EXPTILE^{$\circ*$} in which the inputs are restricted to those whose domino system is \mathcal{D} .

Proposition 2.5. EXPTILE and EXPTILE^{$\circ*$} are NEXPTIME-complete with respect to polynomial-time reductions. Moreover, there exists a full domino system \mathcal{D} such that EXPTILE^{$\circ*$}(\mathcal{D}) is NEXPTIME-complete.

Proof. See the Appendix.

3. The first construction

Let \mathcal{D} be a full domino system such that $\text{EXPTILE}^{\circ*}(\mathcal{D})$ is *NEXPTIME*-complete (as promised by Proposition 2.5). In this section we construct a relational structure **A** and give polynomial-time reductions of $\text{EXPTILE}^{\circ*}(\mathcal{D})$ to $\text{HOM-EXT}(\mathbf{A})$ and PP-CLS(**A**).

Let (\mathcal{D}, m, w) be an input to EXPTILE^{°*} (\mathcal{D}) . Since $m \geq 2$ and m is a power of 2, we can write $m = 2^{t+1}$ for some $t \geq 0$. We will use binary strings of length m to address elements of $\{0, 1, \ldots, 2^m - 1\}$ in the usual way. We will need relations which, when interpreted coordinate-wise on a pair of such binary strings of length m, determine whether they address adjacent x, x + 1 in \mathbb{Z}_{2^m} . This can easily be done via a ternary relation which models the action of "adding 1" to the first binary string to get the second binary string; the third argument takes a special "parameter" string

over a three-character alphabet; the role of this string is to indicate how far down the first string the "carrying of ones" should proceed.

More precisely, for n > 0 we use I(n) to denote the set of integers $\{0, 1, \ldots, n-1\}$, which we also identify with \mathbb{Z}_n in the obvious way. For each $x \in I(2^m)$ we let lg(x) denote the largest integer $k \leq m$ such that 2^k divides x. Note in particular that lg(0) = m. For $x \in I(2^m)$, we use \hat{x} to denote the reverse m-bit binary representation of x. That is, if the usual binary representation of x is $c_p \cdots c_2 c_1 c_0$ (p < m), then

$$\widehat{x} = (c_0, c_1, c_2, \dots, c_p, \underbrace{0, \dots, 0}_{m-p-1}) \in \{0, 1\}^m.$$

Define $\beta_0, \beta_1, \ldots, \beta_m \in {a, b, c}^m$ by

$$\beta_i = (\underbrace{\mathbf{a}, \dots, \mathbf{a}}_{i}, \mathbf{b}, \underbrace{\mathbf{c}, \dots, \mathbf{c}}_{m-i-1}), \quad (0 \le i < m)$$

$$\beta_m = (\underbrace{\mathbf{a}, \mathbf{a}, \dots, \mathbf{a}}_{m}).$$

Define a ternary relation $\prec \subseteq \{0,1\} \times \{0,1\} \times \{a,b,c\}$ as follows:

 $\prec = \{(1, 0, \mathbf{a}), (0, 1, \mathbf{b}), (0, 0, \mathbf{c}), (1, 1, \mathbf{c})\}.$

Lemma 3.1. For $x, y \in I(2^m)$ and $0 \le k \le m$, the following are equivalent:

- (1) The triple $(\hat{x}, \hat{y}, \beta_k)$ is coordinatewise in \prec .
- (2) $\lg(y) = k \text{ and } x = y 1 \pmod{2^m}$.

We now define the relational structure we wish to associate with (\mathcal{D}, m, w) . Define $B = \{0, 1\}^2$, $C = \{a, b, c\}$, $X = \{\top, \bot\}$, write $\mathcal{D} = (D, H, V)$, and put

$$A = B \cup C \cup D \cup X \cup \{\infty\}.$$

Define the following ternary relations on A:

Definition 3.2. $\mathbf{A} = (A; \Gamma)$ where $\Gamma = \{\prec_H, \prec_V\}$.

Recall that $U(2^m)$ denotes the torus $\mathbb{Z}_{2^m} \times \mathbb{Z}_{2^m}$. For $(x, y) \in U(2^m)$ we define $[x, y] \in B^m$ as follows: if $\widehat{x} = (x_0, x_1, \dots, x_{m-1})$ and $\widehat{y} = (y_0, y_1, \dots, y_{m-1})$, then

$$[x, y] = ((x_0, y_0), (x_1, y_1), \dots, (x_{m-1}, y_{m-1}))$$

Theorem 3.3. \mathcal{D} tiles the torus $U(2^m)$ with initial condition w iff there exists a homomorphism $h: \mathbf{A}^m \to \mathbf{A}$ satisfying $h(\beta_i) = \top$ for all $i \leq m$ and $h([i, 0]) = w_i$ for all i < |w|.

Proof. Suppose first that such a homomorphism $h : \mathbf{A}^m \to \mathbf{A}$ exists. Given $(i, j) \in U(2^m)$, set $\vec{x} = [i-1, j]$, $\vec{y} = [i, j]$, and $k = \lg(j)$. Then $(\vec{x}, \vec{y}, \beta_k)$ is coordinate-wise in \prec_H . As h is a homomorphism and $h(\beta_k) = \top$, we get $(h([i-1, j]), h([i, j]), \top) \in \prec_H$. By definition this implies $h([i-1, j]), h([i, j]) \in D$ and $(h([i-1, j]), h([i, j])) \in H$. A similar argument shows that $(h([i, j-1]), h([i, j])) \in V$ for all $(i, j) \in U(2^m)$. Thus we can define $\tau : U(2^m) \to D$ by $\tau(i, j) = h([i, j])$, and τ is a tiling of $U(2^m)$ by \mathcal{D} with initial condition w.

Conversely, if τ is a tiling of $U(2^m)$ by \mathcal{D} with initial condition w, we can define $h: A^m \to A$ by

$$h(\vec{u}) = \begin{cases} \tau(i,j) & \text{if } \vec{u} = [i,j] \in B^m \\ \top & \text{if } \vec{u} \in \{\beta_0, \dots, \beta_m\} \\ \bot & \text{if } \vec{u} \in C^m \setminus \{\beta_0, \dots, \beta_m\} \\ \infty & \text{otherwise.} \end{cases}$$

Then h is a homomorphism $\mathbf{A}^m \to \mathbf{A}$ having the required properties.

Since **A** is determined by \mathcal{D} only (that is, not by m, w), and the construction from (m, w) of the set $S := \{\beta_i : i \leq m\} \cup \{[i, 0] : i < |w|\}$ and the map $S \to A$ given by $\beta_i \mapsto \top$, $[i, 0] \mapsto w_i$ can be done in polynomial-time as a function of the size of (m, w), we have a polynomial-time reduction of EXPTILE^{o*}(\mathcal{D}) to HOM-EXT(**A**). Hence:

Corollary 3.4. HOM-EXT(A) and PP-CLS(A) are NEXPTIME-complete with respect to polynomial-time reductions.

Proof. By Theorem 2.5, the previous construction gives an explicit polynomial-time reduction of $\text{ExpTile}^{\circ*}(\mathcal{D})$ to $\text{HOM-Ext}(\mathbf{A})$. For completeness, we describe the corresponding reduction of $\text{ExpTile}^{\circ*}(\mathcal{D})$ to $\text{PP-CLs}(\mathbf{A})$. Given (m, w) with $|w| = k \leq m$, let $\ell = \lceil \log k \rceil$ and define $\vec{c_i} \in C^{m+1} \times B^k$ $(0 \leq i < m)$ by

$$\vec{c}_i = \begin{cases} \underbrace{(\underbrace{\mathbf{c}, \dots, \mathbf{c}}_{i}, \mathbf{b}, \underbrace{\mathbf{a}, \dots, \mathbf{a}}_{m-i}, \underbrace{(0, 0), \dots, \underbrace{(1, 0), \dots}_{2^i}, \underbrace{(0, 0), \dots}_{2^i}, \text{etc}), & (i < \ell), \\ \underbrace{(\underbrace{\mathbf{c}, \dots, \mathbf{c}}_{i}, \mathbf{b}, \underbrace{\mathbf{a}, \dots, \mathbf{a}}_{m-i}, \underbrace{(0, 0), \dots, (0, 0)}_{k}), & (\ell \le i < m), \end{cases}$$

and let $r = \{ \vec{c_i} : 0 \le i < m \} \subseteq A^{m+k+1}$. Finally, define $\vec{a} \in X^{m+1} \times D^k$ by

$$\vec{a} = (\underbrace{\top, \ldots, \top}_{m+1}, w_0, w_1, \ldots, w_{k-1}).$$

If M is the $m \times (m+k+1)$ -matrix whose rows are $\vec{c}_0, \ldots, \vec{c}_{m-1}$, then the columns of M are $\beta_0, \beta_1, \ldots, \beta_m, [0, 0], [1, 0], \ldots, [k-1, 0]$. Thus by Theorem 3.3 and the connection described between HOM-EXT and PP-CLS in section 1, $\vec{a} \in [r]_{\Gamma}$ iff \mathcal{D} tiles $U(2^m)$ with initial condition w. As |r| = m, the space needed to represent r is polynomial in the size of the original input to EXPTILE^{o*}(\mathcal{D}). Hence the map $(m, w) \mapsto (r, \vec{a})$ is a polynomial-time reduction of EXPTILE^{o*}(\mathcal{D}) to PP-CLS(A).

4. The second construction

The construction in the previous section does not seem to lead to a proof that PP-DEF is co-*NEXPTIME*-complete, in part because the relation r constructed in the proof of Corollary 3.4 is such that the cardinality of $[r]_{\Gamma}$ is always exponential in the size of input to the tiling problem being encoded, so is too large to coincide with any relation we might care to test for pp-definability (in the context of the argument in the previous section). In this section we describe a variant of the construction from the previous section which avoids this problem and simultaneously gives polynomial-time reductions of EXPTILE^{o*} to PP-DEF^{co}, PP-CLS and HOM-EXT.

Let (\mathcal{D}, m, w) be an input to EXPTILE^{o*}; write $m = 2^{t+1}$ with $t \geq 0$. Again, addresses in $U(2^m)$ will be represented by double-binary strings in B^m . The main new idea is to revise the means by which adjacent addresses are recognized. In place of the 3-ary relation \prec and the m + 1 "parameter" strings $\beta_0, \ldots, \beta_m \in C^m$ which were used in the previous section, we will use m + 1 relations each of arity t + 3, which will jointly require only t + 1 "parameter" strings $\gamma_0, \ldots, \gamma_t \in \{0, 1\}^m$. Since $t + 1 = \log m$, the number of parameters we will need is now logarithmic in the size of the original input, a crucial fact in ensuring that the relation we will ultimately test for pp-definability is not too large.

More precisely, if $k \in I(m)$ then we'll use $\langle\!\langle k \rangle\!\rangle$ to denote the reverse (t+1)-bit binary representation of k. Define the following t+1 elements of $\{0,1\}^m$:

$$\begin{array}{rcl} \gamma_0 &=& (0,1,0,1,0,1,0,1,\ldots,0,1,0,1,0,1,0,1) \\ \gamma_1 &=& (0,0,1,1,0,0,1,1,\ldots,0,0,1,1,0,0,1,1) \\ \gamma_2 &=& (0,0,0,0,1,1,1,1,\ldots,0,0,0,0,0,1,1,1,1) \\ &\vdots \\ \gamma_t &=& (0,0,0,0,0,0,0,0,\ldots,1,1,1,1,1,1,1,1). \end{array}$$

In other words, if $\gamma_i = (c_0^i, c_1^i, \dots, c_{m-1}^i)$, then c_k^i is the *i*th bit in $\langle\!\langle k \rangle\!\rangle$. Note that if M is the $(t+1) \times m$ matrix whose rows are $\gamma_0, \dots, \gamma_t$, then the columns of M are $\langle\!\langle 0 \rangle\!\rangle, \langle\!\langle 1 \rangle\!\rangle, \dots, \langle\!\langle m-1 \rangle\!\rangle$, and the set of columns of M is $\{0,1\}^{t+1}$.

For each $q \in I(2^m)$ write $\widehat{q} = (c_0, c_1, \dots, c_{m-1})$ and define the (t+2)-ary relation $P_q \subseteq \{0, 1\}^{t+2}$ as follows:

$$P_q = \{(c_j, \langle\!\!\langle j \rangle\!\!\rangle) : 0 \le j < m\}.$$

For each $0 \le k < m$ define the (t+3)-ary relation $L_k \subseteq \{0,1\}^{t+3}$ as follows:

$$L_k = \{ (1, 0, \langle\!\!\langle j \rangle\!\!\rangle) : 0 \le j < k \} \cup \{ (0, 1, \langle\!\!\langle k \rangle\!\!\rangle) \} \cup \{ (x, x, \langle\!\!\langle j \rangle\!\!\rangle) : x \in \{0, 1\} \text{ and } k < j < m \}.$$

Also define the (t+3)-ary relation $L_m \subseteq \{0,1\}^{t+3}$ by

$$L_m = \{ (1, 0, \langle\!\!\langle j \rangle\!\!\rangle) : 0 \le j < m \}.$$

Lemma 4.1. Suppose $x, y, q \in I(2^m)$ and $0 \le k \le m$.

- (1) $(\hat{x}, \gamma_0, \gamma_1, \dots, \gamma_t)$ is coordinate-wise in P_q iff x = q. (2) $(\hat{x}, \hat{y}, \gamma_0, \gamma_1, \dots, \gamma_t)$ is coordinate-wise in L_k iff $\lg(y) = k$ and x = y 1(mod 2^m).

Proof. By construction.

We now begin the definition of the relational structure we wish to associate with the given input (\mathcal{D}, m, w) to EXPTILE^{°*}. Define $B = \{0, 1\}^2, C = \{0, 1\}, E = \{a, b\},$ $X = \{\top, \bot\}$, write $\mathcal{D} = (D, H, V)$, and put

$$A = B \cup C \cup D \cup E \cup X \cup \{\infty\}.$$

Define $\phi: C^{t+1} \to E$ by

$$\phi(\vec{u}) = \begin{cases} \mathbf{b} & \text{if } \vec{u} = 1^i 0^{t+1-i} \text{ for some } 0 \le i \le t+1 \\ \mathbf{a} & \text{otherwise.} \end{cases}$$

Note that if we write $\vec{u} = \langle\!\langle k \rangle\!\rangle$ with $k \in I(m)$, then $\vec{u} = 1^{i}0^{t+1-i}$ iff $k = 2^{i} - 1$. For each $q \in I(2^{m})$ we define the (t+3)-ary relation $P_{q}^{0} \subseteq B \times C^{t+1} \times E$ ("row zero" analogue of P_q) as follows:

$$P^0_q \ = \ \{((x,0),\vec{u},\phi(\vec{u})) \ : \ (x,\vec{u}) \in P_q\}.$$

For each $0 \leq k \leq m$ we define (t+4)-ary relations $L_k^H, L_k^V \subseteq B^2 \times C^{t+1} \times E$ ("horizontal" and "vertical" analogues of L_k) as follows:

$$L_k^H = \{ ((x_1, y), (x_2, y), \vec{u}, \phi(\vec{u})) \in B^2 \times C^{t+1} \times E : (x_1, x_2, \vec{u}) \in L_k, y \in \{0, 1\} \}$$

$$L_k^V = \{ ((x, y_1), (x, y_2), \vec{u}, \phi(\vec{u})) \in B^2 \times C^{t+1} \times E : (y_1, y_2, \vec{u}) \in L_k, x \in \{0, 1\} \}$$

For each $d \in D$ define the (t+3)-ary relation $T_d^+ \subseteq D \times X^{t+2}$ by

$$\Gamma_d^+ = \{ (x, \vec{v}) \in D \times X^{t+2} : x = d \text{ or } \bot \in \{ v_0, \dots, v_{t+1} \} \}.$$

Similarly, define the (t + 4)-ary relations $H^+, V^+ \subseteq D^2 \times X^{t+2}$ by

$$H^+ = \{ (x, y, \vec{v}) \in D^2 \times X^{t+2} : (x, y) \in H \text{ or } \bot \in \{ v_0, \dots, v_{t+1} \} \},\$$

$$V^+ = \{ (x, y, \vec{v}) \in D^2 \times X^{t+2} : (x, y) \in V \text{ or } \perp \in \{v_0, \dots, v_{t+1}\} \}.$$

We now assemble the relations for our relational structure. For $0 \le k \le m$ define the (t+4)-ary relations

$$H_k = L_k^H \cup H^+ \cup \{(\infty, \infty, \dots, \infty)\}$$
$$V_k = L_k^V \cup V^+ \cup \{(\infty, \infty, \dots, \infty)\}$$

Recall that our input to EXPTILE^{°*} is (\mathcal{D}, m, w) . Write $w = w_0 w_1 \cdots w_{\ell-1}$ with $|w| = \ell \leq m$, and for each $q < \ell$ define the (t+3)-ary relation

$$T_q = P_q^0 \cup T_{w_q}^+ \cup \{(\infty, \infty, \dots, \infty)\}.$$

Definition 4.2. $\mathbf{A} = (A; \Gamma)$ where $\Gamma = \{H_0, \dots, H_m, V_0, \dots, V_m, T_0, \dots, T_{\ell-1}\}.$

Define $\beta \in {a, b}^m$ by

$$\beta = (\phi(\langle\!\langle 0 \rangle\!\rangle), \phi(\langle\!\langle 1 \rangle\!\rangle), \phi(\langle\!\langle 2 \rangle\!\rangle), \dots, \phi(\langle\!\langle m-1 \rangle\!\rangle)),$$

Claim 4.3. Suppose $\vec{x}, \vec{y}, \vec{z_0}, \vec{z_1}, \dots, \vec{z_t}, \vec{u} \in A^m$, $0 \le q < \ell$, and $0 \le k \le m$, and let σ be a self-map from $\{0, 1, \dots, t\}$ to itself.

- (1) If $(\vec{x}, \vec{z}_0, \dots, \vec{z}_t, \vec{u})$ is coordinate-wise in T_q , then either $(\vec{x}, \vec{z}_0, \dots, \vec{z}_t, \vec{u})$ is in $B^m \times C^m \times \cdots \times C^m \times E^m$ or $\{\vec{x}, \vec{z}_0, \dots, \vec{z}_t\}$ is disjoint from $B^m \cup C^m \cup E^m$.
- (2) If $(\vec{x}, \vec{y}, \vec{z}_0, \dots, \vec{z}_t, \vec{u})$ is coordinate-wise in H_k , then either $(\vec{x}, \vec{y}, \vec{z}_0, \dots, \vec{z}_t, \vec{u})$ is in $B^m \times B^m \times C^m \times \dots \times C^m \times E^m$ or $\{\vec{x}, \vec{y}, \vec{z}_0, \dots, \vec{z}_t\}$ is disjoint from $B^m \cup C^m \cup E^m$. The same is true for V_k .
- (3) $(\vec{x}, \gamma_0, \dots, \gamma_t, \beta)$ is coordinate-wise in T_q iff $\vec{x} = [q, 0]$.
- (4) $(\vec{x}, \vec{y}, \gamma_0, \dots, \gamma_t, \beta)$ is coordinate-wise in H_k iff there exist $i, j \in I(2^m)$ such that $\lg(i) = k, \ \vec{x} = [i-1,j]$ and $\vec{y} = [i,j]$.
- (5) $(\vec{x}, \vec{y}, \gamma_0, \dots, \gamma_t, \beta)$ is coordinate-wise in V_k iff there exist $i, j \in I(2^m)$ such that $\lg(j) = k, \ \vec{x} = [i, j-1]$ and $\vec{y} = [i, j]$.
- (6) If $(\vec{x}, \gamma_{\sigma(0)}, \dots, \gamma_{\sigma(t)}, \beta)$ is coordinate-wise in T_q , then $\sigma(i) = i$ for all i.
- (7) If $(\vec{x}, \vec{y}, \gamma_{\sigma(0)}, \dots, \gamma_{\sigma(t)}, \beta)$ is coordinate-wise in H_k , then $\sigma(i) = i$ for all i. The same is true for V_k .

Proof. Items (1)–(5) follow easily from Lemma 4.1 and the definitions. To prove item (6), assume that $(x, \gamma_{\sigma(0)}, \ldots, \gamma_{\sigma(t)}, \beta)$ is coordinate-wise in T_q . We first prove that σ must be a permutation. Suppose i < t and $i \notin \operatorname{ran}(\sigma)$. Let $k = m - 1 - 2^i$. Then $\langle\!\langle k \rangle\!\rangle = 1^i 01^{t-i}$. Since $i \neq t$, we have $\phi(\langle\!\langle k \rangle\!\rangle) = a$. However, γ_j has a 1 at coordinate k for all $j \in \operatorname{ran}(\sigma)$, so $(\gamma_{\sigma(0)}, \ldots, \gamma_{\sigma(t)}, \beta)$ at coordinate k is $(1, \ldots, 1, a)$, which is not in graph(ϕ). This contradicts the assumption that $(x, \gamma_{\sigma(0)}, \ldots, \gamma_{\sigma(t)}, \beta)$ is coordinate-wise in T_q and hence proves $\{0, 1, \ldots, t-1\} \subseteq \operatorname{ran}(\sigma)$. Finally, suppose $t \notin \operatorname{ran}(\sigma)$. Let $k = 2^t$. Then $\langle\!\langle k \rangle\!\rangle = 0^t 1$ and $\phi(\langle\!\langle k \rangle\!\rangle) = a$, so $(\gamma_{\sigma(0)}, \ldots, \gamma_{\sigma(t)}, \beta)$ at coordinate k equals $(0, \ldots, 0, a)$, which again is not in graph(ϕ), contradicting the assumption that $(x, \gamma_{\sigma(0)}, \ldots, \gamma_{\sigma(t)}, \beta)$ is coordinate-wise in T_q . Hence $t \in \operatorname{ran}(\sigma)$, so σ is a permutation.

To prove that σ is the identity map, it now suffices to prove that $\sigma(0) \leq \sigma(1) \leq \cdots \leq \sigma(t+1)$. Suppose instead there exists j < t with $\sigma(j) > \sigma(j+1)$. Let $r = \sigma(j)$ and $k = 2^r - 1$. Then $(\gamma_{\sigma(0)}, \ldots, \gamma_{\sigma(t)}, \beta)$ at coordinate k has the form $(*, \ldots, *, 0, 1, *, \ldots, *, b)$, which is not in graph(ϕ), again contradicting the assumption that $(x, \gamma_{\sigma(0)}, \ldots, \gamma_{\sigma(t)}, \beta)$ is coordinate-wise in T_q .

Definition 4.4.

(1) $\widehat{\top} = (\top, \top, \dots, \top) \in A^{t+2}.$ (2) $\widehat{\infty} = (\infty, \infty, \dots, \infty) \in A^{t+2}.$ (3) $r = \operatorname{graph}(\phi) = \{(\vec{u}, \phi(\vec{u})) : \vec{u} \in C^{t+1}\} \subseteq A^{t+2}.$ (4) $s = r \cup (X^{t+2} \setminus \{\widehat{\top}\}) \cup \{\widehat{\infty}\}.$

Lemma 4.5.

(1) $[r]_{\Gamma} = \{(a_0, \dots, a_t, b) \in A^{t+2} : \text{ there exists a homomorphism } h : \mathbf{A}^m \to \mathbf{A}$ with $h(\gamma_i) = a_i \text{ for } 0 \le i \le t \text{ and } h(\beta) = b\}.$ (2) $s \subseteq [r]_{\Gamma} \subseteq s \cup \{\widehat{\top}\}.$

Proof. Let M be the $(t + 2) \times m$ matrix whose columns in order are $(\langle \!\langle k \rangle \!\rangle, \phi(\langle \!\langle k \rangle \!\rangle))$, $0 \leq k < m$. Then the columns of M enumerate r, and the rows of M are precisely $\gamma_0, \gamma_1, \ldots, \gamma_t, \beta$. (1) then follows immediately from the connection between PP-CLS and HOM-EXT described on page 2.

Next, we'll show $s \subseteq [r]_{\mathbf{A}}$. Obviously $r \subseteq [r]_{\mathbf{A}}$. It is easy to check that the constant function $A^m \to \{\infty\}$ is a homomorphism $\mathbf{A}^m \to \mathbf{A}$ which, with item (1), proves $\widehat{\infty} \in [r]_{\mathbf{A}}$. Finally, assume $\mathbf{f} = (f_0, f_1, \ldots, f_t, f_{t+1}) \in X^{t+2} \setminus \{\widehat{\top}\}$. Pick any $d_0 \in D$ and define $h_{\mathbf{f}} : A^m \to A$ by

$$h_{\mathbf{f}}(\vec{u}) = \begin{cases} d_0 & \text{if } \vec{u} \in B^m \\ f_i & \text{if } \vec{u} = \gamma_i \text{ for some } 0 \le i \le t \\ f_{t+1} & \text{if } \vec{u} = \beta \\ \bot & \text{if } \vec{u} \in C^m \cup E^m \setminus \{\gamma_0, \dots, \gamma_t, \beta\} \\ \infty & \text{otherwise.} \end{cases}$$

Clearly $\mathbf{f} = (h_{\mathbf{f}}(\gamma_0), \dots, h_{\mathbf{f}}(\gamma_t), h_{\mathbf{f}}(\beta))$, so to prove $\mathbf{f} \in [r]_{\mathbf{A}}$ it suffices in light of item (1) to show that $h_{\mathbf{f}}$ is a homomorphism $\mathbf{A}^m \to \mathbf{A}$. Suppose first that $q < \ell$; we verify that $h_{\mathbf{f}}$ preserves T_q . Assume $\vec{x}, \vec{z}_0, \dots, \vec{z}_t, \vec{u} \in A^m$ and $(\vec{x}, \vec{z}_0, \dots, \vec{z}_t, \vec{u})$ is coordinate-wise in T_q , yet $\mathbf{g} = (h_{\mathbf{f}}(\vec{x}), h_{\mathbf{f}}(\vec{z}_0), \dots, h_{\mathbf{f}}(\vec{z}_t), h_{\mathbf{f}}(\vec{u})) \notin T_q$. Then at least one of $h_{\mathbf{f}}(\vec{x}), h_{\mathbf{f}}(\vec{z}_0), \dots, h_{\mathbf{f}}(\vec{z}_t), h_{\mathbf{f}}(\vec{u})$ is not equal to ∞ . Hence by the definition of $h_{\mathbf{f}}, \{\vec{x}, \vec{z}_0, \dots, \vec{z}_t, \vec{u}\}$ is not disjoint from $B^m \cup C^m \cup E^m$, from which it follows that $(\vec{x}, \vec{z}_0, \dots, \vec{z}_t, \vec{u}) \in B^m \times C^m \times \dots \times C^m \times E^m$ by Claim 4.3(1). Hence $\mathbf{g} = (d_0, f'_0, \dots, f'_t, f'_{t+1})$ for some $f'_i \in X$, by definition of $h_{\mathbf{f}}$. The only way that \mathbf{g} can fail to be in T_q is if $d_0 \neq w_q$ and $f'_i = \top$ for all i. Since $\vec{z}_0, \dots, \vec{z}_t \in C^m$ and $\vec{u} \in E^m$, and using the definition of $h_{\mathbf{f}}$, we get that $\vec{u} = \beta$ and $f_{t+1} = \top$, and $\{\vec{z}_0, \dots, \vec{z}_t\} \subseteq \{\gamma_i : 0 \leq i \leq t, f_i = \top\}$. Since $\mathbf{f} \neq \widehat{\top}$, there exists $\lambda \leq t$ such that $(\vec{x}, \vec{z}_0, \dots, \vec{z}_t, \vec{u})$ is coordinate-wise in T_q contradicts Claim 4.3(6). Hence $h_{\mathbf{f}}$ preserves T_q .

The remarks in the preceding paragraph show that $s \subseteq [r]_{\Gamma}$. To finish the proof of (2), note that the pp-formula $\exists z T_0(z, x_0, \ldots, x_t, y)$ defines the relation $s \cup \{\widehat{\top}\}$. Hence $[r]_{\Gamma} \subseteq s \cup \{\widehat{\top}\}$.

Theorem 4.6. The following are equivalent:

- (1) \mathcal{D} tiles the torus $U(2^m)$ with initial condition w.
- (2) There exists a homomorphism $h : \mathbf{A}^m \to \mathbf{A}$ with $h(\gamma_i) = \top_i$ for $0 \le i \le t$ and $h(\beta) = \top$.
- (3) $\widehat{\top} \in [r]_{\Gamma}$.
- (4) s is not pp-definable over Γ .

Proof. (2) \Leftrightarrow (3) \Leftrightarrow (4) follows from Lemma 4.5. Thus it suffices to prove (1) \Leftrightarrow (2).

 $(1) \Rightarrow (2)$. Assume $\tau : U(2^m) \to D$ is a tiling of the torus $U(2^m)$ by \mathcal{D} with initial condition w. Define $h_\tau : A^m \to A$ by

$$h_{\tau}(\vec{u}) = \begin{cases} \tau(i,j) & \text{if } \vec{u} = [i,j] \in B^m \\ \top & \text{if } \vec{u} \in \{\gamma_0, \dots, \gamma_t, \beta\} \\ \bot & \text{if } \vec{u} \in C^m \cup E^m \setminus \{\gamma_0, \dots, \gamma_t, \beta\} \\ \infty & \text{otherwise.} \end{cases}$$

Clearly $\widehat{\top} = (h_{\tau}(\gamma_0), \dots, h_{\tau}(\gamma_t), h_{\tau}(\beta))$, so to prove (2) it suffices to show that h_{τ} is a homomorphism $\mathbf{A}^m \to \mathbf{A}$.

Suppose $q < \ell$; we'll verify that h_{τ} preserves T_q . Assume $\vec{x}, \vec{z}_0, \ldots, \vec{z}_t, \vec{u} \in A^m$ and $(\vec{x}, \vec{z}_0, \ldots, \vec{z}_t, \vec{u})$ is coordinate-wise in T_q , yet $\mathbf{g} = (h_{\tau}(\vec{x}), h_{\tau}(\vec{z}_0), \ldots, h_{\tau}(\vec{z}_t), h_{\tau}(\vec{u})) \notin T_q$. Then as in the proof of Lemma 4.5, we get $\vec{x} \in B^m$, $\vec{z}_0, \ldots, \vec{z}_t \in C^m$, $\vec{u} \in E^m$, and $\mathbf{g} = (h_{\tau}(\vec{x}), \top, \ldots, \top)$ with $h_{\tau}(\vec{x}) \neq w_q$. This forces $\vec{u} = \beta$ and $\{\vec{z}_0, \ldots, \vec{z}_t\} \subseteq \{\gamma_0, \ldots, \gamma_t\}$. Since $(\vec{x}, \vec{z}_0, \ldots, \vec{z}_t, \vec{u})$ is coordinate-wise in T_q , Claim 4.3(6) yields $\vec{z}_i = \gamma_i$ for each $i \leq t$. Claim 4.3(3) then yields $\vec{x} = [q, 0]$. But the assumption that τ is a tiling of $U(2^m)$ with initial condition w implies $\tau(q, 0) = w_q$, contradicting the fact that $\tau(q, 0) = h_{\tau}([q, 0]) = h_{\tau}(\vec{x}) \neq w_q$. Hence h_{τ} preserves each relation T_q . The proof for the relations H_k and V_k is similar. Hence h_{τ} is a homomorphism, proving (2).

 $(2) \Rightarrow (1)$. Assume $h : \mathbf{A}^m \to \mathbf{A}$ is a homomorphism satisfying $h(\gamma_i) = \top$ for all $i \leq t$ and $h(\beta) = \top$. Given $(i, j) \in U(2^m)$, set $\vec{x} = [i-1, j] \in B^m$, $\vec{y} = [i, j] \in B^m$, and $k = \lg(i)$. Then $(\vec{x}, \vec{y}, \gamma_0, \dots, \gamma_t, \beta)$ is coordinate-wise in H_k by Claim 4.3(4). Since h is a homomorphism, we get $(h(\vec{x}), h(\vec{y}), \top, \dots, \top) \in H_k$, which implies $h(\vec{x}), h(\vec{y}) \in D$ and $(h(\vec{x}), h(\vec{y})) \in H$. Thus we can define a function $\tau_h : U(2^m) \to D$ by $\tau_h(i, j) = h([i, j])$. The above argument and its analogue for the relations V_k show that τ_h is a tiling of $U(2^m)$ by \mathcal{D} . The analogous argument for the relations T_q prove that τ_h satisfies the initial condition w.

Theorem 4.7. PP-DEF^{co}, PP-CLS and HOM-EXT are NEXPTIME-complete for polynomial-time reductions.

Proof. The preceding construction takes an instance (\mathcal{D}, m, w) of EXPTILE^{°*} and produces equivalent instances $(\mathbf{A}, \{\gamma_0, \ldots, \gamma_t, \beta\}, \gamma_i \mapsto \top, \beta \mapsto \top)$ of HOM-EXT, $(\mathbf{A}, r, \widehat{\top})$ of PP-CLS, and (\mathbf{A}, s) of PP-DEF^{co}. It suffices to show that the reductions are polynomial-time computable; the only issue is whether the sizes of the constructed instances are polynomially bounded in the size of (\mathcal{D}, m, w) .

Because \mathcal{D} is full we certainly have $d + m \leq ||(\mathcal{D}, m, w)||$, where $||(\mathcal{D}, m, w)||$ denotes the size of a standard encoding of (\mathcal{D}, m, w) and d = |D|. Analyzing the above construction, we see that

$$\begin{aligned} |A| &= d+11 \\ |H_k|, |V_k| &\leq 4m+d^2 \cdot 2^{t+2}+1 \leq 2m(d+1)^2, \\ |T_q| &\leq m+d \cdot 2^{t+2}+1 \leq 2m(d+1) \\ |r| &= 2^{t+1} = m, \\ |s| &= m+(2^{t+2}-1)+1 = 3m. \end{aligned}$$

Hence

$$||(\mathbf{A}, s)|| \leq \log |A| \left(1 + 2(m+1) \cdot 2m(d+1)^2 \cdot (t+4) + \ell \cdot 2m(d+1) \cdot (t+3) + 3m \cdot (t+2) \right).$$

Since $t+1 = \log m$ and $\ell \leq m$, the above upper bound is $O((d+m)^5)$, proving $||(\mathbf{A}, s)||$ is polynomial in $||(\mathcal{D}, m, w)||$. The analysis for $||(\mathbf{A}, r, \widehat{\top})||$ is just as easy, and the size of $(\mathbf{A}, \{\gamma_0, \ldots, \gamma_t, \beta\}, \gamma_i \mapsto \top_i, \beta \mapsto \top)$ is essentially the same as $||(\mathbf{A}, r, \widehat{\top})||$. \Box

Corollary 4.8. There exists $k \ge 3$ such that the restrictions of PP-DEF^{co}, PP-CLS and HOM-EXT to k-element domains are NEXPTIME-complete.

Proof. Fix a full domino system \mathcal{D} for which $\text{ExpTILE}^{\circ*}(\mathcal{D})$ is *NEXPTIME*-complete. (Such a \mathcal{D} is promised by Proposition 2.5.) If $\mathcal{D} = (D, H, V)$, then the above argument shows that we can take k = |D| + 11.

5. MISCELLANEOUS REMARKS AND OPEN QUESTIONS

Remark 5.1. PP-DEF is the relational "dual" of GEN-CLO, the algebraic "clone generation" problem. Kozik [5] proves that there exists a fixed, finite algebra \mathbb{A} for which the local problem GEN-CLO(\mathbb{A}) is *EXPTIME*-complete.

Question 1: By analogy, is there a fixed finite relational structure \mathbf{A} for which the local problem PP-DEF(\mathbf{A}) is co-*NEXPTIME*-complete?

Question 2: Can the parameter k in Corollary 4.8 be reduced to k = 3 (as conjectured by the working group at AIM)?

Remark 5.2. PP-DEF^{co} and PP-CLS are each polynomial-time reducible to the other, since they are both *NEXPTIME*-complete with respect to polynomial-time reductions.

Question 3: is there a relatively simple, *direct* polynomial-time reduction of either problem to the other?

Remark 5.3. The construction in section 4, incorporating the proof of Corollary 4.8, shows that PP-DEF^{co} and PP-CLS remain *NEXPTIME*-complete even if the input relations are represented (generally less efficiently) by their characteristic functions (hence a k-ary relation on a d-element set has size d^k).

Remark 5.4. The construction in section 4 also shows more specifically that the following variant of PP-DEF is co-*NEXPTIME*-complete:

Input:

A finite relational structure $\mathbf{A} = \langle A; \Gamma \rangle$ of finite signature;

A k-ary relation $p \in \Gamma$.

A k-tuple $\vec{a} \in A^k$.

Question:

Is $p \setminus \{\vec{a}\}$ primitive-positive definable over Γ ?

6. Appendix: NEXPTIME-completeness for ExpTile and ExpTile^{°*}

We first prove that both EXPTILE and EXPTILE^{°*} are *NEXPTIME*-complete. Later we will also prove that there exists a fixed \mathcal{D} such that EXPTILE^{°*}(\mathcal{D}) is *NEXPTIME*-complete, completing the proof of Proposition 2.5.

Define two problems intermediate to EXPTILE and EXPTILE^{o*} as follows:

Definition 6.1.

- (1) EXPTILE^{*} is the restriction of EXPTILE to instances (\mathcal{D}, m, w) where m is a power of 2.
- (2) EXPTILE° is the restriction of EXPTILE to instances (\mathcal{D}, m, w) where \mathcal{D} is *full* (see section 2).

Note first that EXPTILE and EXPTILE^{*} can be polynomial-time reduced to their full restrictions EXPTILE[°] and EXPTILE^{°*} respectively, by repeatedly deleting dominoes not mentioned in $\operatorname{pr}_1(H) \cap \operatorname{pr}_2(H) \cap \operatorname{pr}_2(V)$ and re-indexing the remaining input data, immediately answering "no" if the initial condition mentions a deleted domino.

Thus it will suffice to show:

- (1) $EXPTILE^{\circ}$ is in *NEXPTIME*.
- (2) $ExpTILE^*$ is *NEXPTIME*-hard.

Lemma 6.2. EXPTILE° is in NEXPTIME.

Proof. Suppose (\mathcal{D}, m, w) is an input to EXPTILE[°], with $\mathcal{D} = (D, H, V)$, |D| = d, and $|w| = k \leq m$. Because \mathcal{D} is full, we can assume $d + m \leq ||(\mathcal{D}, m, w)||$.

If the answer for this input is "yes," a tiling τ witnessing this can be presented in $2^{2m} \log d$ space and its correctness can be checked on a multi-tape deterministic Turing machine with additional input tape for τ in time bounded by a polynomial in $2^m d$. Since $\log(2^m d) = m + \log d \leq ||(\mathcal{D}, n, w)||$, this proves EXPTILE° $\in NEXPTIME$. \Box

Lemma 6.3. EXPTILE^{*} is NEXPTIME-hard for polynomial-time reductions.

Proof. Assume L is a language in NEXPTIME. Let Σ be the alphabet of L, and fix a nondeterministic Turing machine M which accepts the language L in time $f(n) \leq 2^{Cn^k}$. We can assume (at the expense of increasing C, k) that M works on a single semi-infinite tape, that the alphabet of M contains Σ and at least one other symbol \Box (blank), that M never tries to move left from the left-most tape cell, and that at every stage of a computation of M there is never a blank symbol to the left of a non-blank symbol.

Under these assumptions, Börger, Grädel and Gurevich [1] describe a domino system $\mathcal{D}_L = (D, H, V)$ and a linear-time reduction which takes any input word $x \in \Sigma^+$ to a word $\varphi(x) \in D^+$ of the same length k > 0, such that

- If some computation of M accepts x in time less than or equal to $t_0 \ge k$, then \mathcal{D}_L tiles U(n) with initial condition $\varphi(x)$ for all $n \ge t_0 + 2$.
- If M does not accept x, then \mathcal{D}_L does not tile U(n) with initial condition $\varphi(x)$ for any $n \ge k+2$.

Thus we can reduce L to EXPTILE^{*} be sending $x \mapsto (\mathcal{D}_L, m(x), \varphi(x))$ where m(x) is the least power of 2 greater than $C|x|^k + 1$. Since \mathcal{D}_L , C and k are fixed (for L), this is clearly a polynomial-time reduction.

Corollary 6.4. EXPTILE and EXPTILE^{°*} are NEXPTIME-complete for polynomialtime reductions.

Corollary 6.5. There exists a full domino system \mathcal{D} such that $\text{ExpTile}^{\circ*}(\mathcal{D})$ is NEXPTIME-complete for polynomial-time reductions.

Proof. Fix a standard encoding $(\mathcal{D}, m, w) \mapsto \lceil (\mathcal{D}, m, w) \rceil$ of inputs to EXPTILE as strings over a finite alphabet Σ , and define

 $L = \{ \lceil (\mathcal{D}, m, w) \rceil : \mathcal{D} \text{ tiles } U(2^m) \text{ with initial condition } w \}.$

L is *NEXPTIME*-complete by Corollary 6.4. The proof of Lemma 6.3 produces a domino system \mathcal{D}_L and a polynomial-time reduction of *L* to EXPTILE^{*}(\mathcal{D}_L). By the comments following Definition 6.1, we can find a full domino system \mathcal{D} and a polynomial-time reduction of EXPTILE^{*}(\mathcal{D}_L) to EXPTILE^{o*}(\mathcal{D}), so EXPTILE^{o*}(\mathcal{D}) is *NEXPTIME*-complete.

References

- E. Börger, E. Grädel and Y. Gurevich, *The Classical Decision Problem*, Springer-Verlag (Berlin), 1997.
- [2] B. ten Cate, Notes on AIM CSP workshop, April 21, 2008, http://www.aimath.org/WWN/constraintsatis/constraintsatis.pdf
- [3] N. Creignou, P. Kolaitis, and B. Zanuttini, "Structure identification of boolean relations and plain bases for co-clones," J. Computer Sys. Sci. 74 (2008), 1103-1115.
- [4] V. Dalmau, *Computational complexity of problems over generalized formulas*. PhD thesis, Universitat Politécnica de Catalunya, 2000.
- [5] M. Kozik, "A finite set of functions with an EXPTIME-complete composition problem," *Theoret. Comput. Sci.* 407 (2008), 330–341.

PURE MATHEMATICS DEPT, UNIVERSITY OF WATERLOO, WATERLOO, ONTARIO, CANADA