
PP-DEFINABILITY IS CO-NEXPTIME-COMPLETE

ROSS WILLARD

Abstract. PP-Def is the problem which takes as input a relation r and a finite
set Γ of relations on the same finite domain A, and asks whether r is definable by a
conjunctive query over (A,Γ), i.e., by a formula of the form ∃~yϕ(~x, ~y) where ϕ(~x, ~y)
is a conjunction of atomic formulas built using the relations in Γ∪ {=}, and where
the variables range over A. (Such formulas ∃~yϕ(~x, ~y) are called primitive positive
formulas.) PP-Def is known to be in co-NEXPTIME , and has been shown to be
tractable on the boolean domain.

We show that there exists k > 2 such that PP-Def is co-NEXPTIME -complete
on k-element domains, answering a question of Creignou, Kolaitis and Zanuttini.
We also show that two related problems are NEXPTIME -complete.

1. The problems

Let Γ be a finite set of relations on a finite domain A. By a pp-formula over Γ
we mean a first-order formula of the form ∃~y

∧t
i=1 αi(~x, ~y) where each αi(~x, ~y) is an

atomic formula naming a relation from Γ ∪ {=} applied to a tuple of variables from
~x ∪ ~y. The pp-definability problem (or PP-Def) is:

Input:
A finite nonempty domain A;
A finite set Γ of relations on A;
Another relation r on A.

Question:
Is r definable by a pp-formula over Γ?

This problem is also known as ∃-InvSat in the theoretical computer science liter-
ature [4, 3]. The uniform version is known to be in co-NEXPTIME (folkore?), while
the boolean (|A| = 2) case was shown to be locally in P by Dalmau [4] and to be
globally in P by Creignou, Kolaitis and Zanuttini [3]. At a workshop at the American
Institute of Mathematics in April 2008, a working group conjectured that PP-Def is
co-NEXPTIME complete, even on 3-element domains, and speculated that the lower
bound can be proved by interpreting a tiling problem [2].

Date: December 28, 2009.
The support of the American Institute of Mathematics and the Natural Sciences and Engineering

Research Council of Canada is gratefully acknowledged.
1

Dagstuhl Seminar Proceedings 09441
The Constraint Satisfaction Problem: Complexity and Approximability
http://drops.dagstuhl.de/opus/volltexte/2010/2368

2 R. WILLARD

Given A, Γ, and some m ≥ 1, the set of m-ary relations on A pp-definable over Γ
includes Am and is closed under intersections; hence given a relation r on A we can
define the pp-closure of r over Γ to be the smallest relation of the same arity as r
which contains r and is pp-definable over Γ. We denote the pp-closure of r over Γ by
[r]Γ. Thus r is pp-definable over Γ iff [r]Γ = r.

The pp-closure of a relation over Γ may be conveniently described via polymor-
phisms, or equivalently, by homomorphisms of relational structures. Given A, Γ as
above, let A = (A; Γ) be the corresponding relational structure. The m-ary poly-
morphisms of Γ are precisely the homomorphisms from Am to A. These include the
so-called dictator functions pm

i , 1 ≤ i ≤ m, where pm
i (x1, . . . , xm) = xi for all inputs

x1, . . . , xm ∈ A. Let HomAm,A denote the set of all homomorphisms from Am to A.
Suppose now that ~c1, . . . ,~cn are chosen from Am and let c denote (~c1, . . . ,~cn). Define

H(c) = {(h(~c1), . . . , h(~cn)) ∈ An : h ∈ HomAm,A}
P (c) = {(pm

i (~c1), . . . , p
m
i (~cn)) ∈ An : 1 ≤ i ≤ m}.

Lemma 1.1. Let A, Γ, m, c be as above. Suppose r is an n-ary relation satisfying
P (c) ⊆ r ⊆ H(c). Then

(1) [r]Γ = H(c).
(2) Hence r is pp-definable over Γ iff r = H(c).

We can now describe two related problems which we will show are NEXPTIME -
complete.

Related problem #1: the pp-closure problem (PP-Cls).

Input:
A finite relational structure A = (A; Γ) with Γ finite;
An n-ary relation r on A (for some n ≥ 1);
An n-tuple ~a ∈ An.

Question:
Is ~a ∈ [r]Γ?

Related problem #2: the homomorphism extension problem (Hom-Ext).

Input:
A finite relational structure A = (A; Γ) with Γ finite;
A subset S ⊆ Am (for some m ≥ 1);
A function h0 : S → A.

Question:
Can h0 be extended to a homomorphism Am → A (i.e., a polymorphism of Γ)?

It is not hard to show that both PP-Cls and Hom-Ext are in NEXPTIME . In
fact, PP-Cls and Hom-Ext are essentially the same problem1, since:

1Provided relations are represented as lists, not as {0, 1}-valued tables.

PP-DEF 3

(1) Given an instance (A, Γ, r,~a) to PP-Cls with r∪{~a} ⊆ An, let m = |r|, choose

an enumeration {~b1, . . . ,~bm} of r, let M be the n×m matrix whose jth column

is~bj, let ~ci denote the ith row of this matrix, and put c = (~c1, . . . ,~cn). Observe
that P (c) = r and hence H(c) = [r]Γ by Lemma 1.1. If there exist i 6= j such
that ~ci = ~cj but ai 6= aj, then automatically ~a 6∈ [r]A. Otherwise, define
S = {~c1, . . . ,~cn} ⊆ Am and h0 : S → A by h0(~ci) = ai. Then (A, Γ, S, h0) is
an equivalent instance of Hom-Ext.

(2) Conversely, given an instance (A, Γ, S, h0) of Hom-Ext with S ⊆ Am, let
n = |S|, enumerate S as {~c1, . . . ,~cn}, and let M be the n×m matrix whose
ith row is ~ci. If we let r be the n-ary relation on A whose members are the
columns of this matrix, and put ~a = (h0(~c1), . . . , h0(~cn)), then by a similar
argument as in the previous paragraph, (A, Γ, r,~a) is an equivalent instance
of PP-Cls.

PP-Cls and PP-Defco appear to be closely related. Given an input (A, Γ, r) to
PP-Def where r is n-ary, we have that r is not pp-definable from Γ iff there exists
~a ∈ Ak \ r such that ~a ∈ [r]Γ. (Incidentally, this observation, together with the fact
that PP-Cls is in NEXPTIME , gives a proof that PP-Def is in co-NEXPTIME .)
Conversely, given an input (A, Γ, r,~a) to PP-Cls, we have that ~a 6∈ [r]Γ iff there
exists a relation s of the same arity such that r ⊆ s, s is pp-definable from Γ, and
~a 6∈ s. Despite these relationships, we do not see any straightforward polynomial-time
reductions of either of PP-Cls, PP-Defco to the other.2

Nevertheless, to resolve the complexity of PP-Def, we find it fruitful to first study
PP-Cls via Hom-Ext. In section 3 we will show that there is a fixed finite relational
structure A = (A; Γ) such that the local problems PP-Cls(A) and Hom-Ext(A)
are NEXPTIME -complete. In section 4 we will give a more complicated construction
which shows that there exists an integer k ≥ 3 such that the restriction of PP-Def
to k-element domains is co-NEXPTIME -complete.

I thank Matt Valeriote for several helpful conversations on this topic.

2. An NEXPTIME -complete tiling problem

In this section we define two tiling-of-tori problems that are NEXPTIME -complete.
Our presentation is inspired by and uses [1].

Definition 2.1.

(1) A domino system is a triple D = (D, H, V) where D is a finite non-empty set
and H, V ⊆ D ×D.

(2) If n ≥ 2, then U(n) denotes the torus Zn × Zn.

2We will see that they are polynomial-time equivalent, since they are both NEXPTIME -complete
for polynomial-time reductions.

4 R. WILLARD

Definition 2.2. Suppose D = (D, H, V) is a domino system, 1 ≤ k ≤ n, and
w = (w0, w1, . . . , wk−1) ∈ Dk is a word over D of length k. We say that D tiles U(n)
with initial condition w if there exists a mapping τ : U(n) → D such that for all
(i, j) ∈ U(n):

(1) If τ(i, j) = d and τ(i + 1, j) = e, then (d, e) ∈ H;
(2) If τ(i, j) = d and τ(i, j + 1) = e, then (d, e) ∈ V ;
(3) τ(i, 0) = wi for 0 ≤ i < k.

The most general tiling problem we consider (call it ExpTile) is:

Input:
A domino system D;
An integer m ≥ 2 given in unary notation;
A nonempty word w over D of length k ≤ m.

Question:
Does D tile U(2m) with initial condition w?

The second tiling problem we want is a restriction of ExpTile. Say that a domino
system D = (D, H, V) is full if D = pr1(H) = pr2(H) = pr1(V) = pr2(V).

Definition 2.3. ExpTile◦∗ is the restriction of ExpTile to instances (D, m, w)
where D is full and m is a power of 2.

Definition 2.4. Let D be a full domino system. ExpTile◦∗(D) is the local version
of ExpTile◦∗ in which the inputs are restricted to those whose domino system is D.

Proposition 2.5. ExpTile and ExpTile◦∗ are NEXPTIME-complete with respect
to polynomial-time reductions. Moreover, there exists a full domino system D such
that ExpTile◦∗(D) is NEXPTIME-complete.

Proof. See the Appendix. �

3. The first construction

Let D be a full domino system such that ExpTile◦∗(D) is NEXPTIME -complete
(as promised by Proposition 2.5). In this section we construct a relational struc-
ture A and give polynomial-time reductions of ExpTile◦∗(D) to Hom-Ext(A) and
PP-Cls(A).

Let (D, m, w) be an input to ExpTile◦∗(D). Since m ≥ 2 and m is a power of
2, we can write m = 2t+1 for some t ≥ 0. We will use binary strings of length m
to address elements of {0, 1, . . . , 2m − 1} in the usual way. We will need relations
which, when interpreted coordinate-wise on a pair of such binary strings of length m,
determine whether they address adjacent x, x+1 in Z2m . This can easily be done via
a ternary relation which models the action of “adding 1” to the first binary string to
get the second binary string; the third argument takes a special “parameter” string

PP-DEF 5

over a three-character alphabet; the role of this string is to indicate how far down
the first string the “carrying of ones” should proceed.

More precisely, for n > 0 we use I(n) to denote the set of integers {0, 1, . . . , n−1},
which we also identify with Zn in the obvious way. For each x ∈ I(2m) we let
lg(x) denote the largest integer k ≤ m such that 2k divides x. Note in particular that
lg(0) = m. For x ∈ I(2m), we use x̂ to denote the reverse m-bit binary representation
of x. That is, if the usual binary representation of x is cp · · · c2c1c0 (p < m), then

x̂ = (c0, c1, c2 . . . , cp, 0, . . . , 0︸ ︷︷ ︸
m−p−1

) ∈ {0, 1}m.

Define β0, β1, . . . , βm ∈ {a, b, c}m by

βi = (a, . . . , a︸ ︷︷ ︸
i

, b, c, . . . , c︸ ︷︷ ︸
m−i−1

), (0 ≤ i < m)

βm = (a, a, . . . , a︸ ︷︷ ︸
m

).

Define a ternary relation ≺ ⊆ {0, 1} × {0, 1} × {a, b, c} as follows:

≺ = {(1, 0, a), (0, 1, b), (0, 0, c), (1, 1, c)}.

Lemma 3.1. For x, y ∈ I(2m) and 0 ≤ k ≤ m, the following are equivalent:

(1) The triple (x̂, ŷ, βk) is coordinatewise in ≺.
(2) lg(y) = k and x = y − 1 (mod 2m).

We now define the relational structure we wish to associate with (D, m, w). Define
B = {0, 1}2, C = {a, b, c}, X = {>,⊥}, write D = (D, H, V), and put

A = B ∪ C ∪D ∪X ∪ {∞}.
Define the following ternary relations on A:

≺H = {((x1, y), (x2, y), t) ∈ B ×B × C : (x1, x2, t) ∈ ≺, y ∈ {0, 1}}
∪ {(d, e, f) ∈ D ×D ×X : f = ⊥ or (d, e) ∈ H},

≺V = {((x, y1), (x, y2), t) ∈ B2 ×B2 × C : (y1, y2, t) ∈ ≺, x ∈ {0, 1}}
∪ {(d, e, f) ∈ D ×D ×X : f = ⊥ or (d, e) ∈ V }.

Definition 3.2. A = (A; Γ) where Γ = {≺H ,≺V }.

Recall that U(2m) denotes the torus Z2m × Z2m . For (x, y) ∈ U(2m) we define
[x, y] ∈ Bm as follows: if x̂ = (x0, x1, . . . , xm−1) and ŷ = (y0, y1, . . . , ym−1), then

[x, y] = ((x0, y0), (x1, y1), . . . , (xm−1, ym−1)).

Theorem 3.3. D tiles the torus U(2m) with initial condition w iff there exists a
homomorphism h : Am → A satisfying h(βi) = > for all i ≤ m and h([i, 0]) = wi for
all i < |w|.

6 R. WILLARD

Proof. Suppose first that such a homomorphism h : Am → A exists. Given (i, j) ∈
U(2m), set ~x = [i−1, j], ~y = [i, j], and k = lg(j). Then (~x, ~y, βk) is coordinate-wise in
≺H . As h is a homomorphism and h(βk) = >, we get (h([i−1, j]), h([i, j]),>) ∈ ≺H .
By definition this implies h([i−1, j]), h([i, j]) ∈ D and (h([i−1, j]), h([i, j])) ∈ H. A
similar argument shows that (h([i, j−1]), h([i, j])) ∈ V for all (i, j) ∈ U(2m). Thus
we can define τ : U(2m) → D by τ(i, j) = h([i, j]), and τ is a tiling of U(2m) by D

with initial condition w.
Conversely, if τ is a tiling of U(2m) by D with initial condition w, we can define

h : Am → A by

h(~u) =


τ(i, j) if ~u = [i, j] ∈ Bm

> if ~u ∈ {β0, . . . , βm}
⊥ if ~u ∈ Cm \ {β0, . . . , βm}
∞ otherwise.

Then h is a homomorphism Am → A having the required properties. �

Since A is determined by D only (that is, not by m, w), and the construction from
(m,w) of the set S := {βi : i ≤ m} ∪ {[i, 0] : i < |w|} and the map S → A given
by βi 7→ >, [i, 0] 7→ wi can be done in polynomial-time as a function of the size
of (m,w), we have a polynomial-time reduction of ExpTile◦∗(D) to Hom-Ext(A).
Hence:

Corollary 3.4. Hom-Ext(A) and PP-Cls(A) are NEXPTIME-complete with re-
spect to polynomial-time reductions.

Proof. By Theorem 2.5, the previous construction gives an explicit polynomial-time
reduction of ExpTile◦∗(D) to Hom-Ext(A). For completeness, we describe the
corresponding reduction of ExpTile◦∗(D) to PP-Cls(A). Given (m, w) with |w| =
k ≤ m, let ` = plog kq and define ~ci ∈ Cm+1 ×Bk (0 ≤ i < m) by

~ci =


(c, . . . , c︸ ︷︷ ︸

i

, b, a, . . . , a︸ ︷︷ ︸
m−i

, (0, 0), . . .︸ ︷︷ ︸
2i

, (1, 0), . . .︸ ︷︷ ︸
2i

, (0, 0), . . .︸ ︷︷ ︸
2i

, etc), (i < `),

(c, . . . , c︸ ︷︷ ︸
i

, b, a, . . . , a︸ ︷︷ ︸
m−i

, (0, 0), . . . , (0, 0)︸ ︷︷ ︸
k

), (` ≤ i < m),

and let r = {~ci : 0 ≤ i < m} ⊆ Am+k+1. Finally, define ~a ∈ Xm+1 ×Dk by

~a = (>, . . . ,>︸ ︷︷ ︸
m+1

, w0, w1, . . . , wk−1).

If M is the m×(m+k+1)-matrix whose rows are ~c0, . . . ,~cm−1, then the columns of M
are β0, β1, . . . , βm, [0, 0], [1, 0], . . . , [k−1, 0]. Thus by Theorem 3.3 and the connection
described between Hom-Ext and PP-Cls in section 1, ~a ∈ [r]Γ iff D tiles U(2m)
with initial condition w. As |r| = m, the space needed to represent r is polynomial
in the size of the original input to ExpTile◦∗(D). Hence the map (m, w) 7→ (r,~a) is
a polynomial-time reduction of ExpTile◦∗(D) to PP-Cls(A). �

PP-DEF 7

4. The second construction

The construction in the previous section does not seem to lead to a proof that
PP-Def is co-NEXPTIME -complete, in part because the relation r constructed in
the proof of Corollary 3.4 is such that the cardinality of [r]Γ is always exponential in
the size of input to the tiling problem being encoded, so is too large to coincide with
any relation we might care to test for pp-definability (in the context of the argument
in the previous section). In this section we describe a variant of the construction from
the previous section which avoids this problem and simultaneously gives polynomial-
time reductions of ExpTile◦∗ to PP-Defco, PP-Cls and Hom-Ext.

Let (D, m, w) be an input to ExpTile◦∗; write m = 2t+1 with t ≥ 0. Again,
addresses in U(2m) will be represented by double-binary strings in Bm. The main
new idea is to revise the means by which adjacent addresses are recognized. In place
of the 3-ary relation ≺ and the m + 1 “parameter” strings β0, . . . , βm ∈ Cm which
were used in the previous section, we will use m + 1 relations each of arity t + 3,
which will jointly require only t + 1 “parameter” strings γ0, . . . , γt ∈ {0, 1}m. Since
t + 1 = log m, the number of parameters we will need is now logarithmic in the size
of the original input, a crucial fact in ensuring that the relation we will ultimately
test for pp-definability is not too large.

More precisely, if k ∈ I(m) then we’ll use 〈〈k〉〉 to denote the reverse (t + 1)-bit
binary representation of k. Define the following t + 1 elements of {0, 1}m:

γ0 = (0, 1, 0, 1, 0, 1, 0, 1, . . . , 0, 1, 0, 1, 0, 1, 0, 1)

γ1 = (0, 0, 1, 1, 0, 0, 1, 1, . . . , 0, 0, 1, 1, 0, 0, 1, 1)

γ2 = (0, 0, 0, 0, 1, 1, 1, 1, . . . , 0, 0, 0, 0, 1, 1, 1, 1)
...

γt = (0, 0, 0, 0, 0, 0, 0, 0, . . . , 1, 1, 1, 1, 1, 1, 1, 1).

In other words, if γi = (ci
0, c

,
1 . . . , ci

m−1), then ci
k is the ith bit in 〈〈k〉〉. Note that if

M is the (t + 1) × m matrix whose rows are γ0, . . . , γt, then the columns of M are
〈〈0〉〉, 〈〈1〉〉, . . . , 〈〈m− 1〉〉, and the set of columns of M is {0, 1}t+1.

For each q ∈ I(2m) write q̂ = (c0, c1, . . . , cm−1) and define the (t + 2)-ary relation
Pq ⊆ {0, 1}t+2 as follows:

Pq = {(cj, 〈〈j〉〉) : 0 ≤ j < m}.

For each 0 ≤ k < m define the (t + 3)-ary relation Lk ⊆ {0, 1}t+3 as follows:

Lk = {(1, 0, 〈〈j〉〉) : 0 ≤ j < k} ∪ {(0, 1, 〈〈k〉〉)} ∪
{(x, x, 〈〈j〉〉) : x ∈ {0, 1} and k < j < m}.

8 R. WILLARD

Also define the (t + 3)-ary relation Lm ⊆ {0, 1}t+3 by

Lm = {(1, 0, 〈〈j〉〉) : 0 ≤ j < m}.
Lemma 4.1. Suppose x, y, q ∈ I(2m) and 0 ≤ k ≤ m.

(1) (x̂, γ0, γ1, . . . , γt) is coordinate-wise in Pq iff x = q.
(2) (x̂, ŷ, γ0, γ1, . . . , γt) is coordinate-wise in Lk iff lg(y) = k and x = y − 1

(mod 2m).

Proof. By construction. �

We now begin the definition of the relational structure we wish to associate with
the given input (D, m, w) to ExpTile◦∗. Define B = {0, 1}2, C = {0, 1}, E = {a, b},
X = {>,⊥}, write D = (D, H, V), and put

A = B ∪ C ∪D ∪ E ∪X ∪ {∞}.
Define φ : Ct+1 → E by

φ(~u) =

{
b if ~u = 1i0t+1−i for some 0 ≤ i ≤ t + 1
a otherwise.

Note that if we write ~u = 〈〈k〉〉 with k ∈ I(m), then ~u = 1i0t+1−i iff k = 2i − 1.
For each q ∈ I(2m) we define the (t + 3)-ary relation P 0

q ⊆ B × Ct+1 × E (“row
zero” analogue of Pq) as follows:

P 0
q = {((x, 0), ~u, φ(~u)) : (x, ~u) ∈ Pq}.

For each 0 ≤ k ≤ m we define (t + 4)-ary relations LH
k , LV

k ⊆ B2 × Ct+1 × E
(“horizontal” and “vertical” analogues of Lk) as follows:

LH
k = {((x1, y), (x2, y), ~u, φ(~u)) ∈ B2 × Ct+1 × E : (x1, x2, ~u) ∈ Lk, y ∈ {0, 1}}

LV
k = {((x, y1), (x, y2), ~u, φ(~u)) ∈ B2 × Ct+1 × E : (y1, y2, ~u) ∈ Lk, x ∈ {0, 1}}

For each d ∈ D define the (t + 3)-ary relation T+
d ⊆ D ×X t+2 by

T+
d = {(x,~v) ∈ D ×X t+2 : x = d or ⊥ ∈ {v0, . . . , vt+1}}.

Similarly, define the (t + 4)-ary relations H+, V + ⊆ D2 ×X t+2 by

H+ = {(x, y,~v) ∈ D2 ×X t+2 : (x, y) ∈ H or ⊥ ∈ {v0, . . . , vt+1}},

V + = {(x, y,~v) ∈ D2 ×X t+2 : (x, y) ∈ V or ⊥ ∈ {v0, . . . , vt+1}}.
We now assemble the relations for our relational structure. For 0 ≤ k ≤ m define

the (t + 4)-ary relations

Hk = LH
k ∪ H+ ∪ {(∞,∞, . . . ,∞)}

Vk = LV
k ∪ V + ∪ {(∞,∞, . . . ,∞)}

PP-DEF 9

Recall that our input to ExpTile◦∗ is (D, m, w). Write w = w0w1 · · ·w`−1 with
|w| = ` ≤ m, and for each q < ` define the (t + 3)-ary relation

Tq = P 0
q ∪ T+

wq
∪ {(∞,∞, . . . ,∞)}.

Definition 4.2. A = (A; Γ) where Γ = {H0, . . . , Hm, V0, . . . , Vm, T0, . . . , T`−1}.

Define β ∈ {a, b}m by

β = (φ(〈〈0〉〉), φ(〈〈1〉〉), φ(〈〈2〉〉), . . . , φ(〈〈m− 1〉〉)).

Claim 4.3. Suppose ~x, ~y, ~z0, ~z1, . . . , ~zt, ~u ∈ Am, 0 ≤ q < `, and 0 ≤ k ≤ m, and let σ
be a self-map from {0, 1, . . . , t} to itself.

(1) If (~x, ~z0, . . . , ~zt, ~u) is coordinate-wise in Tq, then either (~x, ~z0, . . . , ~zt, ~u) is in
Bm ×Cm × · · · ×Cm ×Em or {~x, ~z0, . . . , ~zt} is disjoint from Bm ∪Cm ∪Em.

(2) If (~x, ~y, ~z0, . . . , ~zt, ~u) is coordinate-wise in Hk, then either (~x, ~y, ~z0, . . . , ~zt, ~u)
is in Bm × Bm × Cm × · · · × Cm × Em or {~x, ~y, ~z0, . . . , ~zt} is disjoint from
Bm ∪ Cm ∪ Em. The same is true for Vk.

(3) (~x, γ0, . . . , γt, β) is coordinate-wise in Tq iff ~x = [q, 0].
(4) (~x, ~y, γ0, . . . , γt, β) is coordinate-wise in Hk iff there exist i, j ∈ I(2m) such

that lg(i) = k, ~x = [i− 1, j] and ~y = [i, j].
(5) (~x, ~y, γ0, . . . , γt, β) is coordinate-wise in Vk iff there exist i, j ∈ I(2m) such that

lg(j) = k, ~x = [i, j − 1] and ~y = [i, j].
(6) If (~x, γσ(0), . . . , γσ(t), β) is coordinate-wise in Tq, then σ(i) = i for all i.
(7) If (~x, ~y, γσ(0), . . . , γσ(t), β) is coordinate-wise in Hk, then σ(i) = i for all i. The

same is true for Vk.

Proof. Items (1)–(5) follow easily from Lemma 4.1 and the definitions. To prove item
(6), assume that (x, γσ(0), . . . , γσ(t), β) is coordinate-wise in Tq. We first prove that
σ must be a permutation. Suppose i < t and i 6∈ ran(σ). Let k = m − 1 − 2i.
Then 〈〈k〉〉 = 1i01t−i. Since i 6= t, we have φ(〈〈k〉〉) = a. However, γj has a 1 at
coordinate k for all j ∈ ran(σ), so (γσ(0), . . . , γσ(t), β) at coordinate k is (1, . . . , 1, a),
which is not in graph(φ). This contradicts the assumption that (x, γσ(0), . . . , γσ(t), β)
is coordinate-wise in Tq and hence proves {0, 1, . . . , t− 1} ⊆ ran(σ). Finally, suppose
t 6∈ ran(σ). Let k = 2t. Then 〈〈k〉〉 = 0t1 and φ(〈〈k〉〉) = a, so (γσ(0), . . . , γσ(t), β) at
coordinate k equals (0, . . . , 0, a), which again is not in graph(φ), contradicting the
assumption that (x, γσ(0), . . . , γσ(t), β) is coordinate-wise in Tq. Hence t ∈ ran(σ), so
σ is a permutation.

To prove that σ is the identity map, it now suffices to prove that σ(0) ≤ σ(1) ≤
· · · ≤ σ(t + 1). Suppose instead there exists j < t with σ(j) > σ(j + 1). Let
r = σ(j) and k = 2r − 1. Then (γσ(0), . . . , γσ(t), β) at coordinate k has the form
(∗, . . . , ∗, 0, 1, ∗, . . . , ∗, b), which is not in graph(φ), again contradicting the assump-
tion that (x, γσ(0), . . . , γσ(t), β) is coordinate-wise in Tq. �

10 R. WILLARD

Definition 4.4.

(1) >̂ = (>,>, . . . ,>) ∈ At+2.
(2) ∞̂ = (∞,∞, . . . ,∞) ∈ At+2.
(3) r = graph(φ) = {(~u, φ(~u)) : ~u ∈ Ct+1} ⊆ At+2.

(4) s = r ∪ (X t+2 \ {>̂}) ∪ {∞̂}.

Lemma 4.5.

(1) [r]Γ = {(a0, . . . , at, b) ∈ At+2 : there exists a homomorphism h : Am → A
with h(γi) = ai for 0 ≤ i ≤ t and h(β) = b}.

(2) s ⊆ [r]Γ ⊆ s ∪ {>̂}.

Proof. Let M be the (t + 2) ×m matrix whose columns in order are (〈〈k〉〉, φ(〈〈k〉〉)),
0 ≤ k < m. Then the columns of M enumerate r, and the rows of M are precisely
γ0, γ1, . . . , γt, β. (1) then follows immediately from the connection between PP-Cls
and Hom-Ext described on page 2.

Next, we’ll show s ⊆ [r]A. Obviously r ⊆ [r]A. It is easy to check that the
constant function Am → {∞} is a homomorphism Am → A which, with item (1),

proves ∞̂ ∈ [r]A. Finally, assume f = (f0, f1, . . . , ft, ft+1) ∈ X t+2 \ {>̂}. Pick any
d0 ∈ D and define hf : Am → A by

hf (~u) =


d0 if ~u ∈ Bm

fi if ~u = γi for some 0 ≤ i ≤ t
ft+1 if ~u = β
⊥ if ~u ∈ Cm ∪ Em \ {γ0, . . . , γt, β}
∞ otherwise.

Clearly f = (hf (γ0), . . . , hf (γt), hf (β)), so to prove f ∈ [r]A it suffices in light of
item (1) to show that hf is a homomorphism Am → A. Suppose first that q < `;
we verify that hf preserves Tq. Assume ~x, ~z0, . . . , ~zt, ~u ∈ Am and (~x, ~z0, . . . , ~zt, ~u)
is coordinate-wise in Tq, yet g = (hf (~x), hf (~z0), . . . , hf (~zt), hf (~u)) 6∈ Tq. Then at
least one of hf (~x), hf (~z0), . . . , hf (~zt), hf (~u) is not equal to ∞. Hence by the definition
of hf , {~x, ~z0, . . . , ~zt, ~u} is not disjoint from Bm ∪ Cm ∪ Em, from which it follows
that (~x, ~z0, . . . , ~zt, ~u) ∈ Bm × Cm × · · · × Cm × Em by Claim 4.3(1). Hence g =
(d0, f

′
0, . . . , f

′
t , f

′
t+1) for some f ′

i ∈ X, by definition of hf . The only way that g can
fail to be in Tq is if d0 6= wq and f ′

i = > for all i. Since ~z0, . . . , ~zt ∈ Cm and
~u ∈ Em, and using the definition of hf , we get that ~u = β and ft+1 = >, and

{~z0, . . . , ~zt} ⊆ {γi : 0 ≤ i ≤ t, fi = >}. Since f 6= >̂, there exists λ ≤ t such that
fλ = ⊥, so {~z0, . . . , ~zt} is a proper subset of {γ0, . . . , γt}. But this and the fact that
(~x, ~z0, . . . , ~zt, ~u) is coordinate-wise in Tq contradicts Claim 4.3(6). Hence hf preserves
Tq. The proofs for Hk and Vk are similar. Hence hf is a homomorphism.

PP-DEF 11

The remarks in the preceding paragraph show that s ⊆ [r]Γ. To finish the proof

of (2), note that the pp-formula ∃zT0(z, x0, . . . , xt, y) defines the relation s ∪ {>̂}.
Hence [r]Γ ⊆ s ∪ {>̂}. �

Theorem 4.6. The following are equivalent:

(1) D tiles the torus U(2m) with initial condition w.
(2) There exists a homomorphism h : Am → A with h(γi) = >i for 0 ≤ i ≤ t and

h(β) = >.

(3) >̂ ∈ [r]Γ.
(4) s is not pp-definable over Γ.

Proof. (2) ⇔ (3) ⇔ (4) follows from Lemma 4.5. Thus it suffices to prove (1) ⇔ (2).
(1) ⇒ (2). Assume τ : U(2m) → D is a tiling of the torus U(2m) by D with initial

condition w. Define hτ : Am → A by

hτ (~u) =


τ(i, j) if ~u = [i, j] ∈ Bm

> if ~u ∈ {γ0, . . . , γt, β}
⊥ if ~u ∈ Cm ∪ Em \ {γ0, . . . , γt, β}
∞ otherwise.

Clearly >̂ = (hτ (γ0), . . . , hτ (γt), hτ (β)), so to prove (2) it suffices to show that hτ is
a homomorphism Am → A.

Suppose q < `; we’ll verify that hτ preserves Tq. Assume ~x, ~z0, . . . , ~zt, ~u ∈ Am and
(~x, ~z0, . . . , ~zt, ~u) is coordinate-wise in Tq, yet g = (hτ (~x), hτ (~z0), . . . , hτ (~zt), hτ (~u)) 6∈
Tq. Then as in the proof of Lemma 4.5, we get ~x ∈ Bm, ~z0, . . . , ~zt ∈ Cm, ~u ∈ Em,
and g = (hτ (~x),>, . . . ,>) with hτ (~x) 6= wq. This forces ~u = β and {~z0, . . . , ~zt} ⊆
{γ0, . . . , γt}. Since (~x, ~z0, . . . , ~zt, ~u) is coordinate-wise in Tq, Claim 4.3(6) yields ~zi = γi

for each i ≤ t. Claim 4.3(3) then yields ~x = [q, 0]. But the assumption that τ is a
tiling of U(2m) with initial condition w implies τ(q, 0) = wq, contradicting the fact
that τ(q, 0) = hτ ([q, 0]) = hτ (~x) 6= wq. Hence hτ preserves each relation Tq. The
proof for the relations Hk and Vk is similar. Hence hτ is a homomorphism, proving
(2).

(2) ⇒ (1). Assume h : Am → A is a homomorphism satisfying h(γi) = > for all
i ≤ t and h(β) = >. Given (i, j) ∈ U(2m), set ~x = [i−1, j] ∈ Bm, ~y = [i, j] ∈ Bm, and
k = lg(i). Then (~x, ~y, γ0, . . . , γt, β) is coordinate-wise in Hk by Claim 4.3(4). Since h
is a homomorphism, we get (h(~x), h(~y),>, . . . ,>) ∈ Hk, which implies h(~x), h(~y) ∈ D
and (h(~x), h(~y)) ∈ H. Thus we can define a function τh : U(2m) → D by τh(i, j) =
h([i, j]). The above argument and its analogue for the relations Vk show that τh is
a tiling of U(2m) by D. The analagous argument for the relations Tq prove that τh

satisfies the initial condition w. �

Theorem 4.7. PP-Defco, PP-Cls and Hom-Ext are NEXPTIME-complete for
polynomial-time reductions.

12 R. WILLARD

Proof. The preceding construction takes an instance (D, m, w) of ExpTile◦∗ and
produces equivalent instances (A, {γ0, . . . , γt, β}, γi 7→ >, β 7→ >) of Hom-Ext,

(A, r, >̂) of PP-Cls, and (A, s) of PP-Defco. It suffices to show that the reductions
are polynomial-time computable; the only issue is whether the sizes of the constructed
instances are polynomially bounded in the size of (D, m, w).

Because D is full we certainly have d + m ≤ ||(D, m, w)||, where ||(D, m, w)||
denotes the size of a standard encoding of (D, m, w) and d = |D|. Analyzing the
above construction, we see that

|A| = d + 11

|Hk|, |Vk| ≤ 4m + d2 · 2t+2 + 1 ≤ 2m(d + 1)2,

|Tq| ≤ m + d · 2t+2 + 1 ≤ 2m(d + 1)

|r| = 2t+1 = m,

|s| = m + (2t+2 − 1) + 1 = 3m.

Hence

||(A, s)|| ≤ log |A|
(
1 + 2(m + 1) · 2m(d + 1)2 · (t + 4) +

` · 2m(d + 1) · (t + 3) + 3m · (t + 2)
)

.

Since t+1 = log m and ` ≤ m, the above upper bound is O((d+m)5), proving ||(A, s)||
is polynomial in ||(D, m, w)||. The analysis for ||(A, r, >̂)|| is just as easy, and the size

of (A, {γ0, . . . , γt, β}, γi 7→ >i, β 7→ >) is essentially the same as ||(A, r, >̂)||. �

Corollary 4.8. There exists k ≥ 3 such that the restrictions of PP-Defco, PP-Cls
and Hom-Ext to k-element domains are NEXPTIME-complete.

Proof. Fix a full domino system D for which ExpTile◦∗(D) is NEXPTIME -complete.
(Such a D is promised by Proposition 2.5.) If D = (D, H, V), then the above argu-
ment shows that we can take k = |D|+ 11. �

5. Miscellaneous remarks and open questions

Remark 5.1. PP-Def is the relational “dual” of Gen-Clo, the algebraic “clone
generation” problem. Kozik [5] proves that there exists a fixed, finite algebra A for
which the local problem Gen-Clo(A) is EXPTIME -complete.

Question 1: By analogy, is there a fixed finite relational structure A for which the
local problem PP-Def(A) is co-NEXPTIME -complete?

Question 2: Can the parameter k in Corollary 4.8 be reduced to k = 3 (as conjec-
tured by the working group at AIM)?

PP-DEF 13

Remark 5.2. PP-Defco and PP-Cls are each polynomial-time reducible to the other,
since they are both NEXPTIME -complete with respect to polynomial-time reduc-
tions.

Question 3: is there a relatively simple, direct polynomial-time reduction of either
problem to the other?

Remark 5.3. The construction in section 4, incorporating the proof of Corollary 4.8,
shows that PP-Defco and PP-Cls remain NEXPTIME -complete even if the input
relations are represented (generally less efficiently) by their characteristic functions
(hence a k-ary relation on a d-element set has size dk).

Remark 5.4. The construction in section 4 also shows more specifically that the
following variant of PP-Def is co-NEXPTIME -complete:

Input:
A finite relational structure A = 〈A; Γ〉 of finite signature;
A k-ary relation p ∈ Γ.
A k-tuple ~a ∈ Ak.

Question:
Is p \ {~a} primitive-positive definable over Γ?

6. Appendix: NEXPTIME -completeness for ExpTile and ExpTile◦∗

We first prove that both ExpTile and ExpTile◦∗ are NEXPTIME -complete.
Later we will also prove that there exists a fixed D such that ExpTile◦∗(D) is
NEXPTIME -complete, completing the proof of Proposition 2.5.

Define two problems intermediate to ExpTile and ExpTile◦∗ as follows:

Definition 6.1.

(1) ExpTile∗ is the restriction of ExpTile to instances (D, m, w) where m is a
power of 2.

(2) ExpTile◦ is the restriction of ExpTile to instances (D, m, w) where D is
full (see section 2).

Note first that ExpTile and ExpTile∗ can be polynomial-time reduced to their
full restrictions ExpTile◦ and ExpTile◦∗ respectively, by repeatedly deleting domi-
noes not mentioned in pr1(H)∩pr2(H)∩pr1(V)∩pr2(V) and re-indexing the remaining
input data, immediately answering “no” if the initial condition mentions a deleted
domino.

Thus it will suffice to show:

(1) ExpTile◦ is in NEXPTIME .
(2) ExpTile∗ is NEXPTIME -hard.

Lemma 6.2. ExpTile◦ is in NEXPTIME.

14 R. WILLARD

Proof. Suppose (D, m, w) is an input to ExpTile◦, with D = (D, H, V), |D| = d,
and |w| = k ≤ m. Because D is full, we can assume d + m ≤ ||(D, m, w)||.

If the answer for this input is “yes,” a tiling τ witnessing this can be presented in
22m log d space and its correctness can be checked on a multi-tape deterministic Turing
machine with additional input tape for τ in time bounded by a polynomial in 2md.
Since log(2md) = m+log d ≤ ||(D, n, w)||, this proves ExpTile◦ ∈ NEXPTIME . �

Lemma 6.3. ExpTile∗ is NEXPTIME-hard for polynomial-time reductions.

Proof. Assume L is a language in NEXPTIME . Let Σ be the alphabet of L, and
fix a nondeterministic Turing machine M which accepts the language L in time
f(n) ≤ 2Cnk

. We can assume (at the expense of increasing C, k) that M works on a
single semi-infinite tape, that the alphabet of M contains Σ and at least one other
symbol � (blank), that M never tries to move left from the left-most tape cell, and
that at every stage of a computation of M there is never a blank symbol to the left
of a non-blank symbol.

Under these assumptions, Börger, Grädel and Gurevich [1] describe a domino sys-
tem DL = (D, H, V) and a linear-time reduction which takes any input word x ∈ Σ+

to a word ϕ(x) ∈ D+ of the same length k > 0, such that

• If some computation of M accepts x in time less than or equal to t0 ≥ k, then
DL tiles U(n) with initial condition ϕ(x) for all n ≥ t0 + 2.

• If M does not accept x, then DL does not tile U(n) with initial condition
ϕ(x) for any n ≥ k + 2.

Thus we can reduce L to ExpTile∗ be sending x 7→ (DL, m(x), ϕ(x)) where m(x) is
the least power of 2 greater than C|x|k + 1. Since DL, C and k are fixed (for L), this
is clearly a polynomial-time reduction. �

Corollary 6.4. ExpTile and ExpTile◦∗ are NEXPTIME-complete for polynomial-
time reductions.

Corollary 6.5. There exists a full domino system D such that ExpTile◦∗(D) is
NEXPTIME-complete for polynomial-time reductions.

Proof. Fix a standard encoding (D, m, w) 7→ p(D, m, w)q of inputs to ExpTile as
strings over a finite alphabet Σ, and define

L = {p(D, m, w)q : D tiles U(2m) with initial condition w}.

L is NEXPTIME -complete by Corollary 6.4. The proof of Lemma 6.3 produces a
domino system DL and a polynomial-time reduction of L to ExpTile∗(DL). By
the comments following Definition 6.1, we can find a full domino system D and a
polynomial-time reduction of ExpTile∗(DL) to ExpTile◦∗(D), so ExpTile◦∗(D)
is NEXPTIME–complete. �

PP-DEF 15

References

[1] E. Börger, E. Grädel and Y. Gurevich, The Classical Decision Problem, Springer-Verlag (Berlin),
1997.

[2] B. ten Cate, Notes on AIM CSP workshop, April 21, 2008,
http://www.aimath.org/WWN/constraintsatis/constraintsatis.pdf

[3] N. Creignou, P. Kolaitis, and B. Zanuttini, “Structure identification of boolean relations and
plain bases for co-clones,” J. Computer Sys. Sci. 74 (2008), 1103-1115.

[4] V. Dalmau, Computational complexity of problems over generalized formulas. PhD thesis, Uni-
versitat Politécnica de Catalunya, 2000.

[5] M. Kozik, “A finite set of functions with an EXPTIME-complete composition problem,” Theoret.
Comput. Sci. 407 (2008), 330–341.

Pure Mathematics Dept, University of Waterloo, Waterloo, Ontario, Canada

