SMT-Solving for the Real Algebra

Erika Abrahém and Ulrich Loup

RWTH Aachen University, Germany

Abstract. SAT-solving is a highly actual research area with increasing
success and plenty of industrial applications. SMT-solving, extending
SAT with theories, has its main focus on linear real constrains. However,
there are only few solvers going further to more expressive but still de-
cidable logics like the first-order theory of the reals with addition and
multiplication.

The main requests on theory solvers that must be fulfilled for their ef-
ficient embedding into an SMT solver are (a) incrementality, (b) the
efficient computation of minimal infeasible subsets, and (c) the support
of backtracking. For the first-order theory of the reals we are not aware
of any solver offering these functionalities. In this work we address the
possibilities to extend existing theory solving algorithms to come up with
a theory solver suited for SMT.

1 Introduction

The satisfiability problem poses the question whether a given logical for-
mula is satisfiable, i.e., whether we can assign values to the variables
contained in the formula such that the formula becomes true. The devel-
opment of efficient algorithms and tools (solvers) for satisfiability check-
ing form an active research area in computer science. Such solvers are
widely used not only in academical but also in industrial context, mainly
for analysis purposes.

A lot of effort has been put into the development of fast solvers for
the propositional satisfiability problem, called SAT. SAT-solvers are mas-
sively used for example in circuit analysis.

To increase expressiveness, extensions of the propositional logic with
respect to first-order theories can be considered. The corresponding satis-
fiability problems are called SAT-modulo-theories problems, short SMT.
SMT-solvers exist, e.g., for equality logic, uninterpreted functions, pred-
icate logic, and linear arithmetic over the reals.

In contrast to the above-mentioned theories, less activity can be ob-
served for SMT-solvers supporting the first-order theory of the real or-
dered field (R, +, -, <), what we call real algebra. Our research goal is to
bridge this gap and develop an SMT-solver for real algebra, being capable

Dagstuhl Seminar Proceedings 09461
Algorithms and Applications for Next Generation SAT Solvers
http://drops.dagstuhl.de/opus/volltexte/2010,/2508

of solving arbitrary Boolean combinations of polynomial constraints over
the reals efficiently.

2 The Real algebra

Even though decidability of real algebra is known for a long time [Tar48|
the first decision procedures were not yet practicable. Since 1974 it is
known that the time complexity of deciding formulas of real algebra is
in worst case doubly exponential in the number of variables contained in
the formula [FR74]. In [BD07] the authors show that even simple input
formulas can produce a double-exponentially large solution space to be
searched.

Today, several methods are available which satisfy these complexity
bounds, for example, cylindrical algebraic decomposition (CAD) , the
Grdébner basis, and the virtual substitution method . An overview of these
methods is given in [DSW97]. There are also tools available which imple-
ment these methods:

— The stand-alone application QEPCAD is a C++ implementation of the
CAD method [Bro03].

— The package Redlog of the computer algebra system Reduce based
on Lisp offers an optimized combination of the methods in [DS97].
Reduce also provides a library for C++ programs.

These algorithms are well-suited to check conjunctions of real con-
straints. However, disjunctions of real constraints are mostly solved by
syntactic case splitting. For this reason, currently existing solvers are not
suited to solve large formulas containing arbitrary combinations of real
constraints. Bounded Model Checking formulas, for example, come under
this issue.

3 SMT-solving for the Real Algebra

We plan to combine the advantages of highly tuned SAT-solvers and the
most efficient techniques currently available for solving conjunctions of
real constraints, by implementing an SMT-solver for real algebra that is
capable to efficiently solve abritrary Boolean combinations of real con-
straints.

The basic scheme of DPLL-based SMT solving is roughly as follows
(see Figure 1): The SMT-solver first creates a Boolean skeleton of the

input formula, replacing all real polynomial constraints contained in the
input formula by fresh auxiliary Boolean variables. The resulting Boolean
formula is passed to the SAT-solver, which searches for a satisfying as-
signment. If it does not succeed, the formula is unsatisfiable. Otherwise,
the assignment found corresponds to certain truth values for the real
polynomial constraints and has to be verified by the theory solver. If the
constraints are satisfiable, then the original formula is satisfiable. Other-
wise, if the theory solver detects that the conjunction of the corresponding
real constraints is unsatisfiable, it then hands over an explanation for the
unsatisfiability, a minimal infeasible subset of the real polynomial con-
straints, to the SAT-solver. The SAT-solver uses this piece of information
to exclude the detected real conflict from further search. Afterwards, the
SAT-solver computes again an assignment for the refined Boolean prob-
lem, which in turn has to be verified by the theory solver. Continuing this
iteration in the end decides the satisfiability of the input formula.

[o]
Boolean

abstraction

SAT-solver unsatisfiable UNSAT
satjsfiable \

(In)equation set | | Explanation |
\ We
Theory solver satisfiable SAT

Fig. 1. The basic scheme of DPLL-based SMT solving

Above we described a full lazy procedure, where the theory solver
checks constraints corresponding to a complete assignments only. In prac-
tice this is often disadvantageous, since the SAT-solver may do a lot of
needless work by extending an already (in the real domain) contradictory
partial assignment. Less lazy variants of the procedure call the theory
solver more often, already handing over constraints corresponding to par-

tial assignments. To do so efficiently, the theory solver should accept con-
straints in an incremental fashion, where computation results of previous
steps can be reused. Furthermore, in case of a conflict the theory solver
should also be able to track back to previous computation steps.

Summarized, the implementation of an SMT-solver requires a theory
solver to be able to

— work incrementally,
— compute minimal infeasible subsets, and
— backtrack on demand to previous computation steps.

To our knowledge, currently none of these functions are supported by
the available theory solvers for real algebra.

We are only aware of the SMT-solvers Z3 [dMBO08], HySAT [FHT*07]
and ABsolver [BPT07] which are able to handle arithmetic constraints.
The algorithm implemented in HySAT uses interval arithmetic to check
real constraints. The structures of ABsolver and Z3 are more similar to
our SMT-solver planned. However, Z8 does not support full non-linear
arithmetic. The authors of ABsolver do not address the issues of incre-
mentality and backtracking. Though ABsolver computes minimal infea-
sible subsets, we did not find any information how they are generated.

4 Adaptation of the Theory Solvers

We consider the adaptation of two existing decision procedures for real
algebra: the virtual substitution method and the cylindrical algebraic de-
composition (CAD), to support incrementality, minimal infeasible subset
computations and backtracking.

Computation of minimal infeasible subsets is covered by a method
which is independent of the underlying theory solver, and therefore pre-
sented separately in the current paragraph. We call constraints dependent
if they share variables. In order to keep track of constraint dependencies,
a dependency graph is updated whenever a constraint is added to the
input of the theory solver. This graph yields some advantages for variable
elimination order heuristics, furthermore it can be used to compute infea-
sible subsets: Whenever a constraint, sent to the theory solver, results in
an unsatisfiable theory part this constraint together with all constraints
which belong to the same component of the dependency graph build an
infeasible subset. It can be minimized by using constraints from the same
dependency graph component only.

4.1 Virtual substitution

The first procedure we want to tackle is the virtual substitution method,
which is the most restricted but most simple and particularly the most ef-
ficient one. Virtual substitution in principle works by replacing each vari-
able of the input formula by a term which does not include this variable
anymore, thus eliminating all variables successively resulting in a formula
which can be evaluated to “true” or “false” immediately. The substitution
terms of one variable are mainly the solutions of linear, quadratic or cubic
equations in this variable. Since there is mostly more then one solution of
such an equation the size of the formula evolves exponentially during the
substitution process — but not double-exponentially. Since such a solution
formula exists for polynomials with an order up to 5 only, this method is
not complete.

Incrementality The virtual substitution solver is modified to store a list
of variables substituted so far, and a list of its substitution terms for each
variable. Now assume the SAT-solver already sent several constraints to
the virtual substitution solver, and this solver already found all substitu-
tion terms for these constraints. Then a new constraint, sent to the virtual
substitution solver, is first solved for variables not considered yet, result-
ing in a formula containing only variables which already were substituted
before the constraint was added. The remaining variables are substituted
by using the original substitution term lists for each variable.

Minimal infeasible subsets Additionally to the above mentioned depen-
dency graphs, book-keeping of a substituion tree would allow to backtrack
the conflict for an unsatisfiability result to the constraints contributed to
the conflict.

Backtracking The substitution procedure builds up a complete substitu-
tion tree which can — with an appropriate implementation — be traversed
at will.

4.2 Cylindrical Algebraic Decomposition

At second we head for the cylindrical algebraic decomposition (CAD)
method which, to our knowledge, is not yet embedded into any SMT
solver. In contrast to the virtual substitution method, CAD provides a
complete decision procedure. A combination of the virtual substituion
with an underlying CAD solver to which the solving mechanism falls back
if virtual substitution is not applicable, offers an efficient combination.

A CAD of the coordinate space underlying an input formula with poly-
nomial constraints is a partition into cells such that the truth value of the
input formula is constant on all points of a cell. The CAD method has two
main phases: a projection phase and a construction phase. First a vari-
able order is fixed, on the basis of which all variables are eliminated one
by one. In the projection phase, first the set of all polynomials occurring
in the input formula is built. Then a special projection operator is used,
which maps sets of polynomials to sets of polynomials while satisfying the
following property: given a CAD for a projection of a set of polynomials,
a CAD for the original set of polynomials can be constructed. Now the
initial set of polynomials is projected stepwise onto sets of polynomials
each having the next variable in order eliminated. The final projection
step yields a set of univariate polynomials. At this point the construction
phase starts by calculating the real zeros of these polynomials. The zeros
induce a partition of the real line into cells where the signs of the poly-
nomials are constant. For each cell a sample point is computed, which is
then used to compute new sample points of a CAD for the polynomials
of the previous projection step. This sample point computation can be
carried on until sample points of a CAD for the input polynomials are
found. In a last evaluation step, these points are searched for one cell
satisfying all constraints and hence, the input formula.

Backtracking Starting at the set of input polynomials, the projection
steps are modified such that given a projected polynomial its projection
preimage can be identified. This enhances the procedure by the possibility
of tracking back the whole projection of an input polynomial. The CAD
method is further modified to store in each construction phase step first
the sample points, and second the information which polynomials pro-
duced the point. Thereby it is possible to identify the polynomials which
produce a certain cell of a CAD occurring during the computation.

Incrementality Consider the situation wherein a CAD for a certain input
formula has already been computed by the CAD method equipped with
the backtracking modifications. In case a new constraint is added to the
input, only the projection of just the new constraint must be computed.
Existing decompositions are only refined by the sample points for the new
input polynomial.

5 Conclusion

In this paper we discussed problems that arise when embedding a theory
solver for the real algebra into DPLL-based SMT solving. We identified
requirements the theory solving algorithms must provide, and showed up
some possible solutions for two decision procedures, the virtual substitu-
tion and the cylindrical algebraic decomposition.

Of course, it is still a long way to go until an efficient SMT solver
is developed. However, we are quite optimistic that SMT-solving for the
real algebra can make solving much faster. We implemented a first full
lazy prototype without minimal infeasible subset generation and without
theory-solver backtracking, but a light version of incrementality for the
theory solver. It is not surprising that first results show that the SAT-
based search is superior to the syntactic case splitting.

References

[BDO7] Christopher W. Brown and James H. Davenport. The complexity of quanti-
fier elimination and cylindrical algebraic decomposition. In Dongming Wang,
editor, ISSAC, pages 54—60. ACM, 2007.

[BPT07] Andreas Bauer, Markus Pister, and Michael Tautschnig. Tool-support for
the analysis of hybrid systems and models. In Proceedings of the 2007 Con-
ference on Design, Automation and Test in Europe (DATE), Nice, France,
pages 924-929. European Design and Automation Association, 2007.

[Bro03] Christopher W. Brown. Qepcad b: a program for computing with semi-
algebraic sets usingcads. SIGSAM Bull., 37(4):97-108, 2003.

[dMBO08] Leonardo de Moura and Nikolaj Bjgrner. Z3: An efficient SMT solver. In
Tools and Algorithms for the Construction and Analysis (TACAS), volume
4963 of Lecture Notes in Computer Science, pages 337—340, Berlin, 2008.
Springer-Verlag.

[DS97] Andreas Dolzmann and Thomas Sturm. REDLOG: Computer algebra meets
computer logic. SIGSAM Bulletin (ACM Special Interest Group on Symbolic
and Algebraic Manipulation), 31(2):2-9, June 1997.

[DSW97] Andreas Dolzmann, Thomas Sturm, and Volker Weispfenning. Real quan-
tifier elimination in practice, July 20 1997.

[FHTT07] Martin Frinzle, Christian Herde, Tino Teige, Stefan Ratschan, and Tobias
Schubert. Efficient solving of large non-linear arithmetic constraint systems
with complex boolean structure. Journal on Satisfiability, Boolean Modeling
and Computation, 1:209-236, 2007.

[FR74] M. J. Fischer and M. O. Rabin. Super-exponential complexity of presburger
arithmetic. Project MAC Tech. Memorandum 43, MIT, Cambridge, 1974.

[Tar48] Alfred Tarski. A Decision Method for Elementary Algebra and Geometry.
University of California Press, 1948.

