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Abstract

Stream Data processing has become a popular topic in database research
addressing the challenge of efficiently answering queries over continuous data
streams. Meanwhile data streams have become more and more important as a
basis for higher level decision processes that require complex reasoning over data
streams and rich background knowledge. In previous work the foundation for com-
plex reasoning over streams and background knowledge was laid by introducing
technologies for wrapping and querying streams in the RDF data format and by
supporting simple forms of reasoning in terms of incremental view maintenance.
In this paper, we discuss how this existing technologies should be extended toward
richer forms of reasoning using Sensor Networks as a motivating example.

1 Motivation

The use of the Internet as a major source of information has created new challenges
for computer science and has let to significant innovation in areas such as databases,
information retrieval and semantic technologies. Currently, we are facing another ma-
jor change in the way information in provided. Traditionally information used to be
mostly static with changes being the exception rather than the rule. Nowadays, more
and more dynamic information, which used to be hidden inside dedicated systems, is
getting available to decision makers.

For instance, oil operation engineers base their decision processes on real time data
acquired from sensors on oil rigs, on the sea surface and on the seabed. A typical oil
production platform is equipped with about 400.000 sensors for measuring environ-
mental and technical parameters. Some of the questions they faces are:

e Given an alarm on a well in progress to drown, how long time do I have given
the historical behavior of that well?
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e Given this brand of turbine, what is the expected time to failure when the barring
starts to vibrate as now detected?

e How do I detect weather events from observation data?

e Which sensors have observed a Blizzard within a 100 mile radius of a given
location.

Answering these questions requires to process an (almost) “continuous” flow of
information — with the recent information being more relevant as it describes the current
state of a dynamic system — against a rich background knowledge.

Continuous processing of these flows of information (namely data streams) has
been largely investigated in the database community [3]. Specialized Data Stream
Management Systems (DSMS) are available on the market and features of DSMS are
appearing also in major database products, such as Oracle and DB2.

On the contrary, continuous processing of data streams fogether with rich back-
ground knowledge requires specialized reasoners, but work on semantic technologies is
still focusing on rather static data. In existing work on logical reasoning, the knowledge
base is always assumed to be static (or slowly evolving). There is work on changing
beliefs on the basis of new observations [19], but the solutions proposed in this area are
far too complex to be applicable to gigantic data streams of the kind illustrated in the
oil production example above.

As argued in [16], we strongly believe that there is a need to close this gap between
existing solutions for belief update and the actual needs of supporting decision process
based on data streams and rich background knowledge. We named this little explored,
yet high-impact research area Stream Reasoning.

Definition 1 Stream Reasoning: logical reasoning in real time on gigantic and in-
evitably noisy data streams in order to support the decision process of extremely large
numbers of concurrent users.

We have been working on stream reasoning since 2008. In previous work, we
laid the foundation for complex reasoning over streams and background knowledge by
introducing technologies for wrapping and querying streams in the RDF data format
[15, 9, 6] and by supporting simple forms of reasoning in terms of incremental main-
tenance of materializations of ontological entailments [8]. We wrap up those works in
Section 2. In Section 3, we discuss how these existing technologies should be extended
toward richer forms of reasoning. In particular, we dedicate Section 4 to describe an ar-
chitecture that supports these richer forms of stream reasoning. We further discuss the
relation between our ideas on stream reasoning and the semantic sensor network ini-
tiative! in Section 5. Finally in Section 6, we close with a summary of open problems
and future works.

Thttp://www.w3.0rg/2005/Incubator/ssn/



O 001NN B W -

2 Previous Work

In order to bridge the identified gap, we have been working since 2008 on Continuous-
SPARQL (or shortly C-SPARQL) [4, 9], an extension to SPARQL[24] for continuous
querying over streams of RDF and background knowledge represented as RDF graphs.

Listing 1 shows an example of C-SPARQL query that detects a blizzard: a severe
storm condition lasting for 3 hours or more characterized by low temperatures, strong
winds, and heavy snow.

REGISTER STREAM BlizzardDetection COMPUTE EVERY 10m AS
PREFIX grs: <http://www.georss.org/georss/>
PREFIX so: <http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#>
PREFIX w: <http://knoesis.wright.edu/ssw/ont/weather.owl#>
CONSTRUCT {?station so:generatedObservation [ rdf:type w:blizard ] }
FROM <http://streamreasoning.org/weatherStations.rdf>
FROM STREAM <http://streamreasoning.org/weatherObservation.rdf>
[RANGE 3h STEP 10m]
WHERE {
?station grs:point "66.348085,10.180662";
so:generatedObservation 20l, 202, 2?03
?0l rdf:type w:TemperatureObservation ;
so:observedProperty w:\_AirTemperature ;
so:result [ so:value ?temperature ]
?02 rdf:type w:WindObservation ;
so:observedProperty w:\_WindSpeed ;
so:result [ so:value ?speed
?03 rdf:type w:SnowfallObservation .
}

AGGREGATE { (?averageTemperature, AVG (?temperature), ?station) }
FILTER (?averageTemperature < "0.0"""xsd:float)
AGGREGATE { (?minSpeedWind, MIN(?speed), ?station) }

FILTER (?minSpeedWind > "40.0"""xsd:float)

Listing 1: Example of C-SPARQL which detects a blizzard

At line 1, the recrsTEr clause is use to tell the C-SPARQL engine that it should
register a continuous query, i.e. a query that will continuously compute answers to the
query. In particular, we are registering a query that generates as output an RDF stream
(i.e., we use recIsTER sTREAM). The compute EveERy clause states the frequency of every
new computation, in the example every 10 minutes. At line 6, the standard SPARQL
clause rrom is used to load in the default graph the location of all weather stations. At
line 7, the clause rrom streEaM defines the RDF stream of weather observations. We
supposed that the observations are encoded in RDF using the Semantic Sensor Web
ontology®. Next, line 8 defines the window of observation over the RDF stream of
weather observations. Streams, for their very nature, are volatile and for this reason
should be consumed on the fly; thus, they are observed through a window, including
the last elements of the stream, which changes over time. In the example, the window
comprises weather observations produced in the last 3 hour, and the window slides
every 10 minutes. The wuere clause is standard; it includes a set of matching patterns
and rrrTER clauses as in standard SPARQL. At line 20 and 22, the acerecare function
is used to compute two aggregates: the average temperature and the minimum wind
speed. At line 21 and 23, the FILTER clause is used to select only those stations where

Zhttp://knoesis.wright.edu/research/semsci/application_domain/sem
sensor/ont/sensor-observation.owl



the average temperature has been below 0 and the minimum wind speed has been above
40 km/h. Finally, selected stations are used to construct the elements of the RDF stream
specified in the construct clause at line 5.

As Listing 1 illustrates, C-SPARQL enables the encoding of the typical questions
an oil operation engineer has to answer. This is possible, because C-SPARQL extends
SPARQL with the notions of window and of continuous processing.

Two approaches, alternative C-SPARQL exists: Streaming SPARQL [12] and
Time-Annotated SPARQL (or simply TA-SPARQL) [25]. Both languages introduce
the concept of window over stream, but only C-SPARQL brings the notion of continu-
ous processing, typical of stream processing, into the language; all the other proposal
still rely on permanent storing the stream before processing it using one-shot queries.
Moreover, only C-SPARQL proposes an extension to SPARQL to support aggregate
functions®. Such a support for aggregates is designed specifically to exploit optimiza-
tion techniques [9] that push, whenever possible, aggregates computation as close as
possible to the raw data streams.

3 Richer Form Of Stream Reasoning

We believe that C-SPARQL is an important piece of the Stream Reasoning puzzle, but
supporting basic RDF entailment is only a first step toward stream reasoning.

There are many ideas of how to support incremental reasoning on the different lev-
els of complexity. In particular, there are approaches for the incremental maintenance
of materialized views in logic [31], object-oriented [22] and graph databases [32], for
extensions of the well known RETE algorithm for incremental rule-based reasoning
[17, 10] and even some initial ideas of how to support incremental reasoning in de-
scription logics [14, 23].

All of these methods operate incrementally, thus they are appropriate to treat in-
formation that changes, but none of them is explicitly dedicated to process an (almost)
continuous flow of information with the recent information being more relevant. In [8],
we presented a first attempt in this direction. We describe a novel approach for incre-
mental maintenance of materialization of ontological entailments that makes it possible
to process C-SPARQL queries on entailment regimes more expressive than basic RDF.

The novelty of such approach is in extending incremental reasoning techniques
with the notion of window and continuous processing.

Window Traditional reasoning problems are based on the idea that all the information
available should be taken in to account when solving the problem. In stream rea-
soning, we eliminate this principle and restrict reasoning to a certain window of
concern which consists of a subset of statement recently observed on the stream
while previous information is ignored. This is necessary for different reasons.
First of all, ignoring older statements allows us to saves computing resources in
terms of memory and processing time to react to important events in real time.
Further, in many real-time applications there is a silent assumption that older
information becomes irrelevant at some point.

3For a comparison between C-SPARQL and SPARQL 1.1 support for aggregates see [7]



Continuous Processing Traditional reasoning approaches are based on the idea that
the reasoning process has a well defined beginning (when a request is posed to
the reasoner) and end (when the result is delivered by the system). In stream rea-
soning, we move from this traditional model to a continuous processing model,
where requests in terms of reasoning goals are registered at the reasoner and are
continuously evaluated against a knowledge base that is constantly changing.

We believe that the same notions can be applied to rule-based and description logic
reasoning; the results being richer and scalable forms of stream reasoning.

Moreover, a lot of progress has been made recently in terms of distributed and
parallel processing as a means for scaling up logical reasoning about Semantic Web
data. The focus of most of the approaches is on distributing RDF schema reasoning
as the possibility of implementing it in terms of a number of simple deduction rules
eases distribution. Existing approaches include the use of Peer-to-peer architectures as
a basis for distributed RDF Schema reasoning [1, 21] and more recently the use of the
Map-Reduce paradigm [30]. The only attempt so far to support distributed reasoning
on expressive background knowledge is [26].

The next steps are to put these different ideas together and engineer an experimental
stream reasoning system to explore the possibilities and problems of the approach.
Investigating architectural approaches to support this richer forms of stream reasoning
is a crucial step.

4 Stream Reasoning Architecture

In this section, we look at possible approaches for supporting stream reasoning from
an architectural point of view. We start with illustrating our original [15] conceptual
view on a stream reasoner, we then discuss the problem of dealing with the complexity
of reasoning in the face of rapidly changing data and propose the notion of cascading
reasoners as a way to cope with this complexity. We then describe how the idea of a
cascade of reasoners can be implemented by connecting different stream reasoners to
form a network of reasoners also providing the basis for scaling up stream reasoning
by distribution and parallelization.

4.1 Conceptual view on a stream reasoner

Figures 1 and 2 show a conceptual view on a stream reasoning system as envisioned in
our first work [15]: the former describes input and output, whereas the latter presents
the information processing steps in a stream reasoner.

4.1.1 Input and Output

The system takes possibly multiple data streams as well as possibly multiple static - or
better infrequently changing - knowledge models as input.

Similar to a Stream Data Management System, users can register reasoning tasks
at a stream reasoner. Such a task will normally consist of a goal predicate that is to



Figure 1: Conceptual view on a stream reasoner

be instantiated. The definition of this target predicate as well as additional information
necessary to perform derivations can be considered as static knowledge models that are
input to the system.

The stream reasoner now tries to find instantiations of the different goal predicates
by applying a certain reasoning method it implements. There are different ways instan-
tiated goal predicates are returned by the reasoner. We envision the scenario where a
static answer is returned. Such an answer is either a variable bindings easy processable
by any program or a knowledge model that can be further processed by any reasoner.
In both these cases, such a answer has to be considered as an instantaneous results that
will soon expire. For this reason, the stream reasoning task has also to specify the time
range in which such a answer is valid. As an alternative, the stream reasoner could also
produce a stream as a result itself. In this case, instantiations of the goal predicates are
added to the output stream as they are derived. Such a streaming answer is appropriate
for further processing by other stream reasoners.

4.1.2 Information Processing Steps

In Figure 2, we present the information processing steps necessary to process data
streams together with a rich background knowledge.

The top part of the figure represents the problem space, whereas the the bottom
part of the figure represents the four information processing steps that we consider for
Stream Reasoning* Streaming information flows flow from left to right. Background
knowledge enters the system at the reasoning step.

Data arrives to the Stream Reasoner as streamed input. A first step selects the
relevant data in the input stream by exploiting the window-processing [2] and load-

4These steps are inspired by the pluggable algorithmic framework of the LarKC platform for Web scale
reasoning [18].
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Figure 2: Information processing steps in a stream reasoner [15]

shedding techniques [28]. Such techniques were developed to deal with bursty streams
that may have unpredictable peaks during which the load may exceed available system
resources. A window extracts from the stream the /ast data stream elements, which are
considered by the query. Such extraction can be physical (a given number of triples) or
logical (all the triples which occur during a given time interval, the number of which
is variable over time). Windows are explicitly specified in registering a reasoning task
to the Stream Reasoner. Load-shedding techniques probabilistically drop stream data
elements as they are input to the selection step based on a set of sampling policies. Sam-
pling policies can be either specified explicitly by the system administrator at stream-
registration time, or inferred by gathering statistics over time.

The sampled streams resulting from the selection step are fed into a second step
that abstracts from fine grain data streams into aggregated events. Such step processes
high volume frequently changing streaming information with high performing tech-
niques that inject more abstract information, which changes at a lower frequency, in
the following processing steps.

Aggregation queries and data compression techniques are exploited in the abstrac-
tion step. By abstraction query we mean, a continuous query that, given a large set of
(possibly) unrelated low-level data in the input streams, produces an aggregated event
in the output stream. Data compression techniques includes the usage of histograms
[29] or wave-lets [13], when the abstraction is meant to be an aggregation (e.g., count-
ing the number of cars running through traffic detectors), and using Bloom filters [11]
for duplicate elimination, set difference, or set intersection. Either in the abstraction
step or immediately after, data streams are consolidated as RDF streams [15, 6, 9].
RDF streams are new data formats set at the confluence of relational data streams and
of conventional atoms usually injected into reasoners (i.e., RDF triples).

In the reasoning step, RDF streams generated by the previous steps are injected
in the background knowledge in order to performe the registered reasoning tasks. We
envision multiple reasoning techniques to be cascade within this step (see Section 4.2
for further discussion).



As last step, before producing the answer to the registered reasoning tasks, the an-
swering process reaches the decision step. In such step quality metrics and decision
criteria, defined by the application developer, are used to check if the quality of the an-
swer is good enough and to adapt the behavior of each step (e.g., changing the sampling
frequency).

4.2 Cascading Reasoners

A fundamental problem of the concept of a stream reasoner is the fact that many rel-
evant reasoning methods, e.g. for description logics are not able to deal with high
frequency data streams. While they try to derive instantiations of the goal predicate,
newly incoming data will pile up eventually crashing the system. To avoid this problem
we have to be aware that there is a trade-off between the complexity of the reasoning
method and the frequency of the data stream the reasoner is able to handle without
running into problems.

A possible way of solving this problem is to avoid feeding high frequency data
directly into a complex reasoning engine. Instead, a stream reasoning system should
consist of a hierarchy of processing steps of increasing complexity. This idea is an
analogy to the well known memory hierarchy in computer systems where the conflict
between memory size and access time is approached using the same principle. Figure
3 illustrates this idea of ’cascading reasoners’ for processing streaming data.

Figure 3: Cascading processors

On the lower levels raw data streams will not be fed directly into a reasoner, but into
a stream data management system designed to cope with large amounts of streaming
data. This stream data management system plays two roles:it wraps the data stream
into a virtual RDF data model and it provides the possibility to query this virtual RDF
stream using a dedicated query language such as C-SPARQL [5]. Only the results
of queries against this system which will a data stream consisting of query results in
RDF that arrive in a much lower frequency as only certain parts of the raw stream
match the registered queries will be passed on to the higher levels. On the next higher
levels, relatively simple but efficient reasoning methods including RDF schema and
simple rule based reasoning will be used to further process the result stream. At this
level, database techniques such as methods for maintaining materialized views can be
employed to guarantee efficiency. As mentioned above, these reasoners will compute



instantiations of certain goal predicates. Only the results of these instantiations - which
again can be assumed to be computed in a lower frequency than query answers - will
be passed on a a data stream for the next higher levels. Only at the top of the hierarchy
where the frequency of change has been reduced significantly, we can expect to be able
to use expressive reasoners, e.g. for description logics or spatio-temporal reasoning.
Another advantage of this layered approach is the possibility to push down processing
steps in the hierarchy to speed up reasoning. More specifically, it has been shown
that description logic reasoning to some extend can be reduced to rule-based reasoning
[20] and that rule-based reasoning, in turn, can be reduced to query processing under
certain conditions [8]. Using these techniques, we can make sure that only inferences
that cannot be carried out on the lower layers of the hierarchy are actually carried out
using more expressive reasoning methods.

4.3 Networks of Reasoners

The cascade of reasoners discussed in the previous section is a rather conceptual view
on a stream reasoning system. On the system level, this idea can be implemented
by linking individual stream reasoning systems as discussed above into a network of
reasoners implementing different kinds of methods. Figure 4 shows a possible combi-
nation of different reasoners into a network.

Figure 4: A network of stream reasoners



The figure illustrates different characteristic features of the concept of efficient
stream reasoning. Let us assume that the streams at the bottom of the figure are high
frequency data streams - in this case the stream reasoners in the lower half of the figure
will be C-SPARQL engines that directly operate on these data streams and evaluate
registered queries on the streams at the same time linking them to an RDF schema rep-
resented by the knowledge model shown in the center of the lower part of the figure.
As one result each of the engines produces an RDF stream that serves as input for the
stream reasoning engine in the upper part of the figure. This engine could implement
more complex reasoning methods on top of the result streams. Further, it possible to
include low frequency data streams directly at this level.

In this setting, the idea of pushing down processing in the hierarchy can be im-
plemented by allowing not only users to register queries at reasoners, but also allow
reasoners higher up in the hierarchy to automatically register queries at reasoners fur-
ther down in the hierarchy.

The figure shows another advantage of implementing cascading reasoners in terms
of a network: it enables distributed and parallel processing at all levels. Stream reason-
ing engines can be located close to the origin of the stream and different data streams
can be handled by different C-SPARQL engines reducing scalability problems.

5 Links to the semantic sensor network activity

We consider stream reasoning to be a complementary but currently missing aspect
of the idea of the semantic sensor web [27]. The idea of the semantic sensor web
is to use semantic web techniques for providing processable metadata about sensors
acquiring real time information about the physical world to support the analysis of
acquired data. Currently a W3C incubator group on this topic is developing supporting
standards, in particular a general sensor ontology that can be extended to cover different
domains and linked to existing standards as well as a semantic sensor markup language
for annotating sensors using terms from the ontology. The current view on semantic
sensor networks is a rather static one that focusses on metadata assigned to sensors and
reasoning about this static data to support use cases such as the discovery of relevant
sensors and data. We see two obvious relations of the concept of stream reasoning to
this initiative that are described in the following.

5.1 Online Reasoning on Streams and Metadata

Being able to reason on data streams provides new possibilities concerning the idea of
semantic sensor nets. In particular, it can help to enable online processing of semantic
annotations. At the moment, the idea of sensor markup languages is that reasoning
takes place offline in order to identify sensors or data that is then used. Stream rea-
soning on the other hand allows us to perform online reasoning on data streams and
sensor metadata. In this case the semantic description of the sensor - e.g. the measured
phenomenon - can be seen as a static knowledge base that acts as input to the stream
reasoner which automatically links the streaming information it processes to this meta-
data - e.g. by adding a ’type’ statement to every measurement arriving that links the
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raw data to the measured phenomenon. This dynamic way of linking data with meta-
data is currently not possible and has to be done a posteriori leading to an unnecessary
delay in the processing model.

5.2 Reasoners as Sensors

As mentioned above, we assume that stream reasoners are also able to produce data
streams as output. This output data stream can be fed to other stream reasoners or
published as data feed. In both cases, the stream reasoner itself can be seen as an ad-
vanced sensor able to produce high level sensor data. Similar to conventional sensors,
such a reasoner could benefit from the existence of processable metadata describing the
sensor type (in this case some kind of reasoner), the measured phenomenon (the goal
predicates) etc. As for conventional sensors, such metadata will support the discovery
of interesting stream reasoners and help to interpret the output stream.

6 Conclusions

We believe that providing the ability to reason about streaming data to cope with the
increasing amount of dynamic data on the web is the next big step in semantic tech-
nologies. In this paper, we have presented some initial ideas concerning the concept
of stream reasoning. It is clear that these ideas that are mostly at the conceptual level
have to be backed up by a formal theory of reasoning about streaming information.
The development of such a theory is a major challenge, but work in this direction can
be based on a number of theoretical results on individual parts of the whole picture.

Languages like C-SPARQL and their corresponding infrastructures provide an ex-
cellent starting point for further investigating expressive reasoning over data streams.
By providing a uniform RDF-based representation of heterogeneous streams, C-
SPARQL partially solves the challenge of providing efficient access protocols for het-
erogeneous streams. Further, the extraction of patterns from data streams is subject of
ongoing research in machine learning. For instance, results from statistical relational
learning are able to derive classification rules from example data in a very effective way.
There are two lines of research that follow immediately. The first is to link relational
learning methods with infrastructures like C-SPARQL to facilitate pattern extraction
on top of streaming RDF data, the second is the extension of existing reasoning mech-
anisms to support continuous processing. In this direction first steps have been made in
connection with incremental maintenance of RDF views. These approaches need to be
generalized to more expressive languages. Once the problem of continuous reasoning
with richer models has been understood sufficiently, the remaining challenges in terms
of scaling up to very high data volumes can be investigated and approaches like dis-
tributed and parallel processing as well as the compilation of continuous queries into
weaker formalism can be approached.
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