
Reliability of Service-Based and Agent-Based Systems
Prof. Michael N. Huhns

University of South Carolina
huhns@sc.edu

The use of services in static SOA-based systems has been successful in many

application domains. However, the use of dynamically discovered, configured, deployed,
engaged, and maintained services has not been successful. The problem is that current
service standards, which are necessary for widespread usage of services, are unable to
describe anything other than the simple syntax and formatting of service invocations;
they are thus insufficient for characterizing the rich usage and interactions required
throughout the lifetimes of service-based applications. Moreover, service-based
architectures will need to become more flexible and accommodate peer-to-peer
interactions, as well as client-server interactions.

The Web has been successful largely because its founding principles and protocols
are simple and minimal. Also, when uncertainties arise, they are overcome by relatively
simple indexing, ranking, and redundancy. None of these techniques has been exploitable
for services. In addition, the simplicity of services applies only to their structure, and not
to their function and behavior, which have mostly been ignored in service engineering.

Agents exacerbate the problems, while--surprisingly--also providing the only
reasonable solutions to them. The autonomy of agent-based services makes them less
predictable, but also enables them to self recover and to avoid deadlocks and livelocks,
thereby making them more reliable. Their ability to learn can increase their robustness
by being able to adapt to changing interaction environments, but also can increase their
unpredictability. Their abilities to negotiate and reconcile semantics can enable them to
reestablish connections and relationships among services and ameliorate uncertain
execution environments. The peer-to-peer interactions of agents can improve the
efficiency of agent-based services, particularly when they are deployed in clouds.
Finally, agents can exploit redundancy.

The objective of service-oriented computing (SOC) is to construct software
applications out of appropriate services available and executing in place anywhere across
the Web. The applications, because they are naturally distributed, could be for any of the
domains listed above. To achieve this objective at all requires that techniques for
discovering and engaging services be developed. Doing this well requires that additional
techniques be developed for ensuring desired quality of service (QoS) metrics.

Google for Services. Imagine that there are a large number of Web services, each
described by a WSDL (Web Service Description Language) file. One might think that
these could be indexed in the same way that Web pages are, so that search algorithms
could help a developer find the services needed for a service-oriented computing
application. That is, services could be clustered by applying text-mining techniques to
WSDL files. This works well for Web searches, because keywords describe the partial
semantics of Web pages and the PageRank algorithm helps in determining the most
appropriate pages. However, this would not be successful for services, because WSDL
files describe the inputs and outputs of a service, and provide only minimal information
about the semantics of their function and behavior. Moreover, there is no equivalent to
the PageRank algorithm for services, because services do not have references or pointers

Dagstuhl Seminar Proceedings 10021
Service-Oriented Architecture and (Multi-)Agent SystemsTechnology
http://drops.dagstuhl.de/opus/volltexte/2010/2554

to each other.
All is not lost, however, because services could still be clustered into categories and

middle agents could then manage and use the clusters to help locate possible services to
satisfy requests from users and developers. A procedure such as unit testing could then
be used as a behavioral query tool to test candidate services and select ones that have the
desired behavior. A negotiation between the service requestor and providers could then
ensue to establish an agreed upon QoS and formalize a contract. The requestors and
providers would commit to honor the resultant contracts. These are agent abilities.

