PP-DEFINABILITY IS CO-NEXPTIME-COMPLETE
ROSS WILLARD

ABSTRACT. PP-DEF is the problem which takes as input a relation r and a finite
set I' of relations on the same finite domain A, and asks whether r is definable by a
conjunctive query over (A4,I"), i.e., by a formula of the form Igp(Z, i) where ¢(Z, 7))
is a conjunction of atomic formulas built using the relations in I' U {=}, and where
the variables range over A. (Such formulas yp(Z, §) are called primitive positive
formulas.) PP-DEF is known to be in co-NEXPTIME, and has been shown to be
tractable on the boolean domain.

We show that there exists & > 2 such that PP-DEF is co- NEXPTIME-complete
on k-element domains, answering a question of Creignou, Kolaitis and Zanuttini.
We also show that two related problems are NEXPTIME-complete.

1. THE PROBLEMS

Let I" be a finite set of relations on a finite domain A. By a pp-formula over T’
we mean a first-order formula of the form 37 A'_, a;(Z, %) where each «;(7, %) is an
atomic formula naming a relation from I' U {=} applied to a tuple of variables from
ZUy. The pp-definability problem (or PP-DEF) is:

Input:
A finite nonempty domain A;
A finite set I' of relations on A;
Another relation r on A.
Question:
Is r definable by a pp-formula over I'?

This problem is also known as F-INVSAT in the theoretical computer science liter-
ature [4, 3]. The uniform version is known to be in co-NEXPTIME (folkore?), while
the boolean (|A| = 2) case was shown to be locally in P by Dalmau [4] and to be
globally in P by Creignou, Kolaitis and Zanuttini [3]. At a workshop at the American
Institute of Mathematics in April 2008, a working group conjectured that PP-DEF is
co-NEXPTIMFE complete, even on 3-element domains, and speculated that the lower
bound can be proved by interpreting a tiling problem [2].
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Given A,T', and some m > 1, the set of m-ary relations on A pp-definable over "
includes A™ and is closed under intersections; hence given a relation » on A we can
define the pp-closure of r over I' to be the smallest relation of the same arity as r
which contains r and is pp-definable over I'. We denote the pp-closure of r over I" by
[r]r. Thus r is pp-definable over T"iff [r]p = r.

The pp-closure of a relation over I' may be conveniently described via polymor-
phisms, or equivalently, by homomorphisms of relational structures. Given A, I as
above, let A = (A;T") be the corresponding relational structure. The m-ary poly-
morphisms of I' are precisely the homomorphisms from A™ to A. These include the
so-called dictator functions p*, 1 < i < m, where pI"(z1,...,%,) = z; for all inputs
x1,...,%ym € A. Let Homam o denote the set of all homomorphisms from A™ to A.
Suppose now that ¢, ..., ¢, are chosen from A™ and let ¢ denote (¢, ..., ¢,). Define

H(C) = {(h(gl), Ce 7h(5n)) c A" . he HOHlAm7A}
P(c) = {(@p"(c),...,pi"(C) € A" : 1 <1< m}.
Lemma 1.1. Let A,I',;m,c be as above. Suppose v is an n-ary relation satisfying
P(c) Cr C H(c). Then
(1) [r]r = H(c).
(2) Hence r is pp-definable over T iff r = H(c).

We can now describe two related problems which we will show are NEXPTIME-
complete.

Related problem #1: the pp-closure problem (PP-CLS).

Input:
A finite relational structure A = (A;I") with I finite;
An n-ary relation r on A (for some n > 1);
An n-tuple @ € A™.
Question:
Isae [T’]p?
Related problem #2: the homomorphism extension problem (HOM-EXT).
Input:
A finite relational structure A = (A;I") with I finite;
A subset S C A™ (for some m > 1);
A function hy : S — A.

Question:
Can hg be extended to a homomorphism A™ — A (i.e., a polymorphism of I')?

It is not hard to show that both PP-CLs and HOM-EXT are in NEXPTIME. In
fact, PP-CLS and HOM-EXT are essentially the same problem?, since:

IProvided relations are represented as lists, not as {0, 1}-valued tables.
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(1) Given an instance (A, ', r,d) to PP-CLs with ru{a} C A", let m = |r|, choose
an enumeration {51, cee I;m} of r, let M be the n xm matrix whose jth column
is Ej, let ¢; denote the ith row of this matrix, and put ¢ = (&, ...,¢,). Observe
that P(c) = r and hence H(c) = [r]r by Lemma 1.1. If there exist ¢ # j such
that ¢ = ¢ but a; # a;, then automatically @ ¢ [r]a. Otherwise, define
S=A{c,...,c,} CA™and hy : S — A by ho(¢;) = a;. Then (A, T, S, hg) is
an equivalent instance of HoM-EXT.

(2) Conversely, given an instance (A,I', S, hy) of HOM-EXT with S C A™, let
n = |S|, enumerate S as {¢,...,¢,}, and let M be the n x m matrix whose
ith row is ¢;. If we let r be the n-ary relation on A whose members are the
columns of this matrix, and put @ = (ho(¢1), ..., ho(é,)), then by a similar
argument as in the previous paragraph, (A,T',r, @) is an equivalent instance
of PP-CLs.

PP-CLs and PP-DEF® appear to be closely related. Given an input (A,I',r) to
PP-DEF where r is n-ary, we have that r is not pp-definable from T" iff there exists
@ € AF\ r such that @ € [r]p. (Incidentally, this observation, together with the fact
that PP-CLs is in NEXPTIME, gives a proof that PP-DEF is in co-NEXPTIME.)
Conversely, given an input (A,T',r, @) to PP-CLS, we have that @ ¢ [r]p iff there
exists a relation s of the same arity such that r C s, s is pp-definable from I', and
a ¢ s. Despite these relationships, we do not see any straightforward polynomial-time
reductions of either of PP-CLS, PP-DEF® to the other.?

Nevertheless, to resolve the complexity of PP-DEF, we find it fruitful to first study
PP-CLs via HOM-EXT. In section 3 we will show that there is a fixed finite relational
structure A = (A4;I") such that the local problems PP-CLs(A) and HOM-EXT(A)
are NEXPTIME-complete. In section 4 we will give a more complicated construction
which shows that there exists an integer k£ > 3 such that the restriction of PP-DEF
to k-element domains is co-NEXPTIME-complete.

I thank Matt Valeriote for several helpful conversations on this topic.

2. AN NEXPTIME-COMPLETE TILING PROBLEM

In this section we define two tiling-of-tori problems that are NEXPTIME-complete.
Our presentation is inspired by and uses [1].

Definition 2.1.

(1) A domino system is a triple D = (D, H, V') where D is a finite non-empty set
and H,V C D x D.
(2) If n > 2, then U(n) denotes the torus Z, X Z,.

2We will see that they are polynomial-time equivalent, since they are both NEXPTIME-complete
for polynomial-time reductions.
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Definition 2.2. Suppose D = (D, H,V) is a domino system, 1 < k < n, and
w = (wp,wy, ..., wx_1) € D*is a word over D of length k. We say that D tiles U(n)
with initial condition w if there exists a mapping 7 : U(n) — D such that for all
(4,5) € U(n):
(1) If 7(¢,j) =d and 7(i + 1,7) = e, then (d,e) € H;
(2) If 7(i,j) =d and 7(i,j + 1) = e, then (d,e) € V
(3) 7(4,0) = w; for 0 < i < k.

9

The most general tiling problem we consider (call it EXPTILE) is:

Input:

A domino system D;

An integer m > 2 given in unary notation;

A nonempty word w over D of length £ < m.
Question:

Does D tile U(2™) with initial condition w?

The second tiling problem we want is a restriction of EXPTILE. Say that a domino

system D = (D, H, V) is full if D = pr,(H) = pry(H) = pry (V) = pry(V).

Definition 2.3. EXPTILE™ is the restriction of EXPTILE to instances (D, m,w)
where D is full and m is a power of 2.

Definition 2.4. Let D be a full domino system. EXPTILE® (D) is the local version
of EXPTILE® in which the inputs are restricted to those whose domino system is D.

Proposition 2.5. EXPTILE and EXPTILE®™ are NEXPTIME -complete with respect
to polynomial-time reductions. Moreover, there exists a full domino system D such
that EXPTILE™ (D) is NEXPTIME-complete.

Proof. See the Appendix. O

3. THE FIRST CONSTRUCTION

Let D be a full domino system such that EXpTILE® (D) is NEXPTIME-complete
(as promised by Proposition 2.5). In this section we construct a relational struc-
ture A and give polynomial-time reductions of EXPTILE** (D) to HoM-EXT(A) and
PP-CLs(A).

Let (D, m,w) be an input to EXPTILE®* (D). Since m > 2 and m is a power of
2, we can write m = 27! for some ¢t > 0. We will use binary strings of length m
to address elements of {0,1,...,2™ — 1} in the usual way. We will need relations
which, when interpreted coordinate-wise on a pair of such binary strings of length m,
determine whether they address adjacent x, x4+ 1 in Zsm. This can easily be done via
a ternary relation which models the action of “adding 1”7 to the first binary string to
get the second binary string; the third argument takes a special “parameter” string
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over a three-character alphabet; the role of this string is to indicate how far down
the first string the “carrying of ones” should proceed.

More precisely, for n > 0 we use I(n) to denote the set of integers {0,1,...,n—1},
which we also identify with Z, in the obvious way. For each x € I(2™) we let
lg(x) denote the largest integer k < m such that 2 divides z. Note in particular that
lg(0) = m. For z € I(2™), we use T to denote the reverse m-bit binary representation
of z. That is, if the usual binary representation of x is ¢, - - - cac1¢9 (p < m), then

/33'\:(Co,Cl,CQ...,Cp,O,...,O) S {O,l}m

m—p—1

Define fy, 01, ..., Bm € {a,b,c}™ by

G = (a,...,a,b,c,...,c), (0<i<m)
——— S —
i m—i—1
Bm = (a,a,...,2).
——
m

Define a ternary relation < C {0,1} x {0,1} x {a,b, c} as follows:
< ={(1,0,a), (0,1,b), (0,0,¢), (1,1,¢)}.

Lemma 3.1. For x,y € 1(2™) and 0 < k < 'm, the following are equivalent:

(1) The triple (Z,Y, Bk) is coordinatewise in <.
(2) lg(y) =k and x =y — 1 (mod 2™).

We now define the relational structure we wish to associate with (D, m,w). Define
B ={0,1}* C ={a,b,c}, X ={T, L}, write D = (D, H,V), and put
A = BUCUDUX U{oo}.
Define the following ternary relations on A:
=H = {((Ihy)’ (x27y)7t) €EBXxBxC: (xhx%t) €Ex,y¢€ {071}}
U{(d,e,f)eDxDxX : f=_1or(de) e H},
=v = {((x7y1)7(‘r7y2)7t) S ‘82 X B2 xC (yhyQut) €E=x,rE {071}}
U{(d,e,f)eDxDxX : f=_Lor(de) eV}
Definition 3.2. A = (A;I') where I' = {<y, <v }.
Recall that U(2™) denotes the torus Zom X Zom. For (x,y) € U(2™) we define
[z,y] € B™ as follows: if ¥ = (xg,21,...,2m-1) and ¥ = (Yo, Y1, - - -, Ym—1), then
[Ivy] = (('T07 y0)7 (13173/1)7 ceey ($m—17ym71))~

Theorem 3.3. D tiles the torus U(2™) with initial condition w iff there exists a
homomorphism h : A™ — A satisfying h(5;) = T for alli < m and h([i,0]) = w; for
all 1 < |wl.
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Proof. Suppose first that such a homomorphism A : A™ — A exists. Given (i,j) €
U(2m), set & = [i—1,j|, ¥ = [i, j], and k = 1g(j). Then (Z, ¥, Bx) is coordinate-wise in
<p. As h is a homomorphism and h(Gy) = T, we get (h([i—1, j]), h([z,7]), T) € <u.
By definition this implies h([i—1, j]), h([, j]) € D and (h([i—1, j]), h([i,j])) € H. A
similar argument shows that (h([i,j—1]), ([, j])) € V for all (i,5) € U(2™). Thus
we can define 7 : U(2™) — D by 7(i,7) = h([i,j]), and 7 is a tiling of U(2™) by D
with initial condition w.

Conversely, if 7 is a tiling of U(2™) by D with initial condition w, we can define
h:A™ — A by

r(i,j) ifd=[i,j] € B"
. T 1fﬁ€{60,,ﬁm}
M= L itgecm\{Bo,....0m}

00 otherwise.

Then h is a homomorphism A™ — A having the required properties. O

Since A is determined by D only (that is, not by m,w), and the construction from
(m,w) of the set S :={F; : i <m}U{[;,0] : i < |w|} and the map S — A given
by B; — T, [i,0] — w; can be done in polynomial-time as a function of the size
of (m,w), we have a polynomial-time reduction of EXpTILE**(D) to HOM-EXT(A).
Hence:

Corollary 3.4. HOM-EXT(A) and PP-CLS(A) are NEXPTIME-complete with re-
spect to polynomaial-time reductions.

Proof. By Theorem 2.5, the previous construction gives an explicit polynomial-time
reduction of EXPTILE™ (D) to HOM-EXT(A). For completeness, we describe the
corresponding reduction of EXPTILE®* (D) to PP-CLS(A). Given (m,w) with |w| =
k <m,let £ ="log k™ and define &; € C™! x B* (0 <i < m) by

(¢,...,c,b,a,...,2,(0,0),...,(1,0),...,(0,0),...,etc), (i<¥),
5’ _ 7 m—1 2 21 2 .
! c,...,c,ba,...,a,(0,0),...,(0,0)), ¢ <i<m),
( ©.0)...0.0) ( )
i m—i k

and let 7 = {&, : 0 <i <m} C A™TFL Finally, define @ € X™* x D* by

a= (T,...,T,wg,wl,...,wk_l).
—_——
m—+1
If M is the m x (m+k+1)-matrix whose rows are ¢, . . ., é,_1, then the columns of M
are Bo, 51, .-, Bm, [0,0],[1,0],...,[k—1,0]. Thus by Theorem 3.3 and the connection

described between HOM-EXT and PP-CLS in section 1, @ € [r]p iff D tiles U(2™)
with initial condition w. As |r| = m, the space needed to represent r is polynomial
in the size of the original input to EXPTILE? (D). Hence the map (m,w) + (r,d) is
a polynomial-time reduction of EXPTILE” (D) to PP-CLS(A). O]



PP-DEF 7

4. THE SECOND CONSTRUCTION

The construction in the previous section does not seem to lead to a proof that
PP-DEF is co-NEXPTIME-complete, in part because the relation r constructed in
the proof of Corollary 3.4 is such that the cardinality of [r]r is always exponential in
the size of input to the tiling problem being encoded, so is too large to coincide with
any relation we might care to test for pp-definability (in the context of the argument
in the previous section). In this section we describe a variant of the construction from
the previous section which avoids this problem and simultaneously gives polynomial-
time reductions of EXPTILE® to PP-DEF®, PP-CLS and HOM-EXT.

Let (D,m,w) be an input to EXPTILE™; write m = 27! with ¢ > 0. Again,
addresses in U(2™) will be represented by double-binary strings in B™. The main
new idea is to revise the means by which adjacent addresses are recognized. In place
of the 3-ary relation < and the m + 1 “parameter” strings (,..., G, € C™ which
were used in the previous section, we will use m + 1 relations each of arity ¢ + 3,
which will jointly require only ¢t + 1 “parameter” strings 7o,...,v € {0,1}™. Since
t + 1 = logm, the number of parameters we will need is now logarithmic in the size
of the original input, a crucial fact in ensuring that the relation we will ultimately
test for pp-definability is not too large.

More precisely, if k& € I(m) then we'll use (k) to denote the reverse (t + 1)-bit
binary representation of k. Define the following ¢ 4 1 elements of {0, 1}"™:

% = (0,1,0,1,0,1,0,1,...,0,1,0,1,0,1,0,1)
w = (0,0,1,1,0,0,1,1,...,0,0,1,1,0,0,1,1)
v = (0,0,0,0,1,1,1,1,...,0,0,0,0,1,1,1,1)

v = (0,0,0,0,0,0,0,0,...,1,1,1,1,1,1,1,1).

In other words, if v; = (¢f, ¢ ..., ¢, 1), then ¢ is the ith bit in (k). Note that if
M is the (¢t + 1) x m matrix whose rows are ¥y, ..., 7, then the columns of M are
(0), (1), ..., {m — 1), and the set of columns of M is {0, 1}+1.

For each ¢ € I(2™) write ¢ = (co,c1,- .., Cm—1) and define the (¢ + 2)-ary relation
P, C {0, 1} as follows:

Py = {(¢;; {(4) - 0<j <m}.

For each 0 < k < m define the (¢ + 3)-ary relation L, C {0,1}'3 as follows:

L = {(1,0,()) : 0<j <k} UA{(0,1L,{k)} U
{(z,2,(j)) : ©€{0,1} and k < j < m}.
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Also define the (¢ + 3)-ary relation L,, C {0,1}*3 by

Ly, = {(1,0,{j)) : 0<j <m}.
Lemma 4.1. Suppose z,y,q € 1(2™) and 0 < k < m.
(1) (Z,7,7,---,7) is coordinate-wise in P, iff v = q.
(2) (Z,9,%,71,---,V) is coordinate-wise in Ly iff lg(y) = k and v = y — 1
(mod 2™).

Proof. By construction. [

We now begin the definition of the relational structure we wish to associate with
the given input (D, m, w) to EXPTILE®. Define B = {0,1}?, C' = {0,1}, £ = {a, b},
X ={T,L}, write D = (D, H,V), and put

A = BUCUDUEUXU{oo}.
Define ¢ : C'*! — E by

o(if) = b if @ = 170" for some 0 < i <t+1
=13 a otherwise.

Note that if we write @ = (k) with k& € I(m), then @ = 170717 iff k = 2¢ — 1.
For each q € 1(2™) we define the (¢ 4 3)-ary relation P} C B x C"*' x E (“row
zero” analogue of P,) as follows:

P = {((2,0),4,¢(a)) : (z,4) € Py}.

For each 0 < k < m we define (¢ + 4)-ary relations L L/ C B%? x C*! x E
(“horizontal” and “vertical” analogues of Ly) as follows:

L = {((z1,9), (x2,9), 7, ¢(@0) € B> x C"™™ x E : (21, 29,%) € Ly, y € {0,1}}
L}c/ = {<<x7y1)7 (Jf,y2)7 qvgb(ﬁ)) € B2 X Ct+1 X E : <y17y27ﬁ) € ka HS {071}}

For each d € D define the (¢ + 3)-ary relation 77 C D x X' by
T = {(z,0) e Dx X" : z=dor L € {vy,...,v11}}
Similarly, define the (¢ + 4)-ary relations H*,V* C D? x X' by
HY = {(z,y,0) € D* x X" : (z,y) € H or L € {vy,...,v41}},
VTt = {(z,y,0) € D* x X" . (z,9) € Vor L € {vy,...,v41}}.

We now assemble the relations for our relational structure. For 0 < k < m define
the (t 4 4)-ary relations

H, = L7 U H" U {(c0,00,...,00)}
Vi = L U V" U {(c0,00,...,00)}
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Recall that our input to EXPTILE™ is (D, m,w). Write w = wow; - --wp_; with
|w| = ¢ < m, and for each ¢ < ¢ define the (¢ + 3)-ary relation

T, = P} U Ty U {(00,00,...,00)}.
Definition 4.2. A = (A;T') where I' ={Hy,..., Hun, Vo, -, Vi, Toy - - ., To-1}-
Define g € {a,b}" by
B = (6({0)), (1)), 2((2)), - .-, &({m — 1))).

Claim 4.3. Suppose T,v,20,21,...,2, 0 € A™, 0<qg<{, and 0 <k <m, and let o
be a self-map from {0,1,... t} to itself.
(1) If (%, 2, ..., 2, W) is coordinate-wise in T,, then either (Z,2y, ..., 2, W) s in
B x C™x - x C™x E™ or {Z, 2y, ..., 2} is disjoint from B™UC™ U E™.
(2) If (Z,9, 2o, - - -, 2, 1) is coordinate-wise in Hy, then either (Z,v, Zy, ..., 2, U)
is in B™ X B™ x C™ X -+ x C™ x E™ or {Z,y,2,...,2} is disjoint from
BmUC™UE™. The same is true for Vj.
(3) (Z,70,---,m, B) is coordinate-wise in T, iff ¥ = [q,0].
(4) (Z,9,70,---,%, ) is coordinate-wise in Hy iff there exist i,j € I(2™) such
that lg(i) =k, £ =[i — 1, 7] and ¥ = [1, j].
(5) (Z,7,70,---,%, ) is coordinate-wise in Vi, iff there exist i,j € 1(2™) such that
le(j) =k, 7= [i.j — 1] and 7 = [i, ]
(6) If (Z,%(0)s - - - » Vo), B) is coordinate-wise in Ty, then o(i) =i for all i.
(1) If (Z, Y, Yo(0)s - - - » Vo), B) is coordinate-wise in Hy, then o(i) =i for alli. The
same is true for Vj.

Proof. Ttems (1)—(5) follow easily from Lemma 4.1 and the definitions. To prove item
(6), assume that (z, 7,0, -;Y@),3) is coordinate-wise in T;. We first prove that
o must be a permutation. Suppose ¢ < t and i ¢ ran(c). Let k = m — 1 — 2¢
Then (k) = 1°01*~". Since i # t, we have ¢((k)) = a. However, 7; has a 1 at
coordinate k for all j € ran(o), so (V»(0), - - - s Yo@r), 3) at coordinate k is (1,...,1,a),
which is not in graph(¢). This contradicts the assumption that (z, Vs (o), - - -, Vo(r), 8)
is coordinate-wise in 7, and hence proves {0, 1,...,t—1} Cran(c). Finally, suppose
t ¢ ran(o). Let k = 2. Then (k) = 0'1 and ¢((k)) = a, 50 (Vo(0): - - - » Vor), B) at
coordinate k equals (0,...,0,a), which again is not in graph(¢), contradicting the
assumption that (z,7s(0),- - -, Ve, ) is coordinate-wise in T;. Hence ¢ € ran(c), so
o is a permutation.

To prove that o is the identity map, it now suffices to prove that ¢(0) < o(1) <

- < o(t +1). Suppose instead there exists j < t with o(j) > o(j + 1). Let
r = o(j) and k = 2" — 1. Then (Yo(0),---, %)) at coordinate k has the form
(%,...,%,0,1,%, ... % b), which is not in graph(¢), again contradicting the assump-
t

ion that (,7s(0)s - - -+ Yo(r), B) is coordinate-wise in 7. O



10 R. WILLARD

Definition 4.4.

(1) T=(T,T,...,T) € A2,

(2) 30 = (00, 00,...,00) € AT2,

(3) r = graph(¢) = {(d, ¢(u)) : @ € C*'} C A2
(4) s=r U (X"2\{T}) U {c}.

Lemma 4.5.

(1) [rlr = {(ao,...,a:,b) € A™2 . there exists a homomorphism h : A™ — A
with h(7;) = a; for 0 <i <t and h(3) = b}.
(2) sCrjr CsU{T}.

Proof. Let M be the (t + 2) x m matrix whose columns in order are ({k), o({k))),
0 < k < m. Then the columns of M enumerate r, and the rows of M are precisely
Y0, Y1y - - -5 Ve, B- (1) then follows immediately from the connection between PP-CLS
and HOM-EXT described on page 2.

Next, we'll show s C [r]a. Obviously r C [r]a. It is easy to check that the
constant function A™ — {oo} is a homomorphism A™ — A which, with item (1),
proves 00 € [r]a. Finally, assume f = (fo, f1,..., ft, frz1) € X2\ {—T—} Pick any
dy € D and define hg : A™ — A by

dy ifueB™
fi ifd =~ for some 0 <i<t
he(10) = fir1 ifu=p

iR 1fﬁ€CmUEm\{707a’7taﬁ}
oo otherwise.

Clearly f = (he(70), .-, he(2), he(B)), so to prove f € [r]a it suffices in light of
item (1) to show that hs is a homomorphism A™ — A. Suppose first that ¢ < ¢;
we verify that he preserves T,. Assume 7,2,...,2, 4 € A™ and (7, 2, ..., 2, U)
is coordinate-wise in Ty, yet g = (he(Z), he(20), - .., he(Z), he(@)) & T,. Then at
least one of h¢(Z), he(20), - - -, he(Z;), he(@) is not equal to co. Hence by the definition
of he, {Z,2y,...,2,u} is not disjoint from B™ U C™ U E™, from which it follows
that (Z,2p,...,2;,u) € B™" x C™ x --- x C™ x E™ by Claim 4.3(1). Hence g =
(do, fo,---, fi, fi41) for some f/ € X, by definition of h¢. The only way that g can
fail to be in 7T, is if dy # w, and f/ = T for all 7. Since z,...,z, € C™ and
u € E™, and using the definition of h¢, we get that @ = 3 and f,.1 = T, and
{Zoy.. 2 C{y : 0<i<t, fy=T} Since f # —T', there exists A < t such that
fo=1,s0{%,...,2} is a proper subset of {7,...,7:}. But this and the fact that
(%, 20, . . ., 21, ©) is coordinate-wise in 7}, contradicts Claim 4.3(6). Hence h¢ preserves
T,. The proofs for Hj and Vj, are similar. Hence h¢ is a homomorphism.
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The remarks in the preceding paragraph show that s C [r|p. To finish the proof
of (2), note that the pp-formula 32Ty(z, xo, ...,z y) defines the relation s U {T}.
Hence [r]r C sU{T}. O

Theorem 4.6. The following are equivalent:

(1) D tiles the torus U(2™) with initial condition w.

(2) There exists a homomorphism h : A™ — A with h(y;) = T, for 0 <i <t and
B(B) =T.

(3) T €[r]r.

(4) s is not pp-definable over T'.

Proof. (2) < (3) < (4) follows from Lemma 4.5. Thus it suffices to prove (1) < (2).
(1) = (2). Assume 7: U(2™) — D is a tiling of the torus U(2™) by D with initial
condition w. Define h, : A™ — A by
7(i,5) ifua=][i,j] € B™
h(ﬁ): T %fﬁe{”yo,...,’yt,ﬁ}
T 1L ifaeC"UE™\ {yo,...,7% 0}
oo otherwise.

Clearly T = (hr(70)s - -« hr(7e), hr(B)), so to prove (2) it suffices to show that h, is
a homomorphism A™ — A.

Suppose g < ¢; we’ll verify that h, preserves T,. Assume ¥, %,..., 2,4 € A™ and
(%, 20, . .., 2, W) is coordinate-wise in T}, yet g = (h,(Z), hr(2), ..., hr(Z), hr (1)) &
T,. Then as in the proof of Lemma 4.5, we get ¥ € B™, %,..., 7, € C™, 4 € E™,
and g = (h, (%), T,..., T) with h, (%) # w,. This forces @ = § and {%,..., 2} C
{70, ..., %} Since (%, %, . . ., 2, U) is coordinate-wise in T, Claim 4.3(6) yields z; = v;
for each ¢ < t. Claim 4.3(3) then yields & = [¢,0]. But the assumption that 7 is a
tiling of U(2™) with initial condition w implies 7(q,0) = w,, contradicting the fact
that 7(¢,0) = h-([g,0]) = h.(¥) # w,. Hence h, preserves each relation T,. The
proof for the relations Hj and Vj, is similar. Hence h, is a homomorphism, proving
(2).

(2) = (1). Assume h: A™ — A is a homomorphism satisfying h(+;) = T for all
i <tandh(B) =T. Given (i,5) € U(2™),set ¥ = [i—1, j] € B™, § = [i,j] € B™, and
k =1g(i). Then (Z,9,70,-..,%, 3) is coordinate-wise in Hy by Claim 4.3(4). Since h
is a homomorphism, we get (h(Z), h(y), T,..., T) € Hg, which implies h(Z), h(y) € D
and (h(Z),h(y)) € H. Thus we can define a function 7, : U(2™) — D by 7,(i,75) =
h([i,7]). The above argument and its analogue for the relations Vj show that 7, is
a tiling of U(2™) by D. The analagous argument for the relations T}, prove that 7,
satisfies the initial condition w. O

Theorem 4.7. PP-DEr®”, PP-CLS and HOM-EXT are NEXPTIME-complete for
polynomial-time reductions.
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Proof. The preceding construction takes an instance (D, m,w) of EXpPTILE® and
produces equivalent instances (A, {vo,..., %, 0}, v — T, B — T) of HoM-EXT,
(A,r, :I:) of PP-CLs, and (A, s) of PP-DEF®. It suffices to show that the reductions
are polynomial-time computable; the only issue is whether the sizes of the constructed
instances are polynomially bounded in the size of (D, m,w).

Because D is full we certainly have d + m < [[(D,m,w)l||, where ||(D,m,w)||
denotes the size of a standard encoding of (D, m,w) and d = |D|. Analyzing the
above construction, we see that

A = d+11
|Hi|,[Vi| < 4m+d®- 277 +1 < 2m(d+ 1),
T, < m+d-272+1 < 2m(d+1)

| = 2" = m,
ls] = m+ 2" -1)+1 = 3m.

Hence
(A )| < log|A] (1+2(m +1) - 2m(d+1)%- (¢ +4) +
E-Qm(d—I—l)-(t—|—3)—|—3m-(t—|—2)>.

Since t+1 = logm and ¢ < m, the above upper bound is O((d+m)?), proving ||(A, s)||
is polynomial in ||(D, m,w)||. The analysis for ||(A,r, T)|| is just as easy, and the size
of (A, {v0,---,%, 0},v+— Ti B+ T) is essentially the same as |[(A,r, T)||. O

Corollary 4.8. There exists k > 3 such that the restrictions of PP-DEF®, PP-CLS
and HOM-EXT to k-element domains are NEXPTIME -complete.

Proof. Fix a full domino system D for which ExpTILE* (D) is NEXPTIME-complete.
(Such a D is promised by Proposition 2.5.) If D = (D, H, V'), then the above argu-
ment shows that we can take k = |D| + 11. O

5. MISCELLANEOUS REMARKS AND OPEN QUESTIONS

Remark 5.1. PP-DEF is the relational “dual” of GEN-CLO, the algebraic “clone

generation” problem. Kozik [5] proves that there exists a fixed, finite algebra A for
which the local problem GEN-CLO(A) is EXPTIME-complete.

Question 1: By analogy, is there a fixed finite relational structure A for which the
local problem PP-DEF(A) is co-NEXPTIME-complete?

Question 2: Can the parameter k in Corollary 4.8 be reduced to k = 3 (as conjec-
tured by the working group at AIM)?
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Remark 5.2. PP-DEF® and PP-CLS are each polynomial-time reducible to the other,
since they are both NEXPTIMFE-complete with respect to polynomial-time reduc-
tions.

Question 3: is there a relatively simple, direct polynomial-time reduction of either
problem to the other?

Remark 5.3. The construction in section 4, incorporating the proof of Corollary 4.8,
shows that PP-DEF® and PP-CLS remain NEXPTIME-complete even if the input
relations are represented (generally less efficiently) by their characteristic functions
(hence a k-ary relation on a d-element set has size d*).

Remark 5.4. The construction in section 4 also shows more specifically that the
following variant of PP-DEF is co- NEXPTIME-complete:

Input:
A finite relational structure A = (A;T") of finite signature;
A k-ary relation p € I'.
A k-tuple @ € A*.
Question:
Is p\ {@} primitive-positive definable over I'?

6. APPENDIX: NEXPTIME-COMPLETENESS FOR EXPTILE AND EXPTILE®*

We first prove that both EXPTILE and EXPTILE® are NEXPTIME-complete.
Later we will also prove that there exists a fixed D such that ExpTILE™(D) is
NEXPTIME-complete, completing the proof of Proposition 2.5.

Define two problems intermediate to EXPTILE and EXPTILE® as follows:

Definition 6.1.

(1) EXPTILE" is the restriction of EXPTILE to instances (D, m,w) where m is a
power of 2.

(2) EXPTILE® is the restriction of EXPTILE to instances (D, m,w) where D is
full (see section 2).

Note first that EXPTILE and EXPTILE" can be polynomial-time reduced to their
full restrictions EXPTILE® and EXPTILE® respectively, by repeatedly deleting domi-
noes not mentioned in pry (H)Npry(H )Npry (V)Npry (V) and re-indexing the remaining
input data, immediately answering “no” if the initial condition mentions a deleted
domino.

Thus it will suffice to show:

(1) ExpTILE® is in NEXPTIME.
(2) ExpTILE" is NEXPTIME-hard.

Lemma 6.2. EXPTILE® s in NEXPTIME.
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Proof. Suppose (D, m,w) is an input to EXPTILE®, with D = (D, H,V), |D| = d,
and |w| = k < m. Because D is full, we can assume d +m < ||(D, m,w)]||.

If the answer for this input is “yes,” a tiling 7 witnessing this can be presented in
22" Jog d space and its correctness can be checked on a multi-tape deterministic Turing

machine with additional input tape for 7 in time bounded by a polynomial in 2™d.
Since log(2"d) = m+logd < ||(D, n,w)||, this proves EXpTILE® € NEXPTIME. O

Lemma 6.3. EXPTILE" is NEXPTIME-hard for polynomial-time reductions.

Proof. Assume L is a language in NEXPTIME. Let Y be the alphabet of L, and
fix a nondeterministic Turing machine M which accepts the language L in time
f(n) < 2°7*. We can assume (at the expense of increasing C, k) that M works on a
single semi-infinite tape, that the alphabet of M contains ¥ and at least one other
symbol [0 (blank), that M never tries to move left from the left-most tape cell, and
that at every stage of a computation of M there is never a blank symbol to the left
of a non-blank symbol.

Under these assumptions, Borger, Grédel and Gurevich [1] describe a domino sys-
tem Dy, = (D, H,V) and a linear-time reduction which takes any input word z € ¥+
to a word p(x) € D' of the same length k& > 0, such that

e If some computation of M accepts x in time less than or equal to tg > k, then
Dy, tiles U(n) with initial condition ¢(z) for all n > ¢y + 2.

o If M does not accept x, then Dy, does not tile U(n) with initial condition
o(z) for any n > k + 2.

Thus we can reduce L to EXPTILE" be sending x — (D, m(x), p(x)) where m(z) is
the least power of 2 greater than C|z|* + 1. Since Dy, C' and k are fixed (for L), this
is clearly a polynomial-time reduction. [

Corollary 6.4. EXPTILE and EXPTILE™ are NEXPTIME -complete for polynomial-
time reductions.

Corollary 6.5. There exists a full domino system D such that EXPTILE® (D) is
NEXPTIME-complete for polynomial-time reductions.

Proof. Fix a standard encoding (D, m,w) — " (D, m,w)" of inputs to EXPTILE as
strings over a finite alphabet 3, and define

L={"(D,m,w)? : D tiles U(2™) with initial condition w}.

L is NEXPTIME-complete by Corollary 6.4. The proof of Lemma 6.3 produces a
domino system Dy and a polynomial-time reduction of L to ExpTILE"(Dy). By
the comments following Definition 6.1, we can find a full domino system D and a
polynomial-time reduction of EXPTILE" (D) to EXPTILE™ (D), so EXPTILE™ (D)
is NEXPTIME—-complete. [
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