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Executive Summary on Dagstuhl Seminar 09481
about Synchronous Languages

A. Benveniste, S.A. Edwards, E. Lee, K. Schneider, and R. von Hanxleden

Synchronous languages have been designed to allow the unambiguous description
of reactive, embedded real-time systems. The common foundation for these lan-
guages is the synchrony hypothesis, which treats computations as being logically
instantaneous. This abstraction enables functionality and real-time characteris-
tics to be treated separately, facilitating the design of complex embedded sys-
tems. Digital hardware has long been designed using the synchronous paradigm;
our synchronous languages were devised largely independently and have placed
the technique on a much firmer mathematical foundation.

Feedback from the user base and the continuously growing complexity of ap-
plications still pose new challenges, such as the sound integration of synchronous
and asynchronous, event- and time-triggered, or discrete and continuous systems.
This seminar aims to address these challenges, building on a strong and active
community and expanding its scope into relevant related fields. This year’s work-
shop includes researchers in model-based design, embedded real-time systems,
mixed system modeling, models of computation, and distributed systems.

The seminar was successful in bringing together researchers and practition-
ers of synchronous programming, and furthermore in reaching out to relevant
related areas. With a record participation in this year’s SYNCHRON work-
shop of more than 50 participants and a broad range of topics discussed, the
aims seem to have been well-met. The program of the seminar was composed of
around 36 presentations, all of which included extensive technical discussions.
The fields covered included synchronous semantics, modeling languages, verifi-
cation, heterogeneous and distributed systems, hardware/software integration,
reactive processing, timing analyses, application experience reports, and indus-
trial requirements. The discussion identified and collected specific needs for fu-
ture topics, in particular the integration of different models of computation.

The SYNCHRON workshop constitutes the only yearly meeting place for
the researchers in this exciting field. The workshops on Synchronous Languages
started in 1993 at Schloss Dagstuhl. Since then, the workshop has evolved sig-
nificantly in its sixteen years of existence. One obvious change is the citizenship
of its attendees, which has shifted from being largely French to being truly
world-wide. But the biggest change is in its scope, which has grown to expand
many languages and techniques that are not classically synchronous but have
been substantially influenced by the synchronous languages’ attention to tim-
ing, mathematical rigor, and parallelism. Also, while many of the most senior
synchronous language researchers are still active, many younger researchers have
also entered the fray and taken the field in new directions. We look forward to
seeing where they take us next.
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Synchronous and Asynchronous Abstract State
Machines

Egon Börger

Dipartimento di Informatica, University of Pisa, Italy

Sequential ASMs (Abstract State Machines) are characterized by the synchronous
parallelism of executing in one step each of their fireable rules. They are turned
into asynchronous ASMs by changing the underlying notion of run from se-
quences to partial orders which satisfy three natural constraints. What is a step
(and a sequence of steps) can furthermore be explicitly managed by using control-
state ASMs, which typically are components of asynchronous ASMs. Concurrent
control-state ASMs are equivalent to Lamport’s +CAL programs.
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Clock Refinement in
Imperative Synchronous Languages

Mike Gemünde, Jens Brandt, and Klaus Schneider

Embedded Systems Group
Department of Computer Science, University of Kaiserslautern

P.O. Box 3049, 67653 Kaiserslautern, Germany
http://es.cs.uni-kl.de

Abstract. The fundamental principle of synchronous languages is the
division of the program execution into a sequence of logical steps. On the
one hand, this programmer’s view simplifies many analyses and synthe-
sis procedures, but on the other hand, it imposes inflexible restrictions
on developers and compilers. To lower these restrictions, we propose the
refinement of logical steps into substeps. We illustrate our approach by
extending the imperative synchronous language Quartz by new state-
ments, which allow developers to explicitly declare subclocks. Thereby,
clocks can be refined by several independent subclocks so that a con-
trolled amount of asynchrony between subsequent synchronization points
can be exploited by compilers. The advantages obtained by the new mod-
eling feature are finally illustrated by various examples.

1 Introduction

The synchronous model of computation [1] is the basis for many programming
languages, including Esterel [3], Lustre [12] or Quartz [20]. Its core is the syn-
chronous hypothesis, which postulates that computation and communication are
executed as micro steps in zero time. Consumption of time is explicitly modeled
by grouping micro steps to macro steps, which all consume the same amount
of logical time. As a consequence, all parts of the program run in lockstep and
automatically synchronize at the end of each macro step. Since all micro steps
of a macro step are executed at the same point of time (at least from the seman-
tic point of view), their ordering within the macro step is irrelevant. Therefore,
values of variables are determined with respect to macro steps instead of micro
steps, i. e. variables do not change within a macro step.

This abstraction guarantees many properties which are desirable for devel-
opment of safety-critical embedded systems. First, deterministic single-threaded
code can be generated from multi-threaded synchronous programs, which, for
instance, can be directly executed on simple micro-controllers without using
complex operating systems [9, 10, 13]. Second, synchronous programs can be
straightforwardly translated to hardware circuits [2, 18, 20]. Finally, the concise
formal semantics of synchronous languages makes them particularly attractive
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for reasoning about program properties, correctness and worst-case execution
time [4, 15,16,19,23,25].

However, the synchronous model of computation imposes tight restrictions
that lead to an unfortunate inflexibility of already created systems: An apparent
drawback is the single abstraction layer provided by micro and macro steps,
which may lead to a possible over-synchronization in a synchronous program.
For example, compilers (at the back-end of the language) are challenged when
generating efficient code for programs consisting of sporadically communicating
threads, since all parts of the program implicitly synchronize after each step, even
if there are no data dependencies. While a static clock and data-flow analysis
may be able to detect this effect and to desynchronize such programs [7, 8],
adding an explicit notion of independence makes it possible for compilers to
create desynchronized code without expensive analyses. Additionally, spurious
synchronization can be prevented by construction. Similarly, developers (at the
front-end of the language) are limited by the single temporal abstraction layer
of the synchronous model of computation. It abstracts from the causality and
scheduling of the operations within a single macro step but there is no support
for a more coarse-grained structure of logical time. For example, this immediately
causes problems if several existing modules of different abstraction levels should
be combined.

Using a hierarchy of clocks in the system description is an apparent approach
to tackle these problems, while still preserving all advantages of the synchronous
model of computation. A crucial point in the design of a derived multi-clock
model of computation is the construction of the clock hierarchy. In general, one
can distinguish three different alternatives for this: (1) new clocks are created
independently from each other and subsequently related by explicit clock con-
straints to form a clock hierarchy, (2) new clocks are created by downsampling
already existing clocks (bottom-up hierarchy), and (3) new clocks are created by
upsampling already existing clocks (top-down hierarchy). While all alternatives
seem to be equivalent at first sight, a closer look reveals that there are signifi-
cant differences. In particular, the last alternative bears an enormous potential,
which has not been used so far due to the lack of full support by state-of-the-art
synchronous languages.

In this paper, we present an extension of the imperative synchronous pro-
gramming language Quartz which gives developers the possibility to declare
so-called subclocks. These subclocks are the first full support of a top-down hi-
erarchy of clocks. The allow developers to refine the temporal behavior of syn-
chronous systems to avoid over-synchronization. Additionally, subclocks allow to
exchange components with others having a different internal temporal behavior.
Hence, clock refinements provide additional degrees of freedom for synthesis and
design space exploration. At the same time, we preserve all desired advantages
of the synchronous languages: fundamental properties such as the input-output
determinism are maintained as well as the fully orthogonal structure of the
programming language, which allows developers to arbitrarily nest all kinds of
statements.
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The rest of the paper is structured as follows: Section 2 first reviews basic con-
cepts of synchronous systems in general and the synchronous language Quartz.
Section 3 shows how they can be enriched by a top-down hierarchy of clocks.
Thereby, we show how syntactical restrictions of the language extension can be
used to enforce desired properties. Finally, Section 4 draws some conclusions and
sketches future work.

2 Synchronous Quartz

2.1 Synchronous Model of Computation

The synchronous model of computation [1,11] divides the execution of a program
into a sequence of reaction steps. In each of these steps (which are often called
macro steps [14]), the system reads its inputs, does some computation and finally
provides all outputs (that appear from the semantic point of view at the same
instant). In practice, this means that the execution implicitly follows the data
dependencies of the system.

a = 1;
b = a;
pause;
a = b;

b = a;
a = 1;
pause;
a = b;

a = 1;
if(b = 1)

b = a;
pause;
if(a != 2)

a = b;

(a) (b) (c)

Fig. 1: Three Quartz Programs Illustrating Synchronous Execution

In imperative synchronous languages, this model of computation is repre-
sented as follows: All actions are assumed to be executed in zero-time. The
pause statement determines the end of the current macro step and is therefore
responsible for consuming (logical) time. A simplified view on the programs is
therefore as follows: In each macro step, a synchronous program resumes its ex-
ecution at the pause statements where the control flow has been stopped at the
end of the previous macro step, then it reads new inputs and executes the follow-
ing statements until the next pause statements are reached (see Figure 1 (a)).
Thereby, the control flow can rest at multiple pause statements. In concurrent
programs, all threads follow this principle, i. e. they run in lockstep and auto-
matically synchronize at each macro step.

However, the assumption that all statements are executed in zero-time has
some consequences which might be confusing at a first glance: Since a state-
ment does not take time for its execution, it is evaluated in the same variable
environment as another statement following it in a sequence. In principle, both
statements may therefore be interchanged without changing the behavior of the
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program. So, the program in Figure 1 (b) has the same behavior as the pro-
gram in Figure 1 (a). Thus, each statement knows and depends on the results
of all operations in the current macro step. Obviously, this generally leads to
dependencies that are not present in sequential programming languages. In par-
ticular, it is possible that a statement influences its own activation condition,
which may lead to semantic problems (see the program in Figure 1 (c)). So-called
causally incorrect programs are the result, which have no consistent behavior.
This is a well-studied problem for synchronous systems and many analysis pro-
cedures have been developed to spot these problems [17,21,22,24,26]. While this
model of computation seems to be unnatural at first, this represents exactly the
way a synchronous hardware circuit works: all computation and communication
within a clock cycle happens more or less simultaneously according to the data
dependencies.

Another problem related to the synchronous model of computation are write
conflicts. They occur if several actions try to assign different values to the same
variable in the same step. Since a variable can only carry a single value in each
step, programs that show this behavior are also considered to be incorrect, and
have to be rejected by compilers.

2.2 Synchronous Quartz

In this paper, we extend the imperative synchronous language Quartz [20], which
has been derived from Esterel [5,6]. In the following, we give a brief overview of
the core of the language, which is sufficient to define most other statements as
simple syntactic sugar.

For each statement we will describe its behavior; for the sake of simplicity, we
do not give a formal definition; the interested reader is referred to [20] instead,
which provides a complete structural operational semantics. The Quartz core
(see Figure 2) consists of the following statements, provided that S, S1, and S2

are also core statements, ! is a location variable, x is a variable, σ is a Boolean
expression, and α is a type.

nothing (empty statement)
x = τ and next(x) = τ (assignments)
" : pause (start/end of macro step)
if(σ) S1 else S2 (conditional)
S1; S2 (sequence)
do S while(σ) (iteration)
S1 ‖ S2 (synchronous concurrency)
[weak] [immediate] abort S when(σ) (abortion)
[weak] [immediate] suspend S when(σ) (suspension)
{α x; S} (local variable x of type α)
inst : name(τ1, . . . , τn) (call of module name)

Fig. 2: Quartz Core Statements

6



There are two kinds of assignments: Both kinds of assignments immediately
evaluate the right-hand side expression τ in the variable environment of the
current macro step. Immediate assignments x = τ instantaneously transfer the
obtained value of τ to the left-hand side x, whereas delayed ones next(x) = τ
transfer this value in the following macro step. If a variable is not set by an action
in the current macro step, its value is determined by the so-called reaction to
absence, which generally depends on the data type of the variable. For usual
memorized variables, the value of the previous step is kept.

A pause statement is used to mark the beginning of a new macro step and
to define a control-flow location. Since all other statements are executed in zero
time, the control flow can only rest at these positions in the program.

{
b = true;
"1 : pause;
if(a)

b = false;

"2 : pause;

}

{

"3 : pause;
if(¬b)

c = true;
a = true;
"4 : pause;
b = true;

}

Fig. 3: Synchronous Concurrency in Quartz

In addition to the usual control-flow constructs, which are known from typi-
cal imperative languages (conditionals, sequences and iterations), Quartz offers
synchronous concurrency. The parallel statement S1 ‖ S2 immediately starts the
statements S1 and S2. Then, both S1 and S2 run in lockstep, i. e. they automati-
cally synchronize when they reach the next pause statement. The whole parallel
statement runs as long as one of the sub-statements is active.

Figure 3 shows a simple example consisting of two parallel threads. In the first
step, the program, and thus both threads, are started. The first thread executes
the assignment to b and stops at location !1, while the second thread directly
moves to location !3. In the second macro step, the program resumes at the
labels !1 and !3. Since the second thread contains an immediate assignment to
a, the action resetting b in the first threads is activated, which in turn activates
the actions setting c in the second thread. The last step then resumes from !2
and !4, where the second thread performs the final assignment to variable b.

Preemption can be conveniently implemented by the abort and suspend
statements. Their meaning is as follows: A statement S which is enclosed by
an abort block is immediately terminated when the given condition σ holds.
Similarly, the control flow in a statement S enclosed by suspend is frozen when
the given condition σ holds. Thereby, two kinds of preemption must be distin-
guished: strong (default) and weak (indicated by keyword weak) preemption.
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While strong preemption deactivates both the control and data flow of the cur-
rent step, weak preemption only deactivates the control flow, but retains the
current data flow of this macro step. The immediate variants check for preemp-
tion already at starting time, while the default is to check preemption only after
starting time.

(a)

abort {
a = 1;
"1 : pause;
b = 2;
"2 : pause;

} when(true);
c = 3;

(c)

weak abort {
a = 1;
"1 : pause;
b = 2;
"2 : pause;

} when(true);
c = 3;

(b)

immediate abort {
a = 1;
"1 : pause;
b = 2;
"2 : pause;

} when(true);
c = 3;

(d)

weak immediate abort {
a = 1;
"1 : pause;
b = 2;
"2 : pause;

} when(true);
c = 3;

Fig. 4: Variants of the abort Statement

Figure 4 shows examples of all four abort variants. The execution of the
programs (a) and (c) take two macro steps. The first step is executed without
checking the abort condition and a is set to 1. In the second macro step, the
condition is checked and the abortion takes place. Hence, c is set in both cases,
whereas b is because of the weak abortion just set for the program (c). The other
two program examples (b) and (d) take just one step to execute. Since for the
immediate variants the abort condition is checked already in the first step, the
abortion takes place directly. For the strong variant shown in (b) just c is set,
while the weak variant shown in (d) additionally assigns the variable a.

Modular design is supported by the declaration of modules in the source
code and by calling these modules in statements. Any statement can be encap-
sulated in a module, which further declares a set of input and output signals for
interaction with its context statement.

In contrast to many concurrent languages, all statements of Quartz are fully
orthogonal to each other, i. e. they can be arbitrarily nested. In particular, it
is no problem to mix sequential and parallel composition and to apply preemp-
tion statements to several threads running in parallel. Furthermore, there are
no restrictions for module calls, which can be part of sequences or conditionals
and which can be located in any abortion or suspension context, which possibly
preempts their execution. In all cases, the synchronous model of computation
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and its logical time scale will take care that the program behavior remains de-
terministic.

3 Subclocked Quartz

In this section, we introduce the subclock extension for the synchronous language
Quartz. We start by sketching the basic idea of subclocks in Section 3.1, before
the actual extension is presented in Section 3.2 by introducing new statements.
Thereafter, in Sections 3.3 to 3.7, we highlight the effects that the new statement
has on the existing statements.

3.1 Subclocks

Traditional synchronous systems are based on a single clock that provides a
sequence of ticks, which determine logical instants of time. According to the
synchronous paradigm, every variable has a uniquely determined value in every
instant of time. For the implementations, this generally means that the execution
must follow data dependencies, so that a value is not written after it has been
read before within the same instant. Figure 5 (a) shows a sample trace of reaction
instants for a single-clocked system. As already described in the introduction,
this view imposes many restrictions, which are caused by the single abstraction
layer between micro and macro steps: they define the interaction points with the
environment as well as the rate of all internal computations.

C0

R0 R1 R2 R3

(a) Single-Clocked Trace

C0

C1

C2

R0 R1 R2 R3

(b) Subclocked Trace

C0

C3

C4 C5

C1

C2

(c) Clock Tree

Fig. 5: Timing of Single Clocked and Subclocked Systems

To overcome these problems, we propose the introduction of so-called sub-
clocks, which allow developers to divide macro steps on the system level into
smaller steps — thus, macro steps are no longer atomic. However, we do not
make this abstraction visible to the environment of modules. The system inter-
face has the same timing behavior, while its internal implementation has more

9



freedom due to its internal subclocks. One instant on a clock level is divided into
some smaller steps of the lower clock level as shown in Figure 5 (b). Thereby,
variables of subclocks can have multiple values during a step on a higher level,
but the variables are not visible to the higher level. Similar to the distinction of
micro and macro steps, the computation which is done in one step, is hidden to
the higher level and only the result is visible. The advantage compared to micro
and macro steps is that the clock hierarchy provided hereby can be arbitrarily
deep nested.

It is possible to refine a clock by multiple unrelated subclocks. This leads to
a tree of clocks shown in Figure 5 (c), whereas only the marked branch of the
tree provides the clocks shown in the trace in Figure 5 (b). In the same way as
micro steps are executed within a macro step, the subclock steps are executed in
a step of a higher clock. For unrelated subclocks, this is the same as micro steps,
whereas in both cases they can be executed independently with respect to data
dependencies on common variables. A synchronization is enforced by the end of
a step of a common superclock.

Variables can be declared for every clock, but those variables are only visible
for lower clocks and not for the higher ones. Hence, unrelated clock domains can
just communicate through variables declared on a common shared superclock.
Such variables remain constant during the execution of the subclocks until a
synchronization.

In the following, we write C ′ ≺ C, iff C ′ is a subclock of C, i. e. when C ′ is on
a lower level in the tree and both are on the same branch. For unrelated clocks
C, C ′, i. e. neither C ′ ! C nor C ! C ′ holds, we write C # C ′. E. g. C3 # C2

and C4 # C1 holds for the tree in Figure 5 (c). In this paper we denote the clock
of the system with C0, which is also the clock of the interface variables.

The whole model gives some internal flexibility for desynchronized imple-
mentations through unrelated subclocks while the synchronous interface to the
outside environment can be kept at the same time. Since subclocks are not visible
outside the module, a clock ticks for them cannot be provided by the environ-
ment, which emphasizes the view of a logical refinement instead of a multi-clock
extension.

3.2 Language Extension

To make subclocks accessible to developers, we extend the synchronous program-
ming language Quartz. Thereby, we aim at providing a comprehensive support
without introducing unnecessary complexity. As it will be shown in the follow-
ing, it is not simple to find a good compromise, but we try to make the design
decisions transparent to show subtle problems avoided by our choice.

The core of our subclock extension is the new statement clock(C) {S},
which declares a subclock C and additionally determines the scope S where
this subclock is visible and can be referenced. The only statement that directly
addresses the new clock is a labeled pause statement pause(C), which enforces
a synchronization with respect to the clock C. Thereby, parallel running threads
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module clocktree (. . . ) {
clock(C1) {

clock(C2) {
. . .

}
}
clock(C3) {

clock(C4) {
. . .

}
‖
clock(C5) {

. . .
}

}
}

⇒

C0

C3

C4 C5

C1

C2

Fig. 6: Clock Tree defined by a Quartz Program

can synchronize at this clock as with any other clock. Details about this will be
given later.

module deadlock (. . . ) {
clock C1, C2;
{

"11 : pause(C1);
"12 : pause(C2);

} ‖ {
"21 : pause(C2);
"22 : pause(C1);

}
}

Fig. 7: Deadlocks due to Interleaved Clocks

The visibility of a clock is the same as the one of a local variable declared
at the beginning of a block. Nevertheless, there is a good reason for declaring
clocks not in the same way as variables (α x;). As shown in Figure 6, the clock
tree can be directly derived from the source code and it ensures, that unre-
lated clocks are never visible in the same scope. Allowing clock declarations like
variables would destroy this assumption, and parallel threads could request a
synchronization for unrelated clocks, which ultimately leads to a deadlock. This
is a well-known problem in many concurrent languages, which is due to parallel
threads waiting for different events. The issue is illustrated in Figure 7 by a
Quartz program, which does not conform to our proposed extension, since the
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two declared subclocks are unrelated but visible in the same scope. It justifies
why new clocks can be only declared for a fixed scope and why the shown case
is prohibited. Deadlocks on clock levels cannot happen with the scope definition
described above, since parallel threads can only synchronize on related clocks so
that waiting for an unrelated but shared clock is impossible. The two threads
would need to synchronize for the same clock, which is impossible because they
both wait first for a tick of the other one.

3.3 Variable Declarations

In order to take advantage of subclocks, one needs to declare variables related to
them. With the subclock statement introduced above, each variable declaration
is now in at least one scope of a clock (the whole program is trivially in the
scope of the system clock C0). The clock of a variable x is directly inferred
from lowest clock visible for the declaration, hence the next surrounding clock
block (or system clock). We write clk (x) = C for a variable x related to clock
C, whereas x can change its value each time the clock C ticks. Thus, only one
assignment to x can take place between two consecutive ticks of clock C. By
construction, the scope of a subclock variable is always smaller than the scope
of its clock. This ensures that the variables bound to a subclock are not visible
outside of the subclock domain.

3.4 Immediate and Delayed Assignments

Assignments are the core statements of the data flow and therefore, they are
closely related to the clock of the contained variables. They are the only state-
ments that change the value of variables. Each assignment consists of a target
(left-hand side) and of an expression that determines its value (right-hand side).
Both the target and the expression contain arbitrary variables visible at the
current position in source code. Immediate assignments change the value of the
variable in the current step, whereas delayed assignments commit the result in
the following step. Obviously, for immediate assignments it is determined when
they take place, whereas for delayed assignments it is not clear what the fol-
lowing step in the context of a subclocked time model is. Since the assignment
affects the value of the target variable, the delayed assignment takes place in the
next step of the clock of the assigned variable.

Together with the visibility of variable declarations, it is guaranteed that
in each expression only variables of one branch of the clock tree occur, i. e. for
each two variables x1, x2 which occur in the same expression, the clock relation
clk (x1) # clk (x2) never holds. This is an essential property that ensures a
deterministic evaluation of the expressions. If unrelated variables could occur,
it would not be specified which value to take, since the other clock could make
an independent step or not, and the variable could have a different value for the
steps. The syntax of our extension guarantees that the only variables visible in
unrelated clock domains are declared on a common higher level: these variables
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module M1 (bool ?a, bool ?b, bool !c) {
bool x;
if(a) c = true;
"1 : pause;

clock(C1) {
bool x1, y1;
"11 : pause(C1);

y1 = ¬c;
if(a)

c = true;
else

c = false;
next(x1) = b;
next(y1) = a;
"12 : pause(C1);

next(x) = x1;
if(x1 & y1) next(y1) = a;
"2 : pause;

if(b) c = x & a;
"13 : pause(C1);

}
}

a b c x x1 y1

1. true true true false − −
false false

2. false true false false false true

true false

false false

false false
3. false true false true

Fig. 8: Example: Step Behavior

have a determined value, which does not change before the next synchronization
of the unrelated domains.

The program shown in Figure 8 explains the basic semantics of Quartz mod-
ules with subclocks. In particular, it shows the declaration of variables related
to different clocks and how the variables are changed according to the steps.

The modules M1 has two inputs a, b and one output c. The variables of the
interface and the local variable x follow to the system clock C0. The module
additionally contains a part driven by the subclock C1, which declares the local
variables x1 and y1. The right part of the figure shows a sample input trace
together with the values of the output and local variables. The numbers in the
first column of the table count the steps of the system clock. It can be seen that
the subclock variables have different values for the C1-steps — during a single
C0-step. In contrast, system clock variables only have a single value. Therefore,
there may be only one assignment in all substeps (during a step of the system
clock) for those variables. Otherwise, a write conflict occurs, which is exactly
the same as the one in the synchronous case shown in Section 2.1. The example
also illustrates that next assignments are naturally issued at the following step
w. r. t. the clock of the assigned variable.
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bool x, y;
clock(C1) {

bool z;
if(x)

y = true;
"1 : pause(C1);
while(σ) {

. . .
}
if(z)

x = true;
}

Fig. 9: Example: Information Flows Backward

Finally, a very important point remains to explain. From the semantic point
of view, substeps are just micro steps for the higher clock level. In principle,
they are executed simultaneously in zero time. For a subclocked program this
has the consequence that information can actually flow backwards. Theoretically,
a variable declared on a higher clock level can transport information backwards
in time, since subclocks postulate that all read and write accesses to the super-
variables occur simultaneously.

Figure 9 shows an example. The variable x is used to transport information
from the end of the subclock block to the beginning. Since this variable is related
to the module clock, it only has one value during the whole execution of the sub-
clock block. According to the synchronous hypothesis, this value is also visible
at the beginning of the subclock block. However, when we try to execute the
subclock block, it is unclear whether the actions that set x will be executed at
all. To avoid all these problems by construction, we do not rely on an extensive
and complex analysis, but we add the constraint that variables of a higher clock
level can only be read if they have been already assigned in the same or previous
subclock step. That means, that the order of substeps must preserve the data
dependencies between variables. Relaxing this condition generally makes hard-
ware and software synthesis infeasible from programs with backward information
flow1.

3.5 Parallelism

Synchronous languages provide deterministic parallelism, which is due to the
concept of micro and macro steps. All threads execute their micro steps simulta-
neously in zero time and synchronize at the end of each macro step. As already
1 These programs can be only executed with a partial environment, which follows all

possibilities and derives more and more information from the run until all variables
are known. This behavior is similar to causality analysis [21,22,24], but it additionally
requires to define transitions for partial environments.
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pointed out in the introduction, this execution scheme leads to a potential over-
synchronization for sporadically communicating threads. Figure 10 (a) illustrates
this issue by a simple example.

The first thread of the program does some calculation and changes the value
of x sporadically. The calculation is not explicitly shown in the example but
it is assumed to be accomplished in the sequences of pause statements. The
second thread runs in parallel and sums each changed value of x to y. It needs
to get the correct values of x and thus it must synchronize to the first one. The
second thread therefore simulates the same timing of the first one. Both threads
synchronize for every pause and thus, more than needed, since the second thread
only needs some values of x.

Figure 10 (b) shows the alternative subclocked implementation, where a sub-
clock is used in the first thread. Thereby, both threads only synchronize in the
steps where a synchronization is needed, i. e. only the exchange of x is controlled
by the shared system clock. The second thread does not need to take care about
the timing of the first thread any more, it just needs to add the value of x in
each step.

Naturally, the synchronization of both threads in the example can be alter-
natively implemented by an explicit synchronization with the help of await(σ)
statements, which pause as long as their condition σ is not fulfilled yet. How-
ever, even there both threads unnecessarily synchronize at each pause statement,
which is problematic if the computations of both threads are unbalanced in the
macro steps.

The previous example only illustrated a dependency in one direction, i. e. only
the second thread has to adapt the timing of the first one. Apparently, it gets
more complicated, when both threads must be adapted in a two-way dependency.
The example just points out the issue, in the given form, it can obviously be
implemented much simpler with the same behavior.

A second issue, which is pointed out by the example is the following one.
For the single-clocked implementation the timing of both threads highly depend
on each other. In the sense of modularity, one part of the program can only
be substituted by another one, which provides the same timing. Completely
changing the timing by using another algorithm destroys the global behavior.
With subclocks, this can be avoided, since internal timing can be completely
hidden to the outside.

Since the timing can be completely hidden to the outside, parallel threads
can be executed fully asynchronous if there are no data dependencies. Figure 11
shows an example: both threads get the same input by the interface variables
a, b. The first thread computes the greatest common divisor (GCD) of the input
values. The second one multiplies them by a sequential algorithm. The result
of both computations is obtained and provided as output in the same step the
input is given. Thus, for every module step, the same calculation can be done
for two input values.
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(a)

{
x = 3;
pause;
pause;
pause;
x = 4;
pause;
pause;
x = 9;
pause;

} || {
y = x;
pause;
pause;
pause;
next(y) = y + x;
pause;
pause;
next(y) = y + x;
pause;

}

(b)

clock(C1) {
x = 3;
pause;
pause(C1);
pause(C1);
x = 4;
pause;
pause(C1);
x = 9;
pause;

} || {
y = x;
pause;
next(y) = y + x;
pause;
next(y) = y + x;
pause;

}

Fig. 10: Example: Over-Synchronization and Temporal Abstraction

module M2 (nat ?a, nat ?b, nat !gcd, nat !prod) {

clock(C1) {
int x1, y1;
loop {

x1 = a;
y1 = b;
while(x1 ≥ 0) {

if(x1 ≥ y1)
next(x1) = x1 − y1;

else
next(y1) = y1 − x1;

"11 : pause(C1);
}
gcd = y1;
"1 : pause;

}
}

clock(C2) {
int x2, y2;
loop {

x2 = a;
y2 = 0;
while(x2 ≥ 0) {

next(y2) = y2 + b;
next(x2) = x2 − 1;
"21 : pause(C2);

}
prod = y2;
"2 : pause;

}
}

}

Fig. 11: Example: Parallel Computation
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Since the execution time of the shown algorithm depends on the input value,
an instantaneous implementation of the GCD is not possible, and therefore both
algorithms have to synchronize at each step during their internal computation.

3.6 Preemption

clock(C1) {
weak abort {

clock(C2) {
x = true;
"2 : pause(C2);
y = true;
"1 : pause(C1);
z = true;
"0 : pause(C0);

}
} when(σ);

}

Fig. 12: Example: Preemption

A designated feature of imperative synchronous languages are abortion and
suspension statements which deterministically preempt the program execution
(see Section 2.2). The subclock extension should preserve this property. The
crucial point of the semantics is the definition at which points of time the pre-
emption condition is checked (at the beginning of the current macro step) and
at which point of time the preemption actually takes place (at the end of the
current macro step in the case of weak abort). Again, the definition of current
macro step has to be clarified in a subclocked context.

Consider the example in Figure 12. The weak abort statement is in the scope
of subclock C1, which is in the scope of C0. In its body, another subclock C2

is declared. By construction, the abortion condition σ cannot contain variables
of clock C2 but only variables of clocks C1 and C0. Hence, the condition σ can
only become true if a tick of C1 occurs. If the condition only contains variables of
clock C0, the condition will only change at ticks of C0. Nevertheless, we check the
condition at each tick of C1 for the following reason: assume that the abortion
condition σ is x0∨false∧x1, where eliminating the second part would then change
the set of variables and thereby the temporal behavior. In that case, compile-
time optimizations would be almost impossible. The difference becomes visible
for a weak abortion, since it first completes the macro step before jumping to
the end of the aborted block. The execution of the example given by Figure 12
is the following if we assume that σ holds in the first step of C1: The actions for
x and y will be executed, while the one for z will be skipped, since the control
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flow leaves the abort block when it hits the label !1. This label is declared on
the same level as the whole abort block.

3.7 Schizophrenia

A well-known problem related to synchronous programs is schizophrenia, which is
caused by local variables within loops. In the context of perfect synchrony, which
groups a number of micro steps into an instantaneous macro step, a limited scope
which does not match with the macro steps boundaries may cause problems. In
particular, this is the case if the scope of a local declaration is left and reentered
within the same macro step. This scenario is not as unusual as it may appear at
first. It always occurs when local declarations are nested within loop statements.
In such a problematic macro step, the micro steps must then refer to the right
incarnation of the local variable, depending on whether they belong to the old
or the new scope of the local declaration.

do {
bool x;
if(x)

y = 1;
"1 : pause;
x = true;

} while(true) ;

do {
bool x;
if(x)

y = 1;
if(a)

"1 : pause;
x = true;
if(¬a)

"2 : pause;
} while(true) ;

do {
bool x;
clock(C1) {

bool y;
"11 : pause;
x = true;
"12 : pause;
. . .

}
"1 : pause;
. . .

} while(true) ;

(a) (b) (c)

Fig. 13: Schizophrenic Quartz Programs

Figure 13 (a) gives a simple example. The local variable x is referenced at
the beginning and at the end of the loop. In the second step of the program,
when it resumes from the label !1, all actions are executed, but they refer to two
different incarnations of x.

While traditional software compilation can solve this problem simply by shad-
owing the variables of the old scope, this is not possible for the synchronous
model of computation. Since each variable has exactly one value per macro step,
we need one value for the scope which is left and one for the scope which is
entered. Therefore, we have to generate a copy of the locally declared variable,
which is called a incarnation of the variable. Additionally, the actions of the
program must be mapped to the corresponding incarnation of the variable in
the intermediate code. Furthermore, we have to create additional actions in the
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compiled code that link the copies so that the value of the new incarnation at
the beginning of the scope is eventually transported to the old one, which is used
as the end of the scope.

However, the problem can be even worse in general: first, whereas in the
previous example each statement always referred to the same incarnation (the
old or the new one), the general case is more complicated as can be seen in
Figure 13 (b). The statements between the two pausestatements are sometimes
in the context of the old and sometimes in the context of the new incarnation.
Therefore, these statements are usually called schizophrenic in the synchronous
languages community [4]. Second, there can be several reincarnations of a local
variable, since the scope can be reentered more than once. In general, the number
of loops that are nested around a local variable declaration determines an upper
bound on the number of possible reincarnations.

Subclocks do not make the problem worse, but they widen its scope (see
Figure 13 (c)). In synchronous languages, only instantaneous parts (data flow)
must be copied in the course of the compilation. In the presence of subclocks the
compiler needs to copy the first macro step of loops with respect to the current
clock at the beginning of the loop. Thereby, it may be needed to copy variables
(data flow) of subclocks as well as labels (control flow), which is not the case for
single-clocked programs.

4 Conclusions

In this paper, we presented a subclock extension to imperative synchronous
languages, which allows developers to use several abstractions layers in a pro-
gram given by subclocks. Thereby, two significant drawbacks of the synchronous
model of computation can be eliminated: First, the reuse and the maintenance
of existing synchronous designs is improved, since timing can be modified lo-
cally without any global effect. Subclocks will make the changes invisible to
the context. Second, implementations can make use of more internal freedom,
since spurious synchronization can be prevented by construction. Whereas the
synchronous model of computation and its strict determinism tends to over-
synchronize system parts due to the single clock level, independent subclocks
make it possible to omit a fixed schedule in the program, which can then be
optimally adapted to the target platform by the synthesis tool.

The proposed Quartz extension is completely orthogonal to the other state-
ments. Furthermore, we made some crucial design decision which make sure that
semantic problems are prevented by the language syntax: First, declarations of
clocks must be always given a scope so that a tree of clocks for the whole system
sprouts automatically. Second, variables can be only declared for visible clocks.
Third, assignments are not allowed to contain variables of unrelated clocks. By
introducing these syntactical constraints, we could eliminate the most significant
problems which usually occur in the context of multiple clocks.

However, there remains a lot of work to do in order to make use of the
proposed extension. Since the synchronous language Quartz is compiled to an
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intermediate format from which hardware and software can be synthesized, the
same design flow must be supported for subclocks. Therefore, the formal se-
mantics of Quartz must be extended by subclocks. To allow compilation, the
existing procedures must be adjusted, and the intermediate format needs to be
extended to preserve the freedom introduced by subclocks on this level. The
causality analysis has to be revised and finally, the synthesis algorithms have to
be extended in order to exploit the new features.
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The New Averest: Version 2.0

Jens Brandt

Embedded Systems Group, TU Kaiserslautern, Germany

Averest is a set of tools for the specification, verification, and implementation
of reactive systems. It includes a compiler and a simulator for synchronous pro-
grams, a symbolic model checker and a tool for hardware-software synthesis. The
new version will be released at SYNCHRON ’09. This talk briefly introduces its
completely revised design and highlights new features which the synchronous
community can benefit from.
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Cartesian Programming: The Power of the Index

John Plaice
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The current development of increasingly diverse physical computing architec-
tures, with large numbers of distinct computational nodes, forces the creation of
a unique formalism in which programmers can simply write equations and for
which compiler designers can write implementations for the different architec-
tures. This formalism must be sufficiently powerful and simple to ensure that
the semantics of an entire system can be written directly, even if it encompasses
reactivity, context-awareness, mobility, ubiquity or pervasiveness.

Cartesian programming provides a multidimensional context, in the form
of an index, to programming, using an infinite dimensional space. In the same
way that René Descartes’s coordinate geometry allowed for the algebraisation of
geometry, Cartesian programming makes it possible to have a single formalism
in which to describe the entire development of a software system, with multiple
heterogeneous components, in a fully declarative manner.

In this talk, we present the TransLucid programming language, through
which the concepts of Cartesian programming have been developed, and demon-
strate that with a very restricted set of primitives, it is possible to write massively
parallel systems, incorporating real-time streaming and system reconfiguration,
with full tracking of provenance.
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On Compositionality and Modular Code
Generation for Synchronous and Other Models of

Computation

Stavros Tripakis
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What is the parallel composition of two stateless functions? Perhaps surprisingly,
the answer to this question is not “a stateless function”. What is the parallel
composition of two Mealy machines? Again, the answer is not “a Mealy ma-
chine”. Indeed, consider function f1 with input x1 and output y1, and function
f2 with input x2 and output y2. Suppose we represent the parallel composi-
tion of f1 and f2 as a function f with inputs x1, x2 and outputs y1, y2, such
that f(x1, x2) = (f1(x1), f2(x2)). Now suppose we wish to connect output y2 to
input x1: we cannot do this in f , because the feedback connection creates an
a-priori cyclic dependency. This is a false dependency, however, because output
y2 does not depend on input x1, it only depends on input x2. By treating the
parallel composition of f1 and f2 as a “monolithic” function f , this dependency
information has been lost.

We study the above questions, in the context of modular code generation
for synchronous block diagrams (SBDs). SBDs are a hierarchical signal-flow di-
agram notation with synchronous semantics. They are the fundamental model
behind widespread tools in the embedded software domain, such as SCADE and
the discrete time subset of Simulink. Automatic code generation from such mod-
els is key to the success of so-called model-based design. We are interested in
modular code generation for SBDs: modular means that code is generated for
a given composite block independently from context (i.e., without knowing in
which diagrams this block is to be used). Existing methods fail to address this
problem in a satisfactory manner. They generate “monolithic” code, e.g., a single
“step-function” per block. As illustrated above, this introduces false dependencies
between block inputs and outputs, and compromises reusability, by not allowing
the block to be used in some contexts. As a result, state-of-the-art tools either
impose restrictions on the diagrams they can handle or resort to flattening.

We propose a framework that fixes this by generating, for a given block, a
variable number of interface functions, as many as needed to achieve maximal
reusability, but no more. In the worst case, N + 1 functions may be needed,
where N is the number of outputs of the block. It is crucial to minimize the
number of interface functions, for reasons of scalability, but also because of IP
concerns. We are thus led to define a quantified notion of modularity, in terms of
the size of the interface of a block. The smaller the interface, the more modular
the code is. Our framework exposes fundamental trade-offs between reusability,
modularity and code size. We show how to explore these trade-offs by choosing
appropriate graph clustering algorithms. We present a prototype implementation
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and experimental results carried on Simulink models, and describe extensions of
our framework to triggered and timed diagrams. This work is joint with Roberto
Lublinerman and Christian Szegedy and is described in detail in [2–4].

The above observations extend to models other than SBDs and triggered
SBDs. In particular, we have studied them in the context of synchronous (or
static) data flow (SDF) [1]. Hierarchical SDF models are not compositional: a
composite SDF actor cannot be represented as an atomic SDF actor without loss
of information that can lead to deadlocks during feedback composition. We have
studied extensions of the modular code generation method for SBDs described
above to SDF. This is joint work with Dai Bui, Bert Rodiers and Edward A.
Lee, described in detail in [5].
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The Modal Model Muddle

Edward A. Lee

University of California — Berkeley, USA

Modal models in Ptolemy II are models that have multiple distinct behaviors
and a state machine that selects among these behaviors. This talk will chronicle
an exploration of semantics for modal models for timed systems.
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Formal and Executable Contracts (Using 42) for
Transaction-Level Modeling in SystemC

Florence Maraninchi1, Tayeb Bouhadiba1, and Giovanni Funchal2

1 Verimag, Grenoble INP, France
2 Verimag/STMicroelectronics

Transaction-Level Modeling (TLM) for systems-on-a-chip (SoCs) has become
a standard in the industry, using SystemC. With SystemC/TLM, it is possi-
ble to develop an executable virtual prototype of a hardware platform, so that
software developers can start writing code long before the actual chip is avail-
able. A hardware model in System- C/TLM can be very abstract, compared to
the detailed RTL model. It is clearly component-based, with guidelines defin-
ing how components should be designed for use in any TLM context. However,
these guidelines are quite informal for the moment. In this paper, we establish
a structural correspondence between functional SystemC/TLM models and a
formal component-model for embedded systems called 42, for which we have de-
fined a notion of control contract, and an execution mode for systems made of
components’ contracts. This is a way of formalizing the principles of functional
SystemC/TLM. Moreover, it allows the combined use of SystemC/TLM compo-
nents with 42 components. Demonstrating that such a combined use is possible
is key to the adoption of formal components’ definitions in the community of
TLM users.
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Deterministic, Time-Predictable, and
Light-Weight Multithreading Using PRET-C

Alain Girault

INRIA Rhône-Alpes, Grenoble, France

Support for light-weight concurrency in C is gaining recent momentum. An-
other area of research focus has been the development of code that guarantees
precise worst case timing. We present a new language called Precision Timed
C, for predictable and lightweight multithreading in C. PRET-C supports syn-
chronous concurrency, preemption, and a high-level construct for logical time.
In contrast to existing synchronous languages, PRET-C offers C-based shared
memory communications between concurrent threads that is guaranteed to be
thread safe via the proposed semantics. Mapping of logical time to physical
time is achieved by a Worst Case Reaction Time (WCRT) analyzer. To improve
throughput while maintaining predictability, a hardware accelerator specifically
designed for PRET-C is augmented to a softcore processor. We then demonstrate
through extensive benchmarking that the proposed approach not only achieves
complete predictable execution but also improves overall throughput when com-
pared to the software execution of PRET-C. PRET-C software approach is also
significantly more efficient in comparison to two other light-weight concurrent
C variants called SC and Protothreads, as well as the well-known synchronous
language Esterel.
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SyncCharts in C – A Proposal for Light-Weight,
Deterministic Concurrency

Reinhard von Hanxleden

Real-Time and Embedded Systems Group, Christian-Albrechts-Universität zu Kiel,
Germany

Synchronous C (SC) and Synchronous Java extend C and Java with control flow
operators for deterministic, light-weight concurrency and preemption. SC/SJ is
based on SyncCharts, a synchronous variant of Statecharts with a sound formal
basis. SC/SJ implements concurrency via a simulation of multi-threading, in-
spired by reactive processing. This approach permits very fast context switches
and allows to express SC operators with regular, sequential C code. Thus a
concurrent SC program requires neither a special compiler nor OS support for
concurrency.

A reference implementation of SC, based on C macros, is available as open
source code (http://www.informatik.uni-kiel.de/rtsys/sc/); SJ will be available
by the end of the year. SC can be used in a number of scenarios: 1) as a regular
programming language, requiring just a C compiler; 2) as an intermediate target
language for synthesizing graphical SyncChart models into executable code, in
a traceable manner; 3) as instruction set architecture for programming precision
timed (PRET) or reactive architectures, abstracting functionality from physical
timing; or 4) as a virtual machine instruction set, with a very dense encoding.
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Modelica for Hybrid Systems Modeling: Problems
and Difficulties, Mathematical Semantics and

Execution Schemes (work in progress)

Albert Benveniste, Benoit Caillaud and Marc Pouzet

INRIA Rennes and INRIA Saclay, France

Modelica is a very interesting hybrid systems modeler. It fits the modeling dis-
cipline in use for physical systems where the system model results from non-
directed interactions between physical entities. As an example, think of the Ohm
and Kirchoff laws in electrical circuits: these lead to balance equations with no
pre-specified inputs or outputs. Mathematically speaking, this leads to consid-
ering DAEs (Differential Algebraic Equations) of the form f(ẋ, x) = 0 instead
of ODEs (Ordinary Differential Equations) of the form ẋ = g(x). Unlike ODEs,
DAEs compose with no restriction (loops with no integrators are allowed).

Modelica allows specifying such systems (unlike Simulink) and supports dis-
crete mode changes based on zero-crossings. All together, Modelica is often
viewed as a hybrid systems modeler suited to component based design. In this
talk we will address two central issues raised by Modelica.

First, since Modelica is continuous time based, it faces the problem of de-
ciding whether two triggering events should be considered simultaneous or not
(a run-time comparison is not appropriate). Different Modelica compilers have
adopted different disciplines for this. We will propose a type system reminiscent
of clock calculi in synchronous languages to fix this.

Second, the style of Modelica is somehow schizophrenic: it supports DAE
and is therefore relational in nature regarding its continuous time facet; it is,
however, imperative in style regarding its discrete mode change facet. The two
don’t fit together at all and this is a source of problems when developing a
mathematical semantics for Modelica on which compilation techniques could
rely. One deep difficulty is that, on the one hand, an operational semantics
should be step-based, whereas, on the other hand, discretization steps must be
adjusted adaptively at run-time for good performance and accuracy. In our work,
we try to reconcile the two requirements with the help of non-standard analysis,
a heterodox mathematical framework in which infinitesimals can be effectively
and rigorously handled. This approach allows us to derive mathematically sound
executions schemes for Modelica.
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Liberating Programming

David Harel

Weizmann Institute — Rehovot, Israel

This talk describes a dream about freeing ourselves from the straight-jackets
of programming, making the process of getting computers to do what we want
intuitive, natural, and also fun. It recommends harnessing the great power of
computing and transforming a natural and almost playful means of programming
so that it becomes fully operational and machine-doable.

Technically, the three issues are: (1) having to produce a tangible artifact
in some language; (2) having actually to produce two separate artifacts (the
program and the requirements) and having then to pit one against the other;
(3) having to program each piece/part/object of the system separately. The talk
then got a little more technical, providing some modest evidence of feasibility of
the dream, via live sequence charts (LSCs) and the play-in/play-out approach
to scenario-based programming.
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An Alternative Compilation Scheme for
Polychrony

Sandeep K. Shukla

Virginia Polytechnic Institute — Blacksburg

In this talk we will discuss how to the solve the clock calculus for polychronous
programs in SIGNAL using prime implicates of Boolean clauses. This provides
an alternative top down compilation scheme for SIGNAL for code synthesis. It
also provides a different view of endochrony.
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Modular Static Scheduling of Synchronous
Data-flow Networks

Marc Pouzet1 and Pascal Raymond2

1 Université Paris-Sud and INRIA
2 Verimag-CNRS — Grenoble

This work addresses the question of producing modular sequential imperative
code from synchronous data-flow networks. Precisely, given a system with sev-
eral input and output flows, how to decompose it into a minimal number of
classes executed atomically and statically scheduled without restricting possible
feedback loops between input and output? Though this question has been iden-
tified by Raymond in the early years of Lustre, it has almost been left aside until
the recent work of Lublinerman, Szegedy and Tripakis. The problem is proven to
be intractable, in the sense that it belongs to the family of optimization problems
where the corresponding decision problem — there exists a solution with size c
— is NP-complete. Then, the authors derive an iterative algorithm looking for
solutions for c = 1,2,... where each step is encoded as a SAT problem.

Despite the apparent intractability of the problem, our experience is that
real programs do not exhibit such a complexity. Based on earlier work by Ray-
mond, this paper presents a new symbolic encoding of the problem in terms of
input/output relations. This encoding simplifies the problem, in the sense that
it rejects solutions, while keeping all the optimal ones. It allows, in polynomial
time, (1) to identify nodes for which several schedules are feasible and thus are
possible sources of combinatorial explosion; (2) to obtain solutions which in some
cases are already optimal; (3) otherwise, to get a non trivial lower bound for c
to start an iterative combinatorial search.

The solution applies to a large class of block-diagram formalisms based on
atomic computations and a delay operator, ranging from synchronous languages
such as Lustre or SCADE to modeling tools such as Simulink.
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Dynamic Structure Multisampling Synchronous
Programming

Fernando Barros

University of Coimbra, Portugal

Traditional discrete time machines operate at the same rate simplifying the se-
mantics of their interconnection. More complex systems require machines to
specify their sampling rate independently, make their coordination a challenging
problem. We present the Continuous Flow System Specification (CFSS), a for-
malism aimed to the representation of dynamic structure, generalized sampling
systems. In this formalism, sampling can change over time and from compo-
nent to component, making CFSS a framework for representing multisampling
synchronous systems. The ability to join machines with different sampling peri-
ods is enabled by a novel representation of continuous systems based on digital
computers.
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Clock-Driven Distributed Real-Time
Implementation of Endochronous Systems

Dumitru Potop-Butucaru

INRIA — Le Chesnay
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Round Abstraction, Compositionally

Mohamed Nabih Menaa

University of Birmingham

We revisit a form of temporal scaling called “round abstraction” as a solution
to the problem of building locally-synchronous representations of asynchronous
behavior. We will show how round abstraction can be defined on sets of traces in
a compositional model akin to the category of games in game semantics (albeit
with less restrictions). In particular, we establish a soundness result under certain
conditions.
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Three Ways of Compiling Programs into Circuits

Satnam Singh

Microsoft Research UK — Cambridge

We want to compile programs into circuits to take advantage of performance or
power improvements that might be available from a hardware implementation.
However, trying to pervert a piece of software written in an imperative language
into a digital synchronous circuits has many challenges and this talk discusses
how some of the may be overcome. In this presentation I shall describe how we
can in certain cases synthesize programs that are written with explicit dynamic
memory allocation into corresponding programs that only use statically allocated
memory (a stepping stone towards a hardware implementation). A second case
study illustrates how we can use a modern imperative object orientated language
to model synchronous systems using a standard multi-threading library (the Kiwi
project). The compiled .NET byte can then be compiled into circuits. A third
case study shows how we can embed a data-parallel domain specific language into
C# or C++ and target GPUs, SIMD multi-core code and FPGA circuits. By
learning how to compile programs into circuits we gain insight into the general
problem of how to write software for heterogeneous multi-core systems.
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Dynamic Aspects in Synchronous Languages

Louis Mandel, Florence Plateau, and Marc Pouzet

Université Paris-Sud and INRIA

In this talk, we will discuss about old works that have shown that it is possible
to have dynamic aspects in synchronous languages with strict causality analysis
and static scheduling. Then we will go a little further with the presentation of
an interaction loop to program in Lucid Synchrone.
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Towards Formal Evaluation of QoS Properties in
Data Acquisition Systems Using Synchronous

Models

Lionel Morel1, Jean-Philippe Babau2, and Belgacem Ben-Hedia1

1 Université de Lyon, INRIA
INSA-Lyon, CITI, F-69621, France

2 Université de BrestUBO, LISyC, UEB F-29238 Brest Cedex 3, France

In the field of process control, data acquisition software (such as device drivers)
require special care in their design, because they usually stand as bottlenecks
between hardware devices and control applications. In particular timing con-
straints on occurrences of data are often given based on intuition and empirical
experience.

The work presented here intends to provide a formal model to characterize
timing properties such as input data delay. This model is based on an encoding
in Lustre of some basic components organized in certain patterns to form data
acquisition software subsystems. The scheduling of these components, intrinsi-
cally asynchronously is encoded as a synchronous controller. With this encoding,
we can benefit from existing formal proof tools available for Lustre (especially
abstract interpretation) to verify timing properties.
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How Far Can We Go With Synchronous
Programming?

Paul Caspi

VERIMAG — Gières

In this talk we argue that synchronous programming has been growing based on
a start-small approach: at the beginning it aimed modestly at designing single-
threaded control programs. But the scope has been extending in the course of
time in several directions: on the modelling side, by mixing both dataflow and
state machines, and by allowing the modelling of distributed control systems; on
the implementation side, by allowing both time and event triggered, single and
multi-threaded, centralized and distributed implementations. These impressive
achievements lead us to the question raised in the title of the talk.
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Synchronous and Asynchronous Interaction in
Distributed Systems

Rob van Glabbeek1, Ursula Goltz2 and Jens-Wolfhard Schicke2

1 NICTA, Sydney, Australia
2 TU Braunschweig

When considering distributed systems, it is a central issue how to deal with inter-
actions between components. We investigate the paradigms of synchronous and
asynchronous interaction in the context of distributed systems. We choose Petri
nets as our system model and formalize a general concept of distributed systems
as sequential components interacting asynchronously by defining a correspond-
ing class of Petri nets, called LSGA nets. We investigate to what extent or under
which conditions synchronous interaction is a valid concept for specification and
implementation of such systems by proving that certain system specifications
can not be implemented as LSGA nets up to step readiness equivalence.
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Compensations and Runtime Monitoring

Gordon Pace and Christian Colombo

Department of Computer Science, University of Malta

Reasoning about long-lived transactions with possibility of failure at various
stages, and with complex error-recovery and implicit application of compensa-
tions, poses a number of challenges. One major challenge, which has been ex-
tensively explored and addressed in different ways, is that of compositional and
concise specification of such systems, complete in that they include the descrip-
tion of exceptional behaviors. This enables the runtime monitoring of systems
against such complete specifications. We propose the extension of such an ap-
proach to use complete specifications with compensations to aid the runtime ver-
ification system to enable automated rectification of failures and a combination
of system- and monitor-controlled compensations. Furthermore, the approach
we propose, enables us to build a framework for monitors weakly synchronized
to the running system. The use of such a loosely connected verification system
enables us to recover from errors discovered even if the underlying system has,
in the meantime, proceeded further.
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Mode automata and timed imperative programs
in SSA form

Jean-Pierre Talpin

INRIA — Rennes
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Analysis of Scheduled Latency Insensitive
Systems with Periodic Clock Calculus

Sandeep Shukla
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Reconfigurations and Adaptations: In Need of
Control (with ’pataphysical in/out-troduction)

Eric Rutten and Gwenael Deleval

We outline ongoing work on the model-based control of adaptive and reconfig-
urable systems, especially their logical aspects. It is considered as a closed-loop
control problem, modeled using the synchronous approach to reactive systems,
with the application of discrete controller synthesis techniques, encapsulated in
a mixed imperative-declarative programming language. We illustrate the use of
our language by a simple case study. The presentation also has a ’pataphysical
introduction and outroduction.
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Programming in the n-Synchronous Model with
Lucy-n

Florence Plateau, Louis Mandel, and Marc Pouzet

Université Paris-Sud and INRIA

The n-synchronous model aims at relaxing the synchronous programming model
to allow the communication through bounded buffers. It is done by introducing
a subtyping rule in the clock calculus. Last year, we presented at Synchron how
to abstract clocks in order to check this subtyping relation. This year, we will
present a n-synchronous programming language : Lucy-n. We will show through
examples how to program in Lucy-n.
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Regular Switching Schemes for Interconnect in
Process Network Models: K-Periodically Routed

Event Graphs

Robert de Simone

INRIA Sophia Antipolis

In the times of flourishing multicore embedded devices, concurrent applications
and parallel architectures are becoming standard. Process networks provide for-
mal models that capture in many cases the essence of such concurrency, and
allow to reason mathematically on some compilation issues, while at very ab-
stract level. As compilation consists mainly of mapping of applications onto
execution platforms, it comprises in this case both spatial allocation and tempo-
ral scheduling of functions onto distributed resources. Because global efficiency
depends largely on communication rates, interconnect components must also be
carefully modeled for optimal traffic.

In this presentation, we first recall known and recent results from our group
on static, ultimately k-periodic schedules for Marked Graphs and several control-
free Process Network extensions. Then, we introduce a new simple model, named
K-periodic Routing extended Event Graphs (KREG). It can be seen as an ex-
tension of Marked Graphs with only two switching schemes, named Merge and
Select, for multiplexing and demultiplexing respectively. The important fact here,
which is that the switching condition patterns have to be also k-periodic, is a
way borrowed from previous works on schedules. The model can be seen as a
specialization of boolean and cyclo-static data flow graphs altogether (with nev-
ertheless the expressive power of the full cyclo-static case). The main importance
of KREGs comes from the fact that they allow algebraic identities which compose
a full axiomatic theory for finite network expressions regarding (asynchronous)
behavior equivalence. At the same time, these algebraic identities can be seen as
transformations on the interconnect topology, sharing links through appropriate
interleaving, or splitting them as point-to-point links. Loop-free networks then
admit canonical normal forms, with fully expansed point-to-point like topology.
But in many senses, this is a worst-case solution, and link-sharing is highly de-
sirable, under the condition that it does not constraint further the data traffic.

In the talk, we introduce the relevant formal models, their algebraic proper-
ties, and motivate the underlying methodology through examples.

47



KPASSA PN

Julien Boucaron

INRIA Sophia Antipolis

This presentation provides a short introduction to our KPASSA tool. Then, we
survey quickly Latency-Insensitive Design (aka Synchronous Elastic) and show
transformations implemented in the tool.
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From Supercomputing to Volkscomputing a
Data-Flow Synchronous Perspective to

Performance Portability

Albert Cohen

INRIA — Orsay

Many researchers claim that the manycore era is a revolution, with various rea-
sons. Many researchers claim that reinventing the wheel is not a revolution. Both
extremes are obviously wrong. Behind the myths, what is it that the software
industry needs and that parallel computing research has failed and continues to
fail to deliver?

Portability of performance has been the underlying assumption for general-
purpose software projects. After initial successes with the first FORTRAN com-
pilers, modern compilers, run-time systems and architecture designs have pro-
gressively failed to hide the non-uniformity and the parallelism of the hardware.
Every day, more programmers are forced to resort to platform-specific optimiza-
tions, committing early on specific parallel implementations. This is a dramatic
regression.

Giving manual control to the programmer provides some short-term relief
and has been somewhat successful for supercomputing applications or signal-
processing embedded devices. But attempting to extend this approach to the
global software industry demonstrates a misconception of the inertia and cost of
software development. This talk argues that portability of performance has to
be our ambition, and not only a long-term one.

We will discuss some research directions and results, combining implicit par-
allelism, data-flow with relaxed forms of synchrony, deterministic concurrency,
adaptive/auto-tuning frameworks operating over novel concurrent intermediate
languages.
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Resource-Bounded Runtime Verification of Java
Programs with Real-Time Properties

Christian Colombo1, Gordon J. Pace1, and Gerardo Schneider2

1 Department of Computer Science, University of Malta
2 Department of Informatics, University of Oslo

Given the intractability of exhaustively verifying software, the use of runtime
verification, to verify single execution paths at runtime, is becoming increas-
ingly popular. Undoubtedly, the overhead introduced by runtime verification is
a concern for system developers planning to introduce this technique in their
work. By using Lustre to write security-critical properties, we exploit the lan-
guage’s guarantees on bounded resources. By translating these properties into
the existing monitoring framework Larva, we manage to monitor Java programs
with guaranteed use of bounded-resources. Another recurrent issue is the iden-
tification of appropriate notations to represent properties. We use a subset of
QDDC as an alternative specification notation for real-time properties because
it is translatable into Lustre. Thus, QDDC also enjoys the same guarantees given
when using Lustre.
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Clock Type Soundness in Synchronous Languages

Martin Strecker

Université Paul Sabatier — Toulouse

This talk takes a closer look at clock types, which are meant to ensure that
synchronous programs do not manipulate invalid data. We first establish an
abstract type soundness result for synchronous languages: given a program, we
can derive a system of set equations whose solution guarantees the absence of
invalid data during execution. We then instantiate this result for synchronous
languages with periodic clocks and show how to effectively solve the resulting set
constraints. We will briefly comment on our formalization in the Isabelle proof
assistant. More details can be found in the following paper:

http://www.irit.fr/~Martin.Strecker/Publications/clock_type_soundness.html
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Contract and Interface Theories for Embedded
System Design: Users’ Requirements, Failure or
Success To Meet Them, and a New Proposal

Benoit Caillaud

INRIA — Rennes

In this talk we will present the modal interface theory, a unification of interface
automata, modal specifications, and some contract theories, in the context of
requirements engineering for embedded system design. In this talk we will unveil
the power of modal interfaces, as a means to capture system or component
level requirements and support compositional reasoning, with low computational
complexity algorithms.
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The Timing Definition Language and
High-Priority Interrupts

Peter Hintenaus

Universität Salzburg

For the design of deeply embedded systems we propose extensions to the Timing
Definition Language (TDL) that allow integration of asynchronous activities
running at highest priority levels.
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Concurrency and Communication: Lessons from
the SHIM Project

Stephen A. Edwards

Columbia University

Describing parallel hardware and software is difficult, especially in an embedded
setting. Five years ago, we started the SHIM project to address this challenge
by developing a programming language for hardware/software systems. The re-
sulting language describes asynchronously running processes that has the useful
property of scheduling-independence: the I/O of a SHIM program is not affected
by any scheduling choices. I will present a history of the SHIM project with a
focus on the key things we have learned along the way.
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Delays in Esterel

T. Bourke12! and A. Sowmya1

1 NICTA, Locked Bag 6016, Sydney NSW 1466, Australia!!

2 School of Computer Science and Engineering, The University of New South Wales,
Sydney, NSW 2052, Australia

timothy.bourke@irisa.fr, sowmya@cse.unsw.edu.au

Abstract. The timing details in many embedded applications are insep-
arable from other behavioural aspects. Time is also a resource; a phys-
ical constraint on system design that introduces limitations and costs.
Design and implementation choices are often explored and decided si-
multaneously, complicating both tasks and encouraging platform spe-
cific programs where the meaning of a specification is mixed with the
mechanisms of implementation.
The Esterel programming language is ideal for describing complex re-
active behaviours. But, perhaps surprisingly, timing details cannot be
expressed without making significant implementation choices at early
stages of design. We illustrate this point with an example application
where reactive behaviour and physical time are intertwined.
A simple solution is proposed: add a statement for expressing delays in
physical time. While there are similar statements or library calls in many
programming languages, the novelty of our proposal is that the delay
statements are later replaced with standard Esterel statements when
platform details become available. Delays are thus expressed directly in
terms of physical time, but later implemented as a discrete controller
using existing techniques. This approach is familiar in control system
design where analytical models are constructed in continuous time and
then later discretized to produce implementations.
We present some ideas for performing the translation and outline some
of the remaining challenges and uncertainties.

1 Introduction

Time is an integral behavioural dimension in many embedded systems; timing
details cannot always be treated as requirements to be validated independently
of other design stages. They may rather be so intertwined with other behavioural
aspects as to be inseparable from them.

! Now affiliated with INRIA / IRISA, Rennes and funded by the Synchronics large-
scale initiative action of INRIA.

!! NICTA is funded by the Department of Broadband, Communications and the Digi-
tal Economy, and the Australian Research Council, in part through the Australian
Government’s Backing Australia’s Ability initiative.
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Time is also a resource; a physical constraint that introduces limitations and
costs. Balancing timing requirements and timing limitations is central to the
design of many embedded systems. Design and implementation choices are often
explored and decided simultaneously, complicating both tasks and encouraging
platform-specific programs which may later be difficult to adapt or to reuse.
Behavioural timing details often become tightly bound with the mechanisms of
their implementation, making them harder to later understand and to modify.

The Esterel language was designed for real-time programming [1, 2]. But,
although the synchronous model of discrete time isolates the logic of programs
from many details of their realisation, timing behaviours still cannot be expressed
without making significant implementation choices at early stages of specifica-
tion and design. Such early choices can make it difficult to strike a balance
between timing requirements and timing constraints. They encourage unneces-
sarily platform-restricted programs.

These perceived limitations of Esterel are specific to certain applications and
quite subtle. They arise when a program must be designed to meet strict and in-
tricate behavioural timing requirements and when the implementation platform
has not yet been chosen; possibly because the minimum platform requirements
cannot be known until after the program has been written. A good example is
to be found in controllers for the microprinters that print cash register dockets
and other transaction logs. This example exhibits two especial characteristics:
it requires complex reactive behaviour in physical time, and its eventual imple-
mentations are on resource-constrained microcontrollers.

One simple solution, for addressing applications like the microprinter con-
troller, is to express delays using a macro statement whose expansion into stan-
dard Esterel is determined by an abstract model of an intended implementation
platform. This allows designers to state delays directly during specification and
then later to tailor programs to the limitations of particular platforms as more
details become available. While program models are often given in discrete time
and implementation models in continuous time [3], the macro statement implies
the opposite approach: the program is stated in continuous time and the imple-
mentation in discrete time. Abstract programs are stated in the same terms used
in descriptions of the physical hardware to be controlled. Concrete programs are
then derived in the form necessary for implementation as a digital system. This
approach is familiar in traditional control system design where analytical models
are constructed in continuous time and then later discretized for implementation.

While the motivations and basic idea behind the macro delay statement
appear sound, the solution presented in this paper is not completely satisfactory.
There remain unresolved questions about the practical utility of the presented
transformations and also about the relation between programs with physical time
delays and the discrete controllers generated from them. Any proposal for the
latter would have to account for the kind of approximations and compromises
usually employed when engineering such systems.

The main body of this paper comprises four sections. In §2, the microprinter
example is presented. It is both a motivating, realistic application and a con-
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stepper motor

print head

head position sensor

paper sensor

temperature sensor
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Fig. 1: Physical structure of the microprinter example

crete illustration of the issues under discussion. Extracts from the example are
used throughout §3 to illustrate deficiencies in the standard techniques for ex-
pressing delays in Esterel. It is argued that each of these techniques either forces
engineers to make implementation choices too early in the design process or oth-
erwise adulterates the expression of requirements with the mechanisms of their
realisation. A possible solution is presented in §4 in the form of a macro state-
ment and its expansion to statements of standard Esterel. Some problems and
unfinished aspects of these ideas are discussed in §5.

2 Motivating example: a microprinter controller

Microprinters are electro-mechanical components for producing monochrome im-
ages on paper. They are often used in cash registers for printing receipts. A typ-
ical example is sketched in Figure 1. The actual device, from which the following
details and delay values are taken, is not named due to licensing sensitivities.
Thermal paper is drawn into the printer from a roll (not shown) by a rub-
ber drum that is rotated by a stepper motor. The paper passes under a print
head comprising a row of tens of resistors. Current is applied to the resistors
to generate heat which marks the paper; individual resistors are enabled and
disabled through latched transistors. Images are formed line-by-line by carefully
coordinating the movement of the paper, the contents of the latches, and the
application of current to the resistors. The microprinter has sensors that give
the temperature of the print head, whether it is open or closed, and whether
there is paper under it.

The sequential logic required to interface directly with the microprinter is
intricate. A controller must produce a signal for the stepper motor, retrieve then
serially transmit the next line of pixels, apply current to the resistors, and re-
spond to no-paper and print-head-open events. It must respect the microprinter’s
physical and electrical characteristics. For instance, when the number of active
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pixels in a line exceeds a certain threshold, that line must be printed over several
phases to avoid drawing too much current; when paper feeding is temporarily
stalled, the stepper motor must be switched on and off to reduce the average
power needed, and thereby reduce the risk of damaging hardware or circuits.

Furthermore, the relative timing of actions is both important and intricate.
The duration of motor steps changes depending on the number of pixels in the
line being printed, the duration of the previous step, and the operating phase:
starting, feeding, printing, or stopping. The duration of current pulses through
the print head depends on feedback from the temperature sensor, the recent
print history, and the battery level. The lengths of various delays are given in
the microprinter specification in physical time, seconds and milliseconds, not as
counts of a digital clock or multiples of a base period. They are integral to the
behavioural specification and as much a part of the controller requirements as
are the discrete events. It is unnatural to consider the timing constraints and
discrete events in isolation from each other.

Expressing the required sequential logic and timing patterns in software is
only part the problem. A microcontroller must also be chosen and interfaced to
the microprinter, to a power supply, and to the rest of the system. The choice of
microcontroller is critical to implementing, and, as will be seen, usually even to
stating, the timing behaviour. Platform selection may thus occur simultaneously
with initial design. To give one scenario, an engineer might identify the tightest
timing requirements in the specification and then sketch a preliminary imple-
mentation in assembly language from which the minimum required processor
speed can be estimated. A suitable platform could then be chosen allowing the
timing behaviours to be expressed in terms of its characteristics and features.
Porting such programs to different platforms may require considerable efforts.
Detailed verifications must consider combinations of program and platform.

Esterel is intended for applications like the microprinter controller. It is cer-
tainly easier to express the sequential logic in Esterel than in assembler, but it is
still difficult to untangle the application timing details from the implementation
choices and constraints, and this has implications on both design flow and porta-
bility. As the microprinter controller is too complicated to present in full, only a
subcomponent will be considered, namely the one responsible for energizing the
coils of the stepper motor to make it rotate.

A sample trace of the motor control signals is presented in Figure 2. There
are three outputs: Enable, Coil1, and Coil2. The Enable signal is asserted to allow
current into the stepper motor coils. The Coil1 and Coil2 signals determine the
direction of current in each of two coils within the stepper motor. At the lowest
level, the coils must be energized according to the pattern of steps in the bottom
half of Figure 2. At a higher level, the length of each step and whether current
should flow or not is determined by the length of the previous step and whether
the motor paper must be held in place for one reason or another. The latter
condition will be represented by an input signal Hold, which, it can be assumed,
will be emitted by other system components as required. When printing, each
step is normally energized for 1.667ms, but if the motor is held for more than
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0.05ms 0.3ms
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Coil2

Fig. 2: Typical microprinter motor control signals

1 module P r i n t S t e p s :
2 i n pu t Hold ;
3 output Step , Enab le : boo lean ;
4
5 s i g n a l LongStep i n
6 l oop
7 emit Step ;
8 p r e s en t LongStep
9 then % de l a y 2 .4ms

10 e l s e % de l a y 1 .667ms
11 end p r e s en t ;
12
13 p r e s en t Hold then
14 t r ap S t a l l i n g i n
15 l oop
16 emit Enab le ( f a l s e ) ;
17 % de l a y 0 .05ms ;
18 p r e s en t Hold e l s e
19 e x i t S t a l l i n g
20 end ;
21
22 emit Enab le ( t r u e ) ;
23 % de l a y 0 .3ms ;
24 p r e s en t Hold
25 e l s e e x i t S t a l l i n g
26 end
27 end loop
28 | |
29 % de l a y 0 .733ms ;
30 s u s t a i n LongStep
31 end t r ap
32 end p r e s en t
33 end loop
34 end s i g n a l
35 end module

(a) PrintSteps module

1 module Steppe r :
2 i n pu t Step ;
3 output
4 Co i l 1 := f a l s e : boo lean ;
5 Co i l 2 := f a l s e : boo lean ;
6
7 l oop
8 awa i t Step ;
9 emit Co i l 1 ( t r u e ) ;

10
11 awa i t Step ;
12 emit Co i l 2 ( t r u e ) ;
13
14 awa i t Step ;
15 emit Co i l 1 ( f a l s e ) ;
16
17 awa i t Step
18 emit Co i l 2 ( f a l s e )
19 end loop
20
21 end module

(b) Stepper module

Fig. 3: Stepper motor controller in Esterel
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0.733ms in one step then the next step must be energized for 2.4ms. The coil
directions are not changed while the motor is being held in place. Since this
requires less energy, the coil current must be repeatedly switched off for 0.05ms
and on for 0.3ms until movement restarts. This ‘chopping’ reduces the risk of
overheating. Other complications relating to starting the motor, stopping it, and
feeding paper when not printing will be ignored.

Thanks to the synchronous semantics of Esterel, the motor control logic is
readily expressed as two concurrent modules: PrintSteps and Stepper. They are
both shown in Figure 3. The PrintSteps module emits a Step signal when the coil
energisation pattern is to change. The Stepper module responds simultaneously
to each emission of Step by changing the direction of current in one of the coils.
Other concurrent components for sequencing feed and print cycles, clocking data
into the print head, and handling exceptional conditions can readily be imagined.
For the most part, the domain specific constructs of Esterel give a convenient and
natural specification that can be simulated, analyzed and compiled into software
or hardware. There is, however, a problem.

How should the various delays in Stepper be stated? At present, they are
given as comments in terms of timing constants from the specification, but the
resulting program is neither correct nor executable. Several standard techniques
for expressing the delay are evaluated in the next section, but it turns out that
none of them are ideal. Just as in the assembly language scenario, each technique
requires early decisions about the eventual implementation platform, or confuses
specifications of delay with their implementation.

3 Expressing delays in Esterel

Timing delays can be expressed variously in Esterel. Several standard techniques
from the literature are reviewed in this section. It will be argued that all of
them constrain eventual implementations, at least if naively compiled, and that
several of them either emphasize mechanism over effect or interact imperfectly
with other constructs.

3.1 Pause statements

In the modern semantics of Esterel [4, 5], pause is the only non-instantaneous
statement. Its meaning in the discrete semantics is clear: it delays execution until
the next reaction. The complication for expressing quantitative delays is that the
time of the next reaction depends on the execution mode and parameters.

In the event-driven execution mode, the physical duration of a pause depends
on external stimuli. For a set of inputs {i1, . . . , in}, a pause statement could
be replaced with: await [i1 or . . . or in]. Although, the replacement would have
to be adjusted were other inputs added; if, for instance, other modules were
placed in parallel. Any relation between abstract delays and physical delays
must account for times of input occurrence, which is not feasible in general. In
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event-driven systems, unadorned pause statements alone are not suitable for
specifying precise physical delays.

In the sample-driven execution mode, a pause statement specifies a precise
physical delay: the length of one execution cycle. There is thus a direct, though
implicit, relation between the discrete semantics of a program and its physi-
cal behaviour. In applications where behaviour in physical time is important,
modules could be specified together with their intended execution period. It is
not clear, however, how modules with different execution periods would be com-
posed. Furthermore, designers would be forced to choose a period before writing
a program. An implementation choice must be made before even beginning a
precise specification!

Deciding on an execution period involves compromises between the appli-
cation requirements and the execution platform. The timing requirements of
the microprinter controller example can be summarized by the list of delays:
2.400ms, 1.667ms, 0.050ms, 0.300ms, and 0.733ms. A designer could decide to
round 1.667ms down to 1.650ms and 0.733ms down to 0.750ms before choosing
0.05ms, the greatest common divisor and, in this case, also the smallest delay,
as the execution period. The first part of the program could then be written:

present LongStep
then await 48 t i c k
e l s e await 32 t i c k
end present .

This technique is effective but not ideal. The program has strayed from the
original specification. If the execution period is changed – for instance, a different
microcontroller is used, or a faster module is put in parallel – the program must
be rewritten. The original delay values are obscured and the execution period
is implicit. Moreover, a complete list of delays may only become clear as the
program is written: the specification and important details of the implementation
must be decided in tandem. A fixed execution period limits potential platforms,
since the whole program must run at the speed required for the smallest delay,
even though in this case the next smallest delay is an order of magnitude greater.
There is little scope for the sort of optimisations often applied to embedded
controllers; for example, a timer-interrupt-driven routine for motor chopping
that permits the rest of the program to be executed less frequently.

3.2 Timing inputs

Counting specific signals instead of reactions is a partial remedy for some of
the limitations of pause statements: the event being counted is stated explicitly,
and it need not be present at every reaction. Executing signal counting pro-
grams more frequently does not change the fundamental relation between their
behaviour and the occurrence of external events, although the order of external
events may be discerned more finely and the actual discrete traces may vary.

Additional information is still required to relate a signal counting statement
to a physical time delay. Rather than assign an execution period to a program
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TMS TMS TMS TMS

HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS HMS

await 5 HMS; emit Enable(true ); await 3 TMS; emit Enable( false );

await 5 HMS; emit Enable(true ); await 30 HMS; emit Enable( false );

Fig. 4: Granularity of timing inputs

or module, as for pause statements, certain timing inputs are distinguished and
assigned fixed delay values. The delay values are usually relative to the initial
reaction or to system startup. Timing inputs must be provided by the interface or
run-time layer at regular intervals. They are invariably given suggestive names,
for example SECOND or MSEC.

Returning to the microprinter, a controller program could commence with
declarations of two timing inputs, TMS for ‘tenths of milliseconds’ and HMS for
‘hundredths of milliseconds’:

input TMS, % ms/10
HMS; % ms/100

r e l a t i o n TMS => HMS; .

Longer delays would be specified in terms of TMS:
present LongStep

then await 24 TMS
e l s e await 17 TMS

end present .

and shorter ones in terms of HMS:
loop

emit Enab le ( f a l s e ) ;
await 5 HMS;
emit Enab le ( true ) ;
await 30 HMS

end loop .

Timing inputs are employed in several examples [6,7]. They fit superbly with
the idea of multiform time and the abstract synchronous model. They work well
with other Esterel constructs like suspend and abort.

There are, however, at least three disadvantages to counting timing inputs.
First, although the relation between timing inputs and physical time seems in-
tuitive, there are some subtleties related to granularity and relativity. Second,
although signal counting programs are relatively unaffected by changes to ex-
ecution mode and period, the choice of signal granularity is effectively an im-
plementation choice and trading accuracy for economy afterward may not be
trivial. Third, the structure of the state space of signal counting programs may
be difficult for debugging and model checking tools to exploit.
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Regarding granularity and relativity, a signal counting statement synchro-
nizes with timing inputs foremost and creates a delay in physical time only as a
byproduct. Timing inputs are not relative to the commencement or termination
of statements within a program. For instance, consider these changes to signal
granularity in the motor chopping loop:

loop
emit Enab le ( f a l s e ) ;
await 5 HMS;
emit Enab le ( true ) ;
await 3 TMS % ⇐ was 30 HMS

end loop .

The two fragments are not equivalent but one might naively expect that replac-
ing await 30 HMS with await 3 TMS would preserve the physical time delays.
This is not so, as evidenced by Figure 4. The statement await 3 TMS always
gives a logical delay of 3 TMS events but, in principle, the associated delay in
milliseconds could be anywhere in the interval (0.2, 0.3]. The precise delay de-
pends on when the statement receives control and thus on the system execution
period and, in the event-driven mode, when other inputs occur. Consider, for
instance, this statement:

await I ;
await immediate 2 S .

The start of the second await depends on when the I signal occurs. It effects a
delay greater than one second but strictly less than two seconds, that is, a delay
in the interval [1, 2) – assuming that S has a period of one second.

Does it really matter? After all, engineering involves tolerances: perfect mea-
surements are never possible. The point is, rather, to delay such decisions for as
long as possible; to model in ideal terms and then only later to make and evaluate
various compromises. Fixing timing inputs at an early stage in the specification
either renounces accuracy too soon, perhaps even before the ramifications can be
properly understood, or risks imposing unnecessarily strict demands on eventual
implementations.

There is another conflict between abstract specifications and concrete imple-
mentations. In applications like the microprinter controller, data sheets and ab-
stract designs describe physical models as functions of an ideal t in seconds. But
oscillation and execution periods in implementation platforms are often deter-
mined by characteristics of the application and hardware. Moreover, the timing
inputs in early stages of a design may be in multiples of seconds, but those in
later versions may differ. Discretization is ultimately an issue of implementation.

Naturally, the standard tools for simulation and verification can handle pro-
grams that count timing inputs. But they do not usually exploit the specific
structure of these programs: the long chains of counting transitions. When de-
bugging, for instance, it may be necessary to cycle through long runs of timing
events before anything interesting happens, unlike in tools like Uppaal [8] where
timed traces can be explored symbolically.
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3.3 External timers

One-shot timers are commonly used in embedded programs to implement delays
and timeouts. The same idea is readily expressed in Esterel, as demonstrated by
several published examples [9–11].

Such programs initiate a delay by emitting an event that starts a timer, for
instance emit START_TIMER. The event may be parameterised by the required
number of ticks, for instance emit START_TIMER(100). The program then waits
for an event that indicates timer expiry, for instance await TIMER.

Timers need not necessarily be provided by an implementation platform.
They may themselves be implemented in Esterel, as, for example, in the POLIS
seatbelt alarm controller [12, §1.3.2] where a timer module counts timing inputs.
The POLIS approach is special because the two modules may be executed on
different asynchronous processes, each with a different execution period. The
timer module may even later be refined to a hardware timer.

There are several advantages to using timers. They give relative rather than
absolute delays. They separate, at least to some degree, issues of behavioural
delay from those of program execution. Timers can, for instance, run at a finer
granularity than the rest of the program; though any benefit is lost if the ratio
between the timer and execution periods is too great. They are perhaps most
appropriate for event-driven implementations where reactions can be triggered
by timer interrupts.

There are four main disadvantages to using timers: a sacrifice of program
concision and clarity, an early introduction of implementation detail, an imper-
fect interaction with other Esterel constructs, and a lack of support in simulation
and analysis tools.

The loss of concision and clarity is evident in this fragment of the microprinter
controller example, now expressed with timers:

loop
emit Enab le ( f a l s e ) ;
emit START_HMSTIMER01( 5 ) ; await HMSTIMER01 ;
emit Enab le ( true ) ;
emit START_HMSTIMER01( 3 0 ) ; await HMSTIMER01

end loop .
Not only are two instructions required to express each delay, but the emphasis
has shifted from meaning to mechanism. Nothing prevents the emission that
starts the delay being placed apart from the statement that detects its end. This
may sometimes be an advantage, but it surely also complicates potential analysis
and compilation techniques.

Timers introduce implementation details. Each has a granularity and a max-
imum value. Timers must be allocated and named. An implementation platform
must either provide enough timers, or provide extra routines for queuing and
managing timer requests. Care must be taken when interfacing timers to en-
sure that they react appropriately with other Esterel statements. Consider this
program fragment for example:
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(TMS is present at each reaction)

O OSOTP P P P P P P P P P P

Fig. 5: Effect of suspend on delays

abort
emit START_TIMER( 1 0 ) ; await TIMER ; emit O1

when I ;
emit START_TIMER( 2 0 ) ; await TIMER ; emit O2 .

Assume that it is executed in the event-driven mode and that it has been waiting
at the first await TIMER statement for almost 10 units when the I input triggers
a reaction. The I input will abort the first delay and start the second one. But
if the timer expires while the reaction is being processed it may set an interrupt
flag or other latch, and, if the latch is not properly cleared by the interface layer,
the second delay may be terminated prematurely in the next reaction. Such bad
interactions with abortion can be avoided, but only with care.

Interactions with the suspend statement, are not as easily solved. The prob-
lem is that timers essentially sit apart from the lexical scope of the statements
that start and await them. Two examples will illustrate the issues.

First, indefinite delays are easily introduced when timers are combined with
suspension, as in this program fragment:

suspend
emit START_TIMER( 1 0 ) ; await TIMER ; emit O1

when HOLD.

If the HOLD and TIMER signals occur simultaneously, the suspend prevents
termination of the await, and, if the timer is not restarted elsewhere, the O1
signal will never be emitted. One alternative to accepting this behaviour is to
declare a conflict relation between the two signals:

r e l a t i o n TIMER # HOLD;

But this really only shifts the burden to the interface layer.
The second example compares the effect of suspension on a delay expressed

with an external timer and one expressed by counting timer inputs:
emit O;
suspend

emit START_TMSTIMER01( 2 0 ) ; await TMSTIMER01 ; emit OT
| |

await 20 TMS; emit OS
when P .

Suppose the P signal indicates when a certain button is held. A run of the system
with the button held for 0.1ms is shown in Figure 5. The signal OT is emitted
when the timer in the top branch expires. This emission is completely unaffected
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by the suspension because the timer is external to the program, even though the
statements that trigger and wait for it are within the scope of the suspend. In
contrast, the emission of the signal OS, which occurs after counting the timing
inputs, is delayed by the length of the suspension, modulo sampling effects. The
latter behaviour is the more powerful but it is not easy to achieve outside the
Esterel kernel.

As far as the semantics of Esterel are concerned there is nothing special about
the emit and await statements that comprise a timer delay. This means that
standard simulation and analysis tools will not usually exploit the implied timing
constraints. To verify quantitative timing properties or to eliminate spurious
counter-examples, the timers themselves would have to be modelled or otherwise
taken into account.

3.4 External intervals

Esterel is extended to CRP (Communicating Reactive Processes) [13] through
the addition of an exec statement, which starts an asynchronous process and
waits until it terminates. This gives another way to implement external timers,
for instance:

loop
emit Enab le ( f a l s e ) ;
exec HMSTIMER01 ( 5 ) ;
emit Enab le ( true ) ;
exec HMSTIMER01( 3 0 ) ;

end loop .
The HMSTIMER01 process is assumed to sleep for the given number of hun-
dredths of milliseconds and then terminate.

There are three main advantages over the timers described in the previous
subsection. The delay is expressed as a single statement, which makes programs
easier to read and simpler to analyze. The semantics of exec precisely defines
its interaction with abort. The semantics also accounts for issues of naming and
reincarnation.

Otherwise, timers expressed with exec have similar disadvantages to those
expressed with emit and await. Their use involves the early introduction of im-
plementation detail: timer names, quantities, granularities, and maximum values.
They do not interact well with suspension, which was introduced contempora-
neously [14], and there are similar issues with simulation and analysis tools.

3.5 Quantitative watchdogs

The Argos language defines a temporized state macro for expressing timeouts;
delays are stated by pairing an integer value with a signal name. Physical time
delays can be expressed by counting timing inputs as previously described. There
is an earlier proposal for temporized Argos programs [15] where delays are written
without an explicit signal name; timeout states are labelled with an integer
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constant between square brackets and they have a single timeout transition that
is identified by a square box:

[5] "

Two interpretations are defined for temporized Argos programs [15]. In the
discrete-time semantics, the timeout notation is just a macro that counts a spe-
cial input event and an Argos program is interpreted as a BMM (Boolean Mealy
Machine). In the continuous-time semantics, an Argos program is interpreted as
a timed automaton1 where the timeout notation is mapped to clocks, location
invariants, and transition guards in a natural way. The separation of discrete and
delay transitions in timed automata is also adopted for the discrete semantics:
the special time input cannot occur synchronously with other inputs. There are
implicit conflict relations.

Temporized Argos overcomes some of the limitations of counting timing in-
puts. Namely, quantitative timing properties can be verified by special-purpose
tools, in this case Kronos [17], and there are fewer obstacles to creating simula-
tion and debugging tools that take advantage of the timing parameters.

There are, however, at least three deficiencies. First, there are relatively mi-
nor issues surrounding the precision of timeout constants and the unit of mea-
surement that applies in a given program. Second, the interaction of timeout
states and suspension, or, in the case of Argos, with inhibition, is problematic.
Third, there is no support for analyzing or making compromises for particular
implementation platforms. There is only one discrete transformation and it does
not allow for changes to the timing input granularity. The separation of timing
inputs from other inputs, however, does allow timers to be treated separately.
They could in principle run at a higher resolution than the rest of the program.

Essentially, in temporized Argos, statements that count timing inputs are
treated as continuous-time delays. This paper suggests an inverse approach: to
specify delays in continuous time and then to implement them using standard
synchronous language techniques.

4 An alternative

It has been argued that none of the existing techniques for expressing timing
behaviour are ideal for programming systems like the microprinter controller.
In this section, several characteristics of an ideal programming language are
identified, before an extension to Esterel that aims to meet them is proposed.

The extension has three parts: a macro statement that allows exact delays
to be specified in the program text, a language for describing abstract details of
implementation platforms, and a syntactic transformation that expands macros
into standard Esterel statements suited to a particular platform. The extension
is called Esterel+delay.

1 Technically, a timed graph [16].
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The desired characteristics of a language for expressing the timing behaviour
of applications like the microprinter controller are summarised in §4.1. The ex-
tension to Esterel that attempts to realise them is presented in §4.2. Some related
approaches are discussed in §4.3.

4.1 Desired characteristics

Esterel is ideal for specifying the discrete behaviour of applications like the mi-
croprinter controller, but, arguably, the specification of behaviour in physical
time could be improved. Specifically, three characteristics are desired. First, it
should be possible, at least in the early stages of design, to program in terms
of physical time. Second, expressions of delay should not unduly bias the mech-
anisms with which they are eventually realised. Third, it should be possible to
program initially in ideal terms and then later to make the inevitable compro-
mises for implementations on specific platforms.

While digital implementations are inevitably discrete, early designs usually
involve continuous models of the controller and plant; even if such models are
incomplete or implicit. Engineers think about potential solutions as physical
delays and movements orchestrated by discrete modes and steps. Delays are
presented in specification sheets and described in design documents in physical
time units. The details of discretization and realisation are worked out later
when or after choosing an implementation platform.

All of the techniques described in §3 immediately require or assume informa-
tion about the timing behaviour of eventual implementation platforms. It would
be better if controllers could be specified, simulated, and analyzed well before
making such implementation choices. In fact, the controller specifications them-
selves should guide choices: hardware or software, minimum processor speed, the
number and resolution of timers, and similar.

An ideal language for applications like the microprinter controller would not
only allow abstract descriptions of discrete behaviour in physical time, but would
also facilitate the inevitable choices and compromises required to implement such
programs on constrained platforms. A program should act as a reference against
which possible implementations may be evaluated. Especially since perfect preci-
sion is not possible: quantitative specifications are given with explicit or implicit
error tolerances, and accuracy may be compromised to better meet other con-
straints and requirements.

4.2 Esterel+delay

The program of Figure 3 is already an excellent specification. It expresses the
desired behaviours in the same terms as the physical model, as described by the
datasheet, and without making too many assumptions about their implemen-
tation. Rather than immediately replace the timing comments with any of the
constructions in §§3.1–3.4, it may be better to maintain those details for as long
as possible, and only later, when platform details are known, to replace them
with more concrete mechanisms, as automatically as possible.
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The statement for expressing exact delays is written:
delay e

where e is an expression that evaluates statically to a rational number which is
interpreted as a duration in seconds. The expression may contain units, which
are macros for multiplication by a suitable constant:

x h = x ∗ 3600 x ms = x ∗ 10E−3
x m = x ∗ 60 x us = x ∗ 10E−6
x s = x ∗ 1 x ns = x ∗ 10E−9

Uncommenting the delay statements in the program of Figure 3 gives a valid
Esterel+delay program.

Insisting on the evaluation of delay expressions at compile time simplifies
transformation and analysis but excludes some potential programs. Similar state-
ments in Esterel, namely repeat e and hence also await e s, are less restrictive;
they may contain integer expressions that are evaluated at run time. The delay
statement is different because the accompanying expression gives a rational value
that is used in the calculation of execution parameters, which, in turn, deter-
mine how closely the value will actually be approximated. The restriction to
static delay expressions does not preclude conditional or variable delays, but it
becomes mandatory to state all possibilities explicitly. For example, step length
in the microprinter controller is determined dynamically, but there are only two
possible values, those at lines 9 and 10 of Figure 3a.

At first glance the distinguished role of physical time in delay statements may
seem to violate the doctrine of multiform time [18, §3.10]. But, on the contrary,
there is no dispute that a discrete controller perceives nothing but sequences of
events and that it may as well count metres or heartbeats as seconds. Rather the
approach proposed by Esterel+delay is to program at a slightly more abstract
level that acknowledges the dual aspects of time as a behavioural dimension and
as a computation resource. Whether it is of any utility to regard other dimensions
similarly is a question left open.

The second part of Esterel+delay is a language for describing implementa-
tion platforms. Given extra platform details, an Esterel+delay program can be
transformed into an Esterel program without delay statements, which can then
be compiled using standard tools and techniques.

An implementation will be described by a platform statement that provides
the abstract parameters necessary to approximate ideal delays. Three types of
platform statement will be considered: one for sample-driven executions and two
for event-driven executions.

Platform statements for sample-driven implementations simply state the ex-
ecution period in seconds, but the concrete syntax also allows multiplying units,
identically to those of delay statements, for example:

sample 1 .4ms
Relating event-driven implementations to physical time is more complicated.

Two types of platform statement are proposed. The first provides the list of the
types of timers available on a platform. Each type of timer is described by four
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〈implstmt〉 → sample 〈ratexpr〉 | event [ 〈events〉 ]
〈events〉 → 〈signals〉 | 〈timertys〉
〈signals〉 → 〈signal〉 | 〈signal〉 , 〈signals〉
〈signal〉 → 〈name〉 = 〈ratexpr〉
〈timertys〉 → 〈timerty〉 | 〈timerty〉 , 〈timertys〉
〈timerty〉 → ( 〈ratexpr〉 , 〈intexpr〉 , 〈intexpr〉 , 〈intexpr〉 )

where 〈ratexpr〉 and 〈intexpr〉 denote expressions that evaluate, respec-
tively, to rational numbers and integers.

Fig. 6: Concrete syntax of platform statements

parameters: the physical time period of each tick, the minimum number of ticks
possible, the maximum number of ticks possible, and the number of such timers
available. For example:

event [ ( 1ms , 10 , 65535 , 2 ) , ( 0 . 1 s , 1 , 255 , 1 ) ]
This platform statement describes a system with three timers. Two of them have
a tick resolution of 0.001 seconds for countdowns from between 10 and 65535
ticks inclusive. The other has a tick resolution of 0.1 seconds for countdowns
from between 1 and 255 ticks inclusive. The second type of platform statement
is a list of input signal names together with the periods of their occurrence in
physical time, for example:

event [ SEC=1, OSC=90.0422 ns ]
Such statements clarify assumptions that are at best implicit in the signal names.

Other platform statements for event-driven implementations can be imag-
ined, for instance, platforms that provide both regularly occurring inputs and
timers. Or regularly occurring inputs with offsets relative to system startup as
well as periods; like the discrete sample time pairs of Simulink. These possibilities
are not pursued because their practical utility is unclear and the two proposed
platform statements provide challenge enough.

The concrete syntax for platform statements is summarised in Figure 6. The
abstract definitions are similar in form. (In the following, Q≥0 is the set of non-
negative rationals, Q>0 is the set of strictly positive rationals, N is the set of
natural numbers, and N>0 is the set of natural numbers excluding zero.)

Definition 1. A timer type is a tuple (τt, l, u, n) ∈ Q>0× N × N × N>0, where
0 < l ≤ u.

In a timer type (τt, l, u, n), τt is the tick resolution in seconds, l and u are,
respectively, the inclusive minimum and maximum values that the timer can
provide, and n is the number of such timers that are available.

Definition 2. Given a set of signal names S, a timing input is a pair (s, τs) ∈
S × Q>0.

In a timing input (s, τs), s is the name of a signal and τs is its period of occurrence
in seconds, relative to system startup.
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Definition 3. Given a set of signal names S, a platform statement is an ele-
ment of the set

P = Q>0 + T + A,

where T is the set of finite sets of timer inputs, and A is the set of finite sets of
timing inputs where (s, τs1), (s, τs2) ∈ A → τs1 = τs2 .

A timer statement is either a single, non-zero rational number that represents
the sample period of a sample-driven implementation, or a finite set of timer
inputs, or a finite set of timing inputs without duplicates.

The following three subsections describe the transformation of Esterel+delay
programs into Esterel programs for each type of platform statement.

Sample-driven implementations. A platform statement of the form τ ∈ Q>0

specifies a sample-driven implementation with an execution period of τ seconds.
In this case, each delay e statement is essentially replaced by an await n tick
statement, where n is chosen to effect the delay specified by the expression e for
the given execution period τ . Three variations are proposed for approximating
delays that are not multiples of the given execution period.

The transformations described in this section and the following two only
replace the delay statements in Esterel+delay programs. The common part of
their individual definitions is formalised in an obvious way.

Definition 4. The carrier function C(p) is defined for every Esterel statement p:

C(nothing) = nothing
C(emit s) = emit s

C(pause) = pause
C(present s then p else q end) = present s then C(p) else C(q) end

C(suspend p when s end) = suspend C(p) when s end
C(p ; q) = C(p) ; C(q)

C(loop p end) = loop C(p) end
C(p || q) = C(p) || C(q)

C(trap T in p end) = trap T in C(p) end
C(exit T) = exit T

C(signal s in p end) = signal s in C(p) end

The carrier function and the identity function coincide for the subset of Es-
terel+delay without delay statements.
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A program may contain a delay d that is not an exact multiple of the given
execution period τ . An implementation can either underapproximate by waiting
for l ticks, or overapproximate by waiting for u ticks, where

l = max

(⌊
d

τ

⌋
, 1

)
(1)

u =

⌈
d

τ

⌉
(2)

The underapproximation l is not allowed to be zero because the replacement
statement, await l tick, would then be instantaneous, which would drastically
alter the meaning of the program and could introduce causality problems. Es-
terel+delay programs must always stop at delay statements.

When a delay is repeated, for instance if it occurs within a loop, choosing
only one of the approximations gives a program whose actual timing behaviour
drifts steadily from the ideal timing behaviour. Such cumulative errors are prob-
lematic in certain applications, for example in programs that sample bits asyn-
chronously. One possibility is to track the cumulative drift and, at each iteration,
to choose whichever of the two approximations minimises it. This approach is
only applicable when l · τ < d.

Some simple calculations show that approximations can be chosen at runtime
using only operations on integers and a small amount of constant memory. The
difference between a specified delay d and its underapproximation is equal to d−
l · τ . Since both d and τ are rationals, this difference can be written as a ratio
of two positive integers:

ln
ld

= d − l · τ , (3)

where the subscripts n and d stand for ‘numerator’ and ‘denominator’ respec-
tively. And similarly for the overapproximation:

un

ud
= u · τ − d. (4)

When a single, iterated delay d statement is approximated by m executions of
an await l tick statement and n executions of an await u tick statement, the
cumulative drift will be

c = m · ln
ld

− n · un

ud
, (5)

which can be scaled to an integer by multiplying by ld · ud, giving

c · ld · ud = m · ln · ud − n · un · ld. (6)

It can be tracked by an integer variable which is increased whenever the under-
approximation is applied by

dl = ln · ud, (7)
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and decreased whenever the overapproximation is applied by

du = un · ld. (8)

Any drift due to the approximations is mitigated by making local choices that
minimise a tracking variable. This technique is most suitable for delay statements
within loops whose values are midway between the lower and upper approxima-
tions at a given execution period, that is for d near l + τ

2 .
The three variations are combined in the translation function for sample-

driven platform statements. It is assumed that each delay statement is annotated
with one of {under, over, avg} that specify one of the approximations to apply; the
annotation will be written as a subscript of the delay statement. The means of
making these annotations is immaterial. This extra information can be provided
by any convenient means. Annotations could, for instance, be given as per-delay
pragmas, or they could be specified globally for an entire program.

Definition 5. The sample-driven transformation Tτ (p) maps an Esterel+delay
statement p to an Esterel statement. It extends the carrier function to the delay
statement.

if d = n · τ ,

Tτ (delayapprox d) = await n tick ,

otherwise,

Tτ (delayunder d) = await l tick , and
Tτ (delayover d) = await u tick ,

and, when d · τ ≥ 1,

Tτ (delayavg d) = i f abs ( d i f f + dl ) <= abs ( d i f f − du )
then d i f f = d i f f + dl ;

await l t i c k
e l s e d i f f = d i f f − du ;

await u t i c k
end i f ,

where the values of l and u for a given d and τ are as previously defined, and
the variable name diff is unique within the module and declared as an integer
variable.

As the avg translations introduce new variables they should be performed be-
fore any other source-code transformations, such as loop unrolling, which might
otherwise affect the timing behaviour of the resulting system. This brittleness is
an unfortunate side-effect of distinguishing the multiple dynamic occurrences of
delays that are identified statically.
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Event-driven with timers. A platform statement of the form T ∈ T specifies
an event-driven implementation where T is a set of tuples (τt, l, u, n) describing
available timers. The timers may be provided by hardware or an interface layer.
The technique of §3.3 is applied: each delay e statement is replaced by an emit
statement that starts an assigned timer and an await statement that waits for
it to expire.

The transformation must allocate timers, from the multiset given by the
platform statement, to delay statements while minimising differences between
required and actual delays. No single timer may be assigned to two simultaneous
delays and all delays must be supported if possible. Issues of signal naming and
aborted delays require care but do not present any fundamental problems.

The allocation of timers to delays can be simplified by forming a static over
approximation of the original Esterel+delay program.

Definition 6. A delay term is formed from constants in Q≥0, and the two bi-
nary operators ; and ‖.

Definition 7. The delay abstraction function D maps an Esterel+delay pro-
gram, where delay expressions have been evaluated, to a delay term:

D(nothing) = 0

D(emit s) = 0

D(pause) = 0

D(delay d) = d

D(present s then p else q end) = D′(p, q, ; )

D(suspend p when s end) = D(p)

D(p ; q) = D′(p, q, ; )

D(loop p end) = D(p)

D(p || q) = D′(p, q, ‖)

D(trap t in p end) = D(p)

D(exit t) = 0

D(signal s in p end) = D(p)

where:

D′(p, q, ⊗) =





D(q) if D(p) = 0

D(p) if D(q) = 0

D(p) ⊗ D(q) otherwise.

When a program p does not contain any delay statements, the delay abstraction
function D(p) gives the result 0. Otherwise, a delay term represents a binary tree
with two types of internal nodes and leaves in Q>0. The constraints expressed
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by a delay term are conservative, they do not consider the reachable state-space
of the program. A more accurate, but inevitably more expensive, analysis would
permit a finer expression of constraints.

As an example, the delay term for the microprinter controller program of Fig-
ure 3a is: (0.0024; 0.001667); ((0.00005; 0.0003) ‖ 0.000733). Note that the delays
in the branches of the present statement are combined with ‘;’ in the delay term;
all that matters is that they do not occur simultaneously.

The platform statement T ∈ T is a set of timer types. For the purposes
of timer allocation, it may be considered a multiset of timer triples (τt, l, u). A
certain number of timers are necessary to implement a given delay term, even
before the closeness of their approximations is considered.

Definition 8. The timer count function Tn gives the number of timers required
for a delay term:

Tn(0) = 0

Tn(d) = 1

Tn(d1 ; d2) = max(Cn(d1), Cn(d2))

Tn(d1 ‖ d2) = Cn(d1) + Cn(d2)

Two functions are introduced to evaluate the suitability of a particular timer
for a particular delay.

Definition 9. The timer match function Tm maps a delay d and timer (τt, l, u)
to a rational number:

Tm(d, (τt, l, u)) = min(max(l,

⌊
d

τt

⌋
), u)

The timer match function gives the closest delay to the ideal delay that is achiev-
able by the timer. The possibility of implementing a delay with multiple suc-
cessive timer invocations is not considered here, but it could be effected by a
‘splitting transformation’ on delay terms that breaks delays bigger than a given
constant up into sequences of smaller delays.

Definition 10. The timer delta function Tδ maps a delay d and a timer (τt, l, u)
to a positive rational number:

Tδ(d, (τt, l, u)) = | d − Tm(d, (τt, l, u)) |

The timer delta function measures the suitability of a timer for meeting a delay.
Given a delay term d and a multiset of timers T such that |T | ≥ Tn(d), the

clock assignment problem is to pair each delay in d with a timer from T such
that no single timer is assigned to both subterms of any ‖ operator. An optimal
assignment is one that minimizes Tdelta for each pairing.

The clock assignment problem may be solved automatically with standard
constraint solving techniques. But since it is likely that engineers would prefer to
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make some or all of the allocations manually, compilers should provide pragmas
for naming delays, and the platform statement should be extended so that timers
can be associated with the names. These pragmas would further constrain the
set of possible solutions.

In the definition of the transformation with allocated timers, it is assumed
that each delay d statement is identified by a distinct index i ∈ I, with which
it is annotated, delayi d.

Definition 11. Given an Esterel+delay program p where each delay statement
is indexed from a set I, and an allocation of timers represented by two func-
tions, timera from I to the name of a timer and valuea from I to an integer, the
timer-allocated transformation Ta(p) extends the carrier function to the delay
statement:

Tτ (delayi d) = emit start(timera(i))(valuea(i)) ; await finish(timera(i)) ,

where start gives the name of the integer-valued output signal that triggers a
timer, and finish gives the name of the pure input signal emitted by a timer
upon expiry.

An implementation must manage timers properly when corresponding await
statements are aborted. Two possibilities must be considered. First, a running
timer could be aborted and then, in the same reaction, a new countdown could be
requested. The interface layer should clear any latches for a timer after it has been
restarted. Second, multiple timer requests could be made and aborted within the
same reaction. Consider, for example, this fragment where two consecutive delay
statements have been transformed to emit/await pairs that share a timer:

weak abort
emit T1 ( 100 ) ; await T1

when S ;
emit T1 ( 8 0 ) ; await T1 .

When the signal S is present, T1 is emitted twice in a single reaction. Special
combine functions are required to ensure that only the last request is honoured.2
Such functions must normally be associative and commutative. An exception
can be made for allocations against a delay term because timers are only reused
for delays in sequence, provided that the compiler respects the sequencing of
microsteps.

Issues of abortion and timer management are addressed better by the tech-
nique of §3.4, where each delay e statement would be replaced by an exec state-
ment that starts an assigned timer and awaits its completion. Unfortunately, the
exec statement is not always supported by compilers.

The transformation with timers gives Esterel programs that suffer the inad-
equate interaction of suspension and delay described in §4.2. Compilers should
emit a warning for programs where delay statements are subject to suspension.
2 It is unimportant if it is also aborted instantaneously because then there would be no

statement awaiting the timeout, which would either be later reallocated or ignored.
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de l a y 3 ;
emit O1 ;
l oop

emit O2 ;
de l a y 2 ;
emit O3 ;
de l a y 5

end loop
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Fig. 7: Phase relationships in an Esterel+delay program

Event-driven with timing inputs. A platform statement of the form A ∈ A
where A is a set of timing input pairs (s, τs) specifies an event-driven imple-
mentation where each signal s occurs regularly with a period of τs relative to
system startup. Delays are implemented by counting these timing inputs using
the technique described in §3.2.

For a delay d, and a signal s with period τs, the statement await n s gives a
physical-time delay t that satisfies (n − 1) · τ < t ≤ n · τ .3 While there is again a
choice between lower and upper approximations of the delay, that is between the
values l and u given in equations 1 and 2, the n−1 multiplier in the lower bound
for t means that the upper approximation is the safer choice; since u = l + 1.

The lower approximation may, however, sometimes be more suitable than the
upper approximation, depending on the start time of a particular delay state-
ment relative to the period of a given timing input. It is sometimes possible to
statically determine the ‘phase relationships’ between delay statements, relative
to system startup. An example is presented in Figure 7. Each statement has
been labelled with its offset, in ideal time, from system startup. Multiple offsets
are given for statements within the loop. In this example, the delay statements
can be assigned a fixed period and offset. The first delay has no period, since
it is only executed once, and a zero offset. The second and third both have a
period of 7, the total delay of the loop body. Their offsets are determined by
delays before the loop is entered and also by those within the loop itself.

Phase relationships cannot be determined following pause statements or
within suspend statements when they depend on the presence or absence of
inputs whose timing characteristics are not known or not predictable. It would
be possible to provide extra information about inputs, like timing offsets for
instance, and to include timing inputs that do not occur regularly but may nev-
ertheless only occur at certain times. It would also be possible to propagate
known information about emitted signals to other parts of a program; for in-
stance, that a certain signal is always emitted with a certain period and offset.
It is not clear, however, how useful all of this would be in practice.

Determining phase relationships for the present, trap, and parallel constructs
is difficult in general. An analysis could insist that both branches in a present

3 The reason for the open lower bound of (n − 1) · τ is explained in §3.2.
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or parallel construct have the same final offset and period, and similarly for each
exit within a trap as well as for the trap body itself, but, again, it is not clear
whether this would be especially useful.

An optimal choice of timing input also depends on phase relationships. With-
out this information, the timing input with the smallest granularity is the best
choice because it provides the smallest range for the delay in physical time and
the most accurate accounting in the presence of suspension. The selection of a
timing input for a given delay may, moreover, affect the phase relationships and
hence influence the selection of timing inputs for other delays. It is not clear how
best to address this complication.

The most basic transformation always uses the finest timing input and takes
the upper approximation.

Definition 12. Given a platform statement A, the timing-input transforma-
tion TA(p) extends the carrier function to the delay statement:

Tτ (delay d) = await n s ,

where (s, ts) is chosen from A to minimise τs, and n =
⌈

d
τs

⌉
.

More work is required to determine the usefulness and practicability of more
sophisticated approaches.

4.3 Comparison to related work

The literature contains an abundance of proposals for modelling and implement-
ing real-time systems. In particular, there are several techniques for implement-
ing or otherwise discretizing timed automata, like, for instance, the AASAP (Al-
most As Soon As Possible) semantics [19]. The focus of this section is, however,
on the incorporation of continuous time elements into synchronous languages.
Five approaches are especially relevant: the TAXYS methodology, temporized
Argos (as described in §3.5), two extensions to the Quartz language [20,21], and
a proposal for validating the real-time constraints of Esterel programs [22].

The proposal for Esterel+delay is influenced by the TAXYS [3, 23] method-
ology for building real-time systems with Esterel, but there are important differ-
ences. In TAXYS, application logic is specified in logical time and implementa-
tions are modelled in continuous time. A satisfaction relation is defined to judge
the correctness of the latter against that of the former. It has been argued in this
chapter, however, that applications like the microprinter controller are specified
most naturally in terms of continuous time and only later transformed to dis-
crete controllers in logical time. The timing annotations of TAXYS express the
execution characteristics of a program on a specific platform, and also aspects of
its environment, whereas the delay statements of Esterel+delay express desired
application behaviours; platform limitations are stated separately. The platform
models of Esterel+delay are more abstract and less ambitious than those of
TAXYS, where an asynchronous platform with dynamic scheduling is adopted.
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The relationship between ideal and executable models is more rigorously defined
in TAXYS than it is in Esterel+delay.

The temporized version of Argos [15] has both discrete-time and continuous-
time semantics. The latter is derived from the former by treating discrete delays,
expressed in terms of a distinguished timing input, as delays in terms of a con-
tinuous clock. The continuous-time semantics is motivated by and exploited for
the automatic verification of quantitative properties. The direction of transla-
tion is reversed in Esterel+delay: continuous-time programs are translated into
discrete-time programs. The motivation is different too: Esterel+delay aims to
support both natural descriptions of certain types of programs and the adjust-
ments required for implementation platform limitations. This latter issue is not
addressed by temporized Argos.

Quartz is an Esterel-like language for which real-time verification [21] and
hybrid systems extensions [20] have been proposed.

Quartz programs can be translated into timed Kripke structures to verify
quantitative properties [21]. Delays are expressed by pause statements. An ab-
straction statement is added to ignore intermediate polling states; for instance,
await n is not expanded into a sequence of n pause statements, but rather treated
as a timed transition labelled with n. Quartz is intended for abstract designs
prior to the consideration of implementation details. The translation is based on
logical time since physical time. . . depends on the hardware chosen for the real-
ization [21, §1]. The proposal for Esterel+delay suggests a different possibility.

The hyperQuartz language [20] is an extension of Quartz for modelling hybrid
systems. Continuous execution intervals are expressed as lower and upper timing
bounds on pause statements. The length of an interval may depend on an ex-
pression over a global time parameter and other continuous signals. Pure signals
are piece-wise continuous over an interval, but hybrid variables evolve according
to differential equations. It is not clear how multiple constraints are resolved to
produce practical implementations. The timing limitations and characteristics
of implementations are not discussed. The focus is modelling not programming.

In another proposal [22] for validating the real-time behaviour of Esterel
programs,4 locations and blocks of statements are annotated with markers to
which timing constraints, that are stated separately, may then refer. For exam-
ple [22, §4.1], this program fragment contains one pair of annotations:

%# block_1_begin
Y := 100 ;
emit S1 (Y ) ;
Y := Y + 100 ;
X := 7 ;
emit S2 (Y)
%# block_1_end .

Timing constraints can then be stated relative to an external clock, for example:
t ime ( block_1_end ) − t ime ( block_1_begin ) ≤ 4 u n i t s .

4 The paper allows the exec statement but not the suspend statement.
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A program is analyzed by replacing the marker annotations with ‘ghost sig-
nals’, which are observable after compilation to an automaton. The proposed
design flow involves two steps. Logical correctness is first established under an
assumption of perfect synchrony, then the timing analysis establishes that the
constraints are met. There are several differences between this approach and that
of Esterel+delay. In Esterel+delay, application timing details are stated within
a program in physical time, that is as rational multiples of seconds, rather than
as separate annotations in uncertain, discrete units. Platform timing constraints
are given separately in Esterel+delay in terms of abstract execution models,
whereas in the approach with annotations the form of eventual implementations
is unclear, besides that they may be asynchronous and that their signal emis-
sions may take time; no mention is even made of the standard event-driven and
sample-driven execution schemes. The timing details of Esterel+delay programs
are stated in terms of physical time and later translated into discrete time for
implementation. In the approach with annotations, as with other approaches,
programs are designed in discrete-time and then validated in physical time.

Many other programming languages allow delays to be specified in terms of
physical time – whether by special keywords, or by calls to library functions
with either runtime or operating system support. It seems fair to state, however,
that in most cases the menaing of these statements is approximate or subject to
various special clauses and uncertainties. It is by no means certain how to derive
discrete controller implementations with precise behaviour, nor how to describe
or judge compromises between ideal behaviour and its approximations on specific
platforms. The translation of Esterel+delay to Esterel is distinguished in this
regard; it is possible in large part due to the synchronous and precise nature of
the latter language.

5 Unfinished work

The proposed delay statement and its interpretation relative to an abstract plat-
form seem to be the right solution for designing and specifying applications like
the microprinter controller. But, while the syntactic transformation addresses
many issues well and takes advantage of existing tools and technology, it is not
completely satisfactory. There are two issues: a lack of tool support and a certain
semantic shallowness.

The lack of tool support may be the easier of the two to remedy. There
seem to be no obstacles to implementing the transformations described in §4,
although the analysis of phase relationships does require further investigation.
Ideally, Esterel+delay would be supported by a simulation tool that combines
features of Xes and Esterel Studio with those of Uppaal; rather than requiring
repeated clicking through intervals, timing behaviours would be presented and
manipulated symbolically. Esterel+delay programs might also be embedded into
Simulink; delay statements would then be linked to the t parameter of a model.

The semantic issues are more difficult to address. Ideally, the discrete and
continuous elements of Esterel+delay could be better integrated with one an-
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other. But, in fact, there is no certainty that this is even possible. At least not
without sacrificing some of the essential character and balance of Esterel, or
without resorting to intricate formalisations.

A semantic treatment should address the comparison of Esterel+delay pro-
grams with the implementations generated from them. The basic idea is de-
picted in Figure 8. An Esterel+delay program can be transformed, given differ-
ent platform statements and parameters, into different Esterel programs, which
can themselves be compiled and executed. A refinement relation could be de-
fined between an original program and its final implementations; much like the
correctness property of TAXYS, although in this case, solely in continuous time.

Any such relation would have to allow some ‘fuzziness’ in the timing be-
haviour of implementations. The relative closeness of implementations to the
original specification could be used to evaluate alternative implementation plat-
forms. A maximum allowable divergence could be factored into verifications of
properties against the specification, the results of which would then also apply
to a range of implementations. The quantitative relations defined in some recent
approaches [24] may offer insights. An alternative approach would be to use a
precise relation, but to ‘blur’ the Esterel+delay specification before applying it.

The equivalence of Esterel programs would normally be based on comparisons
of discrete sequences. For Esterel+delay programs, the physical time between
inputs and outputs, or between one output and another, may be more significant
than the number of reactions between them – especially when nothing happens
in the intervening reactions or when they simply count down reactions or inputs.

6 Summary

It is argued in this paper that while Esterel is ideal for applications with complex
sequential behaviour, there is no completely adequate way to express behaviours
in physical time. The strengths and weaknesses of Esterel are well demonstrated
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by the microprinter controller example. The solution proposed is to allow the
direct expression of delays in terms of physical time, and then to transform
the stated delays according to the limitations of particular implementation plat-
forms. The proposal differs from several others by recommending the expression
of abstract designs in physical time with a later transformation to a discrete-
time program; similarly to the usual approach for designing and implementing
feedback controllers.

The proposal is simple and, it seems, practical, but further work is required
to develop a rigorous semantic model for Esterel+delay, and also to define rela-
tions between specifications and implementations that account for inaccuracies
introduced during translation to specific implementation platforms. Ideally, such
a semantic model would assist in the definition of static analysis techniques for
transforming Esterel+delay programs, and also provide a satisfactory explana-
tion for Esterel constructs that embody an element of duration, like suspend
and sustain. Ultimately, however, it is not clear whether it is possible to adapt a
discrete, synchronous language in this way without sacrificing simplicity, clarity,
and practicability.
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Lusterel Reactive Streams: How to Schedule
Asynchronous Data Flow into Synchronous

Control Flow

Michael Mendler and Joaquín Aguado
Universität Bamberg

Many software systems for user interfaces, web services, business processes,
games and hardware modelling, among others, are naturally composed of interac-
tive processes. Moreover, it may be important to decompose applications in order
to leverage the increased processing performance available on modern multi-core
execution architectures. In these areas, an application typically consists of a set of
connected sequential processes, where executions can be abstracted in two ways:
(i) The data-flow view interprets inter-process communications as unbounded
data streams changing over time and concentrates on functional relationships
between streams. (ii) The control-flow abstraction perceives sets of connections
at a particular time as interconnect states and analyses changes of such states.
In addition, processing is often organised into nested or interleaved computation
cycles (phases) that can be associated with clocks running under the Synchrony
Hypothesis. The synchronous paradigm for programming reactive systems gave
rise to languages such as Lustre and Signal for data flow or Esterel which is
dedicated to control flow. These languages, which have been very successful for
embedded systems, so far have been developed mainly separately and around
domain-specific tools (e.g., SCADE, Esterel Studio, SpecTRM, Simulink, State-
flow, Rhapsody) for use in control systems, automotive or avionics applications.

Yet, there is no reason why this state-of-the-art technology should be re-
stricted to embedded system domains. The Lusterel Project tries to demonstrate
that using a functional language like Haskell, it is possible to take advantage of
the synchronous metaphors for a wider range of market-relevant applications.
Lusterel is a Haskell library under development which provides a shallow embed-
ding of Lustre and Esterel-style programming combinators. It coherently unifies
both views for interactive applications without blurring the distinction between
data and control. This contrasts with the traditional view which takes data flow
as primary and flattens control in terms of explicit absence values introduced
into the data streams.

In this talk we show how standard Kahn-style data flow can be coded in
Haskell so that it can be scheduled, and thus smoothly combined, with syn-
chronous control flow. Our co-inductive coding supports a variety of schedul-
ing schemes, such as Esterel’s 0-synchronous execution, bounded-buffer synchro-
nisation and multi-rate execution. Currently, the library only depends on the
standard lazy lambda-calculus which provides sufficient operational structure to
express single-threaded control flow. In the future we hope to extend this work
to concurrent Haskell for multi-threaded execution.
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