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Abstract

While the components of distributed hardware systems can reasonably
be assumed to be synchronised, this is not the case for the components
of distributed software systems. This has a strong impact on the class
of synthesis problems for which decision procedures exist: While there
is a rich family of distributed systems, including pipelines, chains, and
rings, for which the realisability and synthesis problem is decidable if the
system components are composed synchronously, it is well known that
the asynchronous synthesis problem is only decidable for monolithic sys-
tems. From a theoretical point of view, this renders distributed software
synthesis undecidable, and one is tempted to conclude that synthesis of
asynchronous systems, and hence of software, is much harder than the
synthesis of synchronous systems. Taking a more practical approach, how-
ever, reveals that bounded synthesis, one of the most promising synthesis
techniques, can easily be extended to asynchronous systems. This merits
the hope that the promising results from bounded synthesis will carry
over to asynchronous systems as well.

1 Synthesis

In synthesis, we try to automatically construct a system from its formal specifi-
cation [5, 22, 7, 15, 18]. If synthesis fails, the unrealisability of the specification
demonstrates an error in the specification, or at least the incompatibility of a
partially completed design with its specification [9]. In software synthesis, we
would assume the system components to be composed asynchronously, a prob-
lem that has enjoyed far less attention than the problem of synthesising systems
of synchronised components.

Church’s solvability problem [5] can be identified as the origin of distributed
(synchronous/hardware) synthesis. In 1962, Church [5] raised the question
whether we can, for a given a relation R C (27)¥ x (29)% in the monadic second
order logic of one successor (S1S), decide if there is a function p : (2)~ — (29)*
such that (7, p(7)) € R satisfies the relation for all infinite sequences 7 € (27)~.

In his solvability problem, Church distinguishes the input variables of a
module, which are not under its control, from its output. He thus introduces
the notion of a predefined interface between a module and its environment.
Church’s solvability problem triggered several deep results, including Biichi and
Landweber’s studies on finite games of infinite duration [4, 3] and Rabin’s works
on finite automata over infinite structures [21, 22].
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While inspired by Church’s problem, these automata and game theoreti-
cal results have found their application in model checking, the simpler problem
of checking if an implementation is a model of its specification. The success of
model checking has been preceded by a significant simplification of the specifica-
tion languages from monadic second order logic to temporal logics like LTL [17],
CTL [7], or, more recently, ATL [1]. Its success has been driven by the devel-
opment of several tools like SPIN [11], MOCHA [2], and NuSMV [6], which can
automatically analyse medium to large sized verification problems.

A long term research goal is the development of comparable support tools
for the construction of reactive systems. Turning towards the harder task of
synthesis, we will face the problem of accounting for the incomplete informa-
tion [24, 12, 25] that the local interfaces of components reveal from the global
system state. In model checking, incomplete information has no effect what-
soever, as it does not matter if a module does not react on an event because
it does not see it (and hence cannot react), or because it does not choose to.
In synthesis, however, the restricted access to information must be taken into
account by the synthesis algorithm.

The generalisation of Church’s solvability problem to a distributed setting [20,
14, 13, 9] is equivalent to solving a multi player zero sum game [27]. Pnueli and
Rosner [20] showed that the problems occurring in distributed synthesis resem-
ble those known from peek games with incomplete information [16, 23], and thus
give Turing power even to simple specification languages such as LTL [20] or
CTL [9]. However, important classes of systems, such as pipelines [20], chains,
and rings [13], account for a hierarchy in the informedness of processes. For
such systems, synthesis is decidable [9, 20, 13], albeit with high complexity.

For systems that are composed asynchronously, any reasonable scheduling
mechanism will destroy such an order. Consequently, all architectures but mono-
lithic ones come with an undecidable synthesis problem [25].

2 Bounded Synthesis

The high complexity of distributed synthesis has lead to an argument against the
feasibility of distributed synthesis, in particular compared to model checking.
However, we argue with Kupferman and Vardi [13] that this comparison is
misleading, because the high complexity of distributed synthesis is caused by
equally high lower bounds on the maximal size of a minimal model, or, outside
of the decidable fragment, by the lack of such lower bounds. Hence, when
comparing the input complexity, the size of some (not necessarily minimal)
model has already entered in case of model checking, while synthesis algorithms
are supposed to take the blame for the incurred blow-up.

As a consequence of this observation, Schewe and Finkbeiner developed the
concept of bounded synthesis [26], where the search space is restricted to systems
whose size does not exceed a predefined bound. This results in a shift from input
complexity to output complexity, and levels the playing field for the synthesis
vs. model checking comparison. This is particularly interesting for distributed
synthesis: Once we have fixed a bound on the size of the systems we are inter-
ested in, we can reduce the synthesis problem to a simple Satisfiability Modulo
Theories (SMT) problem [10]. Bounded synthesis has later been reinvented by
Filiot et al. [8], who found further evidence of its practical applicability.



3 Asynchronous Bounded Synthesis

The theoretical argument against the feasibility of asynchronous synthesis is
even stronger than the argument against synchronous synthesis, but, fortu-
nately, the counter-argument remains valid: Using the specification only as
input for the synthesis problem and the specification plus the—usually much
larger—implementation as input for model checking naturally leads to an unfair
advantage of model checking over synthesis.

Bounded synthesis, however, seems to be a silver bullet: The application of
SMT techniques is based on guessing a minimal implementation and its com-
position; in order to extend these techniques to software synthesis, it suffices
to change the composition rules from those for synchronous composition (as
currently used in [26, 10]) to those for asynchronous compositions, for example
by using the composition rules described in [25].

This way, we inherit the advantage of bounded synthesis: We shift from
an infeasible input complexity to a low complexity in the size of the minimal
system, levelling the playing field between model checking and synthesis again.
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