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The following is a list of the problems presented on Monday, December 14, 2009 at the open-
problem session of the Seminar on Parameterized Complexity and Approximation Algorithms, held
at Schloss Dagstuhl in Wadern, Germany.

Reduction without Sparsification
Mihai Pǎtraşcu
AT&T Research
mip@alum.mit.edu

The Exponential Time Hypothesis (ETH) states that 3SAT cannot be solved in 2o(n) time. We
have strong relations between ETH and fixed-parameter tractability. For instance, assuming
ETH, a k-clique cannot be found in no(k) time, and k-SUM cannot be solved in no(k) time.
(The k-SUM problem is this: given n numbers, do some k of them sum to zero?)

We can also make a stronger assumption: CNF SAT cannot be solved in 2αn time, for constant
α < 1. This assumption gives us a handle on the constant in the exponent, so that we can
hope for tight powers for other problems. Can we prove that k-clique requires Ω(n2k/3) time
under this assumption? (This would be a tight bound if fast matrix multiplication takes
quadratic time.) Can we prove that k-SUM requires Ω(nbk/2c) time under the assumption?
(Again, this would be tight.)

The main issue is to avoid the sparsification lemma, which is crucially needed in the current
reductions.

A different starting assumption is the following: if the complexity of k-SAT is 2skn, then sk →
1 as k → ∞. This assumption is not known to be equivalent to the CNF SAT assumption,
but an equivalence is conceivable (and another open problem).

Vertex Cover versus Maximum Degree
Gregory Gutin
Royal Holloway U. London
gutin@cs.rhul.ac.uk

Given a graph G with m edges and maximum degree ∆(G), what is the parameterized com-
plexity of deciding whether G has a vertex cover of size at most m/∆(G) + k, where k is
the parameter? If ∆(G) ≤ B = O(1), then the problem is fixed-parameter tractable, even
parameterized by both k and B, as there is an algorithm of running time 2BknO(1). See
[GKLM09], which also poses this problem.
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Henning Fernau asks the following follow-up: what is the status of approximating the cor-
responding minimization problem, i.e., minimize k such that there is a vertex cover of size
m/∆(G) + k in the given graph G?

References

[GKLM09] Gregory Gutin, Eun Jung Kim, Michael Lampis, and Valia Mitsou. Vertex cover
problem parameterized above and below tight bounds. arXiv:0907.4488, August
2009. http://arXiv.org/abs/0907.4488

Planar Directed k-path
Fedor Fomin
U. Bergen
fomin@ii.uib.no

Does the planar directed k-path problem have a subexponential fixed-parameter algorithm?
More precisely, given an n-vertex planar directed graph G and an integer k, is it possible to
find in time 2o(k)nO(1) a directed path of length at least k?

For undirected planar graphs, the problem is solvable in subexponential time 2O(
√

k)nO(1)

[DPBF05]. For directed planar graphs, for every ε > 0, the problem is solvable in time
(1 + ε)knO(f(ε) [DFLRS10].

References

[DFLRS10] Frederic Dorn, Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket
Saurabh. Beyond bidimensionality: parameterized subexponential algorithms on
directed graphs. To appear in STACS 2010.

[DPBF05] Frederic Dorn, Eelko Penninkx, Hans L. Bodlaender, and Fedor V. Fomin. Effi-
cient exact algorithms on planar graphs: exploiting sphere cut branch decompo-
sitions. In ESA 2005, pages 95–106.

Effectivization Generalizes Approximation
Michael Fellows
U. Newcastle
Michael.Fellows@newcastle.edu.au

Suppose for two parameters π and π′ of graphs, a true mathematical implication holds:

π(G) ≤ k =⇒ π′(G) ≤ k′

where k′ is some function of k. It is in general interesting to look for algorithmic effectivizations
of such mathematical knowledge, with respect to complexity regimes of interest.

For example, if the length of a longest cycle in G is at most k, then the treewidth of G is at
most k′ = k. Because both LONG CYCLE and TREEWIDTH are NP-hard, it is interesting
to investigate how well this implication can be made algorithmic in polynomial time. In fact,
it can be completely effectivized in polynomial time: on input (G, k), we can either determine
that G has cycle of length greater than k, or determine that the treewidth of G is at most k.
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(Even better, we can produce either a long cycle or a bounded-width tree decomposition.)
This is a classic example of a win/win algorithm and such algorithms have many uses in fixed-
parameter algorithm design as subroutines. For example, for the LONG CYCLE problem, we
can in polynomial time either know the answer, or in polynomial time “kernelize” to bounded
treewidth (a strategy that has been termed relative kernelization).

For another example, it is a true implication that, if the bandwidth of G is at most k, then
the pathwidth of G is at most k. In this case, we know only an approximate polynomial-time
effectivization: in linear time we can either determine that the bandwidth of G is greater
than k, or determine that the pathwidth of G is at most 2k+1 [FHRS09].

Can we do better? Is there a polynomial-time effectivization where the approximation func-
tion is polynomial in k? Is there some way to prove lower bounds for approximate effectiviza-
tion questions of this sort?

These issues can be interesting even for trivial implications. For example, it is certainly true
that, if the minimum domination number of G is at most k, then the minimum domination
number of G is at most k (!). Because DOMINATING SET is W [2]-complete, it is interesting
to consider FPT effectivizations of this trivial implication, and it is of course a major open
problem whether there is an FPT approximate effectivization of this trivial implication: the
issue of FPT approximation for DOMINATING SET.

Thus, in some sense, FPT approximate effectivization of mathematical implications between
W-hard (when “standing alone”) structural parameters, is an issue that generalizes the issue
of FPT approximation of W-hard parameterized problems—about which little is so far known.
Studying the complexity of such effectivization problems may shed some light on this area.

References

[FHRS09] Michael Fellows, Juraj Hromkovič, Frances Rosamond, and Monika Steinov. Fixed-
parameter tractability, relative kernelization and the effectivization of structural
connections. In Proceedings of Computability in Europe 2009, Heidelberg, Ger-
many, July 2009.

Subexponential Steiner Tree
Siamak Tazari
Humboldt U. Berlin
siamak.tazari@googlemail.com

Does k-Steiner tree admit a subexponential fixed-parameter algorithm, say for planar graphs?
Recall the k-Steiner tree problem: given an unweighted graph G and a set S ⊆ V (G) of
terminals, is there a tree in G consisting of k nodes (including the terminals) that contains
all terminals in S? We have obtained an algorithm with running time inf0<ε≤1 O((1 + ε)k +
nO(1/ε)) on H-minor-free graphs [MT09]. But is there a subexponential algorithm, with
running time 2o(k)nO(1), on H-minor-free graphs or even planar graphs? We have shown that
this is possible if and only if the problem admits a subexponential kernel [MT09].
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Compatible Coloring
Dániel Marx
Tel Aviv University
dmarx@cs.bme.hu

[Reposing of a classic problem.]

In the compatible coloring problem [HN08], we are given a complete graph with each edge
assigned one of three colors, and we want to assign one of three colors to each vertex such that
no edge has the same color as both of its endpoints. (More formally, if c : V ∪ E → {1, 2, 3}
denotes the union of the input edge coloring and the output vertex coloring, then c(uv) = x
implies either c(u) 6= x or c(v) 6= x.) Does this problem have a polynomial-time algorithm?

This is a well-known problem in constraint satisfaction, but we believe that fixed-parameter
tools (either upper or lower bounds) may be the missing link in finding a solution. The
best known algorithm runs in nO(log n/ log log n) time [FHKS05], and its approach suggests that
there may be an underlying parameterized problem of relevance. In particular, it seems
somewhat related to 2SAT Deletion (removing the fewest clauses to make a 2SAT formula
satisfiable), which is fixed-parameter tractable [RS08]. Can we use fixed-parameter tools to
solve compatible coloring in polynomial time, or to prove an nΩ(log n/ log log n) lower bound
assuming ETH?

References

[FHKS05] Tomás Feder, Pavol Hell, Daniel Král, and Jǐŕı Sgall. Two algorithms for general
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Approximating Star Discrepancy
Magnus Wahlström
MPI für Informatik
wahl@mpi-inf.mpg.de

Given a set P of n points in the unit d-dimensional hypercube [0, 1]d, we want to find a box
with one corner at the origin having either high volume and few points or low volume and
many points. More precisely, the star discrepancy of P is d∗(P ) = maxB |V ol(B)−|B∩P |/|B|,
where the max is taken over boxes B = [0, x1]× [0, x2]× · · · × [0, xd], 0 ≤ xi ≤ 1.
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The best known methods for computing the star discrepancy take nO(d) time, and if P is
a good point set (i.e., its star discrepancy is near-optimal), then even obtaining a constant-
factor approximation takes nO(d) time with known methods. It is known that the problem
is NP-hard, and we have proved that it is W[1]-hard when parameterized by d [work under
submission]. But little is known about approximability. Is it possible to obtain a constant-
factor approximation (or better), either classically or with a fixed-parameter algorithm?
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Speeding Up Fixed-Parameter Approximation
Henning Fernau
U. Trier
fernau@uni-trier.de

For e.g. Vertex Cover, we know that there is no 2o(k) exact algorithm assuming the Exponential
Time Hypothesis. With approximation factor α (smaller than what we could do in polynomial
time), can you show that there is still no 2o(k) α-approximation algorithm? For Vertex Cover,
I don’t know, and this question applies to many other problems too.

Also, a methodology question: For fixed-parameter approximation, I know how to use the
classic FPT techniques of reduction rules and search trees to speed up over exact fixed-
parameter algorithms. But I don’t know how to get speedup using the classic technique of
iterative compression. Can this help? In the approximation world, bootstrapping is similar
to iterative compression; perhaps that is useful?

Counting Lattice Points
Michael Fellows
U. Newcastle
Michael.Fellows@newcastle.edu.au

[Open problem by Nadia Betzler.]

Consider integer linear programming with k variables and n constraints but no objective
function, parameterized by k. It is famously fixed-parameter tractable to determine whether
the linear program has any solution. If the number of solutions is finite (the polytope is
bounded), is it fixed-parameter tractable to count (or approximately count) the number of
solutions? This is a parameterized version of the classic problem of counting lattice points in
a bounded polytope.

Some recent papers by Alexander Barvinov may be relevant.
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Making Graphs Distance-Balanced
Sergio Cabello
U. Ljubljana
sergio.cabello@fmf.uni-lj.si

What is the parameterized complexity of finding the minimum number of edges to add to
a graph to make it “distance-balanced”? Informally, a graph is distance-balanced if every
vertex has the same average distance to all other vertices. Formally, for each vertex v of
an unweighted undirected graph G, let σ(v) =

∑
u6=v dG(u, v); then the graph G is distance-

balanced if σ(u) = σ(v) for all vertices u, v.

Together with Primož Lukšič, we can prove that this problem is NP-hard. Is it W[1]-hard
when parameterized by the number of edges you add? Similar problems could also be con-
sidered for edge removal.

Subset Feedback Vertex Set
Saket Saurabh
U. Bergen
saket.saurabh@ii.uib.no

What is the parameterized complexity of the following problem?

Subset Feedback Vertex Set
Input: Graph G = (V,E), S ⊆ V , and a positive integer k.
Parameter: k
Question: Does there exist F ⊆ V , |F | ≤ k, such that every cycle having at least one vertex
in S is also hit by F?

Is this problem fixed-parameter tractable or W-hard? We know that the problem is fixed-
parameter tractable on planar graphs.

Also, MohammadTaghi Hajiaghayi asks the following: are there subexponential fixed-parameter
algorithms for Subset Feedback Vertex Set on planar graphs?

Approximating Disjoint Paths
Dimitrios Thilikos
National and Kapodistrian U. Athens
sedthilk@math.uoa.gr

Recall the Disjoint Path Problem: given a graph with k sources s1, s2, . . . , sk and k targets
t1, t2, . . . , tk, find k disjoint paths p1, p2, . . . , pk where pi is from si to ti. This problem is well-
known to be fixed-parameter tractable, with an algorithm running in time O(f(k)n3). The
algorithm is relatively simple, but the proof of its correctness is based on the entire Graph
Minors Project which makes the function f immense.

Can we improve f? Kawarabayashi et al. claim they can improve the proof of correctness
so that f becomes something like i-ly exponential on k where i is relatively small. (A bulk
estimation would say i ≤ 9.) Can we obtain an O(2kn) algorithm, ignoring Graph Minors?
This would be impressive, but perhaps hard to believe.

But what about fixed-parameter approximation? That is, can we devise a fixed-parameter
algorithm that runs in 2O(k) · n time and outputs either that “no k paths exists” or returns
≥ k/2 of the paths in question. We can show that this problem has no polynomial-size kernel,
based on the results of [BDFH09].
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Subexponentiality Gap
Xiuzhen Huang
Arkansas State U.
huang.xiuzhen@cs.astate.edu

For Planar Vertex Cover, Planar Independent Set, Planar Dominating Set, etc., Baker [Bak94]
obtained efficient PTASs (EPTASs) with running time 2O(1/ε)nO(1). We [CHKX04] proved
a lower bound of 2o(

√
1/ε)nO(1) assuming the Exponential Time Hypothesis. Marx [Mar07]

proved a lower bound of 2(1/ε)1−δ
nO(1) assuming the Exponential Time Hypothesis.

Can we close the remaining small gap between the upper bound and the lower bound of
EPTASs for these problems on planar graphs?
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Fixed-Parameter Approximation Reduction
Xiuzhen Huang
Arkansas State U.
huang.xiuzhen@cs.astate.edu

Our framework for fixed-parameter approximation (FPA) [CH06] uses L-reduction to prove
the positive results for MAX SNP problems, namely, that all problems in the class MAX SNP
admit fixed-parameter approximation schemes in time 2O((1−ε/O(1))k)nO(1) for any ε > 0.

It would be very nice to formalize a standard/uniform notion of FPA reduction to study the
negative and positive results under the framework of fixed-parameter approximation.
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Weighted FPT
MohammadTaghi Hajiaghayi
AT&T Research
hajiagha@mit.edu

Most fixed-parameter algorithms for parameterized problems, like k-vertex cover or k-dominating
set or k-Steiner tree, are inherently about unweighted graphs. Of course, we could add integer
weights to the problem (which, with suitable scaling, can approximate any real weights), but
this can lead to a huge increase in the parameter. By contrast, many algorithms such as
those based on linear programs (and approximation algorithms based on rounding such linear
programs) very naturally extend to arbitrary real weights with little to no increase in running
time.

Can we devise fixed-parameter algorithms for weighted graphs that have less severe depen-
dence on weights? For example, can we obtain polynomial instead of exponential dependence
on the maximum weight divided by the minimum weight (assuming integer weights, say)?
Or what are the “right” parameters for such problems? Is there a nice framework for de-
signing fixed-parameter algorithms on weighted graphs? It may also be natural to allow a
little approximation in the goal, so that we can round the weights to values more suitable for
fixed-parameter algorithms.

Metric Dimension
Daniel Lokshtanov
U. Bergen
daniello@ii.uib.no

What is the parameterized complexity of metric dimension: given a graph G and a parame-
ter k, is there a set S, |S| ≤ k, such that any two vertices u, v /∈ S have a vertex s ∈ S with
d(u, s) 6= d(v, s)? In other words, we want a set S whose distances to a vertex v /∈ S uniquely
define v, providing a kind of coordinate system. For example, a path graph has metric dimen-
sion 1 (pick S to be the leftmost vertex); the n×n grid graph has metric dimension 2 (pick S
to be the two left corners); and more generally a d-dimensional grid has metric dimension d.

This problem is known to be NP-hard [GJ79]. Is it fixed-parameter tractable? We conjecture
that it is W[1]-hard.

Dimitrios Thilikos points out that there is a subgraph characterization of having metric
dimension ≤ k [HMPSW07].
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Better Parameters for Cluster Editing
Frank Dehne
Carleton U.
dehne@scs.carleton.ca

[Joint open problem with Mike Langston.]

Recall the cluster editing problem: given a graph, how many edge edits (insertions or dele-
tions) do you need to make it into a disjoint union of cliques? This problem is well-studied in
terms of fixed-parameter tractability: it has a linear kernel and a 2.27k tree-search algorithm,
where k is the number of edits. But we argue that this parameter is not so useful in at least
one practical setting, because it is essentially quadratic in clique sizes. Can we define a new
parameter that counts vertices instead of edges, and obtain similarly efficient fixed-parameter
algorithms for this parameter?

The practical setting we consider is cleaning proteome data. A proteome is the graph of
all protein–protein interactions in a system of proteins. It is big, and difficult to compute:
determining the presence or absence of one edge can take weeks and a publication. Yeast has
thousands of proteins, while humans have tens of thousands of proteins, so this is a big effort.

Unfortunately the available edge-presence data is noisy, with many false positives and false
negatives. How can we clean up this data? In our experiments, clustering editing is a good
predictor for protein interaction, so this seems a useful formulation.

The bad news is that the existing cluster-editing fixed-parameter algorithm is too slow in
practice, much much slower than say Vertex Cover. We can solve instances up to aroud 60
vertices, which is much too small for the application. The trouble seems to be in the choice
of parameter k, which is essentially like square of clique size, making the linear-in-k kernel
into effectively a quadratic kernel.

One possible alternate parameter k′ is the number of vertex edits required to transform the
graph into a disjoint union of cliques. Note that we still want to solve the original problem—
minimizing the number of edge edits—but hope to solve it in time f(k′)nO(1) for such an
alternate parameter k′ that involves vertices instead of edges.

Another practical issue is that programs tend to be more efficient for parameters for which
the problem is monotone, that is, increasing the parameter preserves YES instances. This
property is not true for the number k of edge edits: requiring more edits may prevent a
previous cliquification. This fact makes it difficult to search for the best value of k, because
in practice YES instances (where the search-tree algorithm can terminate as soon as it finds
an answer) run much faster than NO instance (which must explore the entire search tree). If
we could obtain the aforementioned property for a parameter k′, we could use linear search
from large k′ to small k′, and thus solve only one NO instance. (In theory, of course, we
would use binary search, but in practice avoiding NO instances is more important, making
such a linear search the method of choice.)

Periodic Scheduling
Henning Fernau
U. Trier
fernau@uni-trier.de

I want to point to an area that has been neglected so far from the viewpoint of parameterized
complexity. It offers many problem variants, three of which are discussed below. They
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always involve some kind of numberwork which seem to make them hard to place within the
W hierarchy.

The basic setup consists of a set C of n customers, where customer i has positive integer period
pi of service desire, say, counted in whole days. For example, imagine you are supposed to
deliver milk to customer i every pith day. But you have only one car and you can make
at most one delivery per day. Or more realistically, you need to service real-time jobs with
various periods (e.g., to update various output devices like display and sound, and to poll
various input devices like keyboards or sensors), but you have only one processor.

Version 1: Maximize the number of happy customers. More formally, does there exist a
subset C ′ ⊆ C of customers, |C ′| ≥ k, such that C ′ can be served, i.e., there are starting days
si for each customer i such that si + xpi 6= sj + ypj for all customers i, j ∈ C ′, i 6= j?

Looking at proofs in the community, it is effectively known that this problem is W[1]-hard.
But is it in W[1]?

Version 2: To see how the numberwork comes into play, notice that if the starting days
(si’s) are given, then this problem can be shown to be W[1]-complete.

Version 3: How many cars (or processors) do you need to make all customers happy? Here
the parameter k′ is the number of cars.

Looking at proofs in the community, it is effectively known that this problem is W[1]-hard,
also when start days (si’s) are given. But is it in W[1]? This membership is open even if the
start days (si’s) are given.

As far as I know, these questions have been investigated from the viewpoint of approximation
algorithms, but none of this work leads to APX-membership results. The reductions for NP-
completeness indicate hardness results that might be stated somewhere. (I am not from this
community but rather stumbled across these problems.)

Because this kind of problem surely has some practical motivation, it would be interesting to
find nice FPT approximations, e.g., to validate the heuristics that are in current use.

There was also some brief discussion about the current biggest open problems of the form “is
this problem fixed-parameter tractable?” The two big targets that came to many people’s minds
were Biclique and Edge Multicut.
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