
Complexity Results for Modal Dependence Logic

Peter Lohmann? and Heribert Vollmer??

Institut für Theoretische Informatik
Leibniz Universität Hannover

Appelstr. 4, 30167 Hannover, Germany
{lohmann,vollmer}@thi.uni-hannover.de

Abstract. Modal dependence logic was introduced very recently by
Väänänen. It enhances the basic modal language by an operator dep. For
propositional variables p1, . . . , pn, dep(p1, . . . , pn−1; pn) intuitively states
that the value of pn only depends on those of p1, . . . , pn−1. Sevenster
(J. Logic and Computation, 2009) showed that satisfiability for modal
dependence logic is complete for nondeterministic exponential time.
In this paper we consider fragments of modal dependence logic obtained
by restricting the set of allowed propositional connectives. We show that
satisfibility for poor man’s dependence logic, the language consisting of
formulas built from literals and dependence atoms using ∧, �, ♦ (i. e.,
disallowing disjunction), remains NEXPTIME-complete. If we only al-
low monotone formulas (without negation, but with disjunction), the
complexity drops to PSPACE-completeness. We also extend Väänänen’s
language by allowing classical disjunction besides dependence disjunction
and show that the satisfiability problem remains NEXPTIME-complete.
If we then disallow both negation and dependence disjunction, satistia-
bility is complete for the second level of the polynomial hierarchy.
In this way we completely classifiy the computational complexity of the
satisfiability problem for all restrictions of propositional and dependence
operators considered by Väänänen and Sevenster.

Keywords: dependence logic, satisfiability problem, computational com-
plexity, poor man’s logic

1 Introduction

In his recent monograph [14], Jouko Väänänen introduced functional dependence
into the language of first-order logic. Dependence among values of variables oc-
curs everywhere in computer science (databases, software engineering, knowledge
representation, AI) but also the social sciences (human history, stock markets,
etc.), and thus dependence logic is nowadays a much discussed formalism in the
area called logic for interaction.

Functional dependence of the value of a variable pn from the values of the
variables p1, . . . , pn−1 states that there is a function, say f , such that pn =

? Supported by the NTH Focused Research School for IT Ecosystems.
?? Supported in part by DFG VO 630/6-1.

Submitted to Theory and Applications of Satisfiability Testing – SAT 2010

Dagstuhl Seminar Proceedings 10061
Circuits, Logic, and Games
http://drops.dagstuhl.de/opus/volltexte/2010/2524

2 Peter Lohmann and Heribert Vollmer

f(p1, . . . , pn−1), i. e., the value of pn only depends on those of p1, . . . , pn−1. We
will denote this in this paper by dep(p1, . . . , pn−1; pn).

Of course, dependence does not manifest itself in a single world, play, event
or observation. Important for such a dependence to make sense is a collection
of such worlds, plays, events or observations. These collections are called teams.
They are the basic objects in the definition of semantics of dependence logic. A
team can be a set of plays in a game. Then dep(p1, . . . , pn−1; pn) intuitively states
that in each play, move pn is determined by moves p1, . . . , pn−1. A team can be
a database. Then dep(p1, . . . , pn−1; pn) intuitively states that in each line, the
value of attribute pn is determined by the values of attributes p1, . . . , pn−1, i. e.,
that pn is functionally dependent on p1, . . . , pn−1. In first-order logic, a team
formally is a set of assignments; and dep(p1, . . . , pn−1; pn) states that in each
assignment, the value of pn is determined by the values of p1, . . . , pn−1. Most
important for this paper, in modal logic, a team is a set of worlds in a Kripke
structure; and dep(p1, . . . , pn−1; pn) states that in each of these worlds, the value
of the propositional variable pn is determined by the values of p1, . . . , pn−1.

Dependence logic is defined by simply adding these dependence atoms to
usual first-order logic [14]. Modal dependence logic (MDL) is defined by intro-
ducing these dependence atoms to modal logic [15,13]. The semantics of MDL
is defined with respect to sets T of worlds in a frame (Kripke structure) W , for
example W,T |= dep(p1, . . . , pn−1; pn) if for all worlds s, t ∈ T , if p1, . . . , pn−1

have the same values in both s and t, then pn has the same value in s and t, and
a formula

�dep(p1, . . . , pn−1; pn)

is satisfied in a world w in a Kripke structure W , if in the team T consisting of
all successor worlds of w, W,T |= dep(p1, . . . , pn−1; pn).

MDL was introduced in [15]. Väänänen introduced besides the usual inductive
semantics an equivalent game-theoretic semantics. Sevenster [13] considered the
expressibility of MDL and proved, that on singleton teams T , there is a transla-
tion from MDL to usual modal logic, while on arbitrary sets of teams there is no
such translation. Sevenster also initiated a complexity-theoretic study of modal
dependence logic by proving that the satisfiability problem for MDL is com-
plete for the class NEXPTIME of all problems decidable nondeterministically in
exponential time.

In this paper, we continue the work of Sevenster by presenting a more thor-
ough study on complexity questions related to modal dependence logic. A line
of research going back to Lewis [9] and recently taken up in a number of papers
[12,5,3,10] has considered fragments of different propositional logics by restrict-
ing the propositional and temporal operators allowed in the language. The ratio-
nale behind this approach is that by systematically restricting the language, one
might find a fragment with efficient algorithms but still high enough expressibil-
ity in order to be interesting for applications. This in turn might lead to better
tools for model checking, verification, etc. On the other hand, it is worthwhile
to identify the sources of hardness: What exactly makes satisfiability, model
checking, or other problems so hard for certain languages?

Complexity Results for Modal Dependence Logic 3

We follow the same approach here. We consider all subsets of modal operators
�,♦ and propositional operators ∧, ∨, · (atomic negation), >,⊥ (the Boolean
constants true and false), i. e., we study exactly those operators considered by
Väänänen [15], and examine the satisfiability problem for MDL restricted to the
fragment given by these operators. In each case we exactly determine the com-
putational complexity in terms of completeness for a complexity class such as
NEXPTIME, PSPACE, coNP, etc., or by showing that the satisfiability prob-
lem admits an efficient (polynomial-time) solution. We also extend the logical
language of [15] by adding classical disjunction (denoted here by ©∨) besides the
dependence disjunction. Connective ©∨ was already considered by Sevenster (he
denoted it by •), but not from a complexity point of view. In this way, we ob-
tain a complexity analysis of the satisfiability problem for MDL for all subsets
of operators studied by Väänänen and Sevenster.

Our results are summarized in Table 1, where + denotes presence and −
denotes absence of an operator, and ∗ states that the complexity does not depend
on the operator. One of our main and technically most involved contributions
addresses a fragment that has been called Poor Man’s Logic in the literature
on modal logic [5], i. e., the language without disjunction ∨. We show that for
dependence logic we still have full complexity (Theorem 5, first line of the table),
i. e., we show that Poor Man’s Dependence Logic is NEXPTIME-complete. If we
also forbid negation, then the complexity drops down to Σp

2(= NPNP); i. e.,
Monotone Poor Man’s Dependence Logic is Σp

2-complete (Theorem 4, 5th line,
but note that we need ©∨ here).

2 Modal Dependence Logic

We will only briefly introduce the syntax and semantics of modal dependence
logic here. For a more profound overview consult Väänänen’s introduction [15]
or Sevenster’s analysis [13] which includes a self-contained introduction to MDL.

2.1 Syntax

The formulas of modal dependence logic (MDL) are built from a set AP of atomic
propositions and the MDL operators �, ♦, ∧, ∨, · (also denoted ¬), >, ⊥, dep
and ©∨.

The set of MDL formulas is defined by the following grammar

ϕ ::= > | ⊥ | p | ¬p | dep(p1, . . . , pn−1; pn) | ¬dep(p1, . . . , pn−1; pn) |
ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ©∨ ϕ | �ϕ | ♦ϕ,

where n ≥ 1.
All formulas in the first row will sometimes be denoted as atomic formulas

and formulas of the form dep(p1, . . . , pn−1; pn) as dependence atoms. We some-
times write ∇k for ∇ . . .∇︸ ︷︷ ︸

k times

(with ∇ ∈ {�,♦}, k ∈ N).

4 Peter Lohmann and Heribert Vollmer

� ♦ ∧ ∨ · > ⊥ dep ©∨ Complexity Reference

+ + + ∗ + ∗ ∗ + ∗ NEXPTIME Theorem 5
+ + + + + ∗ ∗ − ∗ PSPACE Corollary 3a
+ + + + − ∗ + ∗ ∗ PSPACE Corollary 3b
+ + + − + ∗ ∗ − + Σp

2 Theorem 4
+ + + − − ∗ + ∗ + Σp

2 Theorem 4
+ + + − + ∗ ∗ − − coNP [8], [4]
+ + + − − ∗ + ∗ − coNP Corollary 3c

+ − + + + ∗ ∗ ∗ ∗ NP Corollary 7a
− + + + + ∗ ∗ ∗ ∗ NP Corollary 7a
+ − + − + ∗ ∗ ∗ + NP Corollary 7a
− + + − + ∗ ∗ ∗ + NP Corollary 7a
+ − + − + ∗ ∗ ∗ − P Corollary 7b
− + + − + ∗ ∗ ∗ − P Corollary 7b
+ − + ∗ − ∗ ∗ ∗ ∗ P Corollary 7c
− + + ∗ − ∗ ∗ ∗ ∗ P Corollary 7c
∗ ∗ − ∗ ∗ ∗ ∗ ∗ ∗ P Corollary 7d
∗ ∗ ∗ ∗ − ∗ − ∗ ∗ trivial Corollary 3d

− − ∗ ∗ ∗ ∗ ∗ ∗ ∗ ordinary propositional logic
(©∨≡ ∨, dep(·; ·) ≡ >)

+ : operator present − : operator absent ∗ : complexity independent of operator

Table 1. Complete classification of complexity for fragments of MDL-SAT
All results are completeness results except for the P cases.

2.2 Semantics

A frame (or Kripke structure) is a tuple W = (S,R, π) where S is a non-empty
set of worlds, R ⊆ S × S is the accessibility relation and π : S → P(AP) is the
labeling function.

In contrast to usual modal logic, truth of a MDL formula is not defined with
respect to a single world of a frame but with respect to a set of worlds, as already
pointed out in the introduction. The truth of a MDL formula ϕ in an evaluation
set T of worlds of a frame W = (S,R, π) is denoted by W,T |= ϕ and is defined
as follows:

W,T |= p iff p ∈ π(s) for all s ∈ T
W, T |= ¬p iff p /∈ π(s) for all s ∈ T
W, T |= dep(p1, . . . , pn−1; pn) iff for all s1, s2 ∈ T with

π(s1) ∩ {p1, . . . , pn−1} = π(s2) ∩ {p1, . . . , pn−1} :
pn ∈ π(s1) iff pn ∈ π(s2)

W,T |= ¬dep(p1, . . . , pn−1; pn) iff T = ∅
W,T |= ϕ ∧ ψ iff W,T |= ϕ and W,T |= ψ
W,T |= ϕ ∨ ψ iff there are sets T1, T2 with T = T1 ∪ T2,

W,T1 |= ϕ and W,T2 |= ψ
W,T |= ϕ©∨ ψ iff W,T |= ϕ or W,T |= ψ
W,T |= �ϕ iff W, {s′ | ∃s ∈ T with (s, s′) ∈ R} |= ϕ

Complexity Results for Modal Dependence Logic 5

W,T |= ♦ϕ iff there is a set T ′ ⊆ S such that W,T ′ |= ϕ and
for all s ∈ T there is a s′ ∈ T ′ with (s, s′) ∈ R

By ∨ we denote dependence disjunction instead of classical disjunction be-
cause the semantics of dependence disjunction is an extension of the semantics
of usual modal logic disjunction and thus we preserve downward compatibility
of our notation in this way. Note that rationales for the seemingly rather strange
definitions of the truth of ϕ ∨ ψ as well as ¬dep(p1, . . . , pn−1; pn) were given by
Väänänen [15,14].

For eachM ⊆ {�,♦,∧,∨, · ,>,⊥,dep,©∨} define the set of MDL(M) formulas
to be the set of MDL formulas which are built from atomic propositions using
only operators and constants from M .

We are interested in the parameterized decision problem MDL-SAT(M):

Given: A MDL(M) formula ϕ.
Question: Is there a frame W and a set T of worlds in W such that W,T |= ϕ?

Note that, as Väänänen already pointed out [15, Lemma 4.2.1], the semantics
of MDL satisfies the downward closure property, i.e., if W,T |= ϕ, then W,T ′ |= ϕ
for all T ′ ⊆ T . Hence, to check satisfiability of a formula ϕ it is enough to check
whether there is a frame W and a single world w in W such that W, {w} |= ϕ.

3 Complexity Results

To state the first lemma we need the following complexity operator. If C is an
arbitrary complexity class then ∃ · C denotes the class of all sets A for which
there is a set B ∈ C and a polynomial p such that for all x,

x ∈ A iff there is a y with |y| ≤ p(|x|) and 〈x, y〉 ∈ B.

Our first lemma concerns sets of operators including classical disjunction.

Lemma 1. Let M be a set of MDL operators. Then it holds:

a) Every MDL(M ∪ {©∨}) formula ϕ is equivalent to a formula ©∨2|ϕ|

i=1 ψi with
ψi ∈ MDL(M) for all i ∈ {1, . . . , 2|ϕ|}.

b) If C is an arbitrary complexity class with P ⊆ C and MDL-SAT(M) ∈ C then
MDL-SAT(M ∪ {©∨}) ∈ ∃ · C.

Proof. a) follows from the distributivity of ©∨ with all other operators. More
specifically ϕ ? (ψ ©∨ σ) ≡ (ϕ ? ψ) ©∨ (ϕ ? σ) for ? ∈ {∧,∨} and ∇(ϕ ©∨ ψ) ≡
(∇ϕ) ©∨ (∇ϕ) for ∇ ∈ {♦,�}.1 b) follows from a) with the observation that

©∨2|ϕ|

i=1 ψi is satisfiable if and only if there is an i ∈ {1, . . . , 2|ϕ|} such that ψi is
satisfiable. ut

We need the following simple property of monotone MDL formulas.
1 Interestingly, but not of relevance for our work, ϕ©∨ (ψ ∨ σ) 6≡ (ϕ©∨ ψ) ∨ (ϕ©∨ σ).

6 Peter Lohmann and Heribert Vollmer

Lemma 2. Let M be a set of MDL operators with · /∈ M . Then an arbitrary
MDL(M) formula ϕ is satisfiable iff the formula generated from ϕ by replacing
every dependence atom and every atomic proposition with > is satisfiable.

Proof. If a frame W is a model for ϕ, so is the frame generated from W by
setting all atomic propositions in all worlds to >. ut

We are now able to classify some cases that can be easily reduced to known
results.

Corollary 3. a) If {�,♦,∧,∨, · } ⊆ M ⊆ {�,♦,∧,∨, · ,>,⊥,©∨} then MDL-
SAT(M) is PSPACE-complete.

b) If {�,♦,∧,∨,⊥} ⊆ M ⊆ {�,♦,∧,∨,>,⊥,dep,©∨} then MDL-SAT(M) is
PSPACE-complete.

c) If {�,♦,∧,⊥} ⊆ M ⊆ {�,♦,∧,>,⊥,dep} then MDL-SAT(M) is coNP-
complete.

d) If M ⊆ {�,♦,∧,∨,>,dep,©∨} then every MDL(M) formula is satisfiable.

Proof. a) follows immediately from Ladner’s proof for the case of ordinary modal
logic [8], Lemma 1 and ∃ · PSPACE = PSPACE. The lower bound for b) was
shown by Hemaspaandra [5, Theorem 6.5] and the upper bound follows from a)
together with Lemma 2. The lower bound for c) was shown by Donini et al. [4]
and the upper bound follows from Ladner’s algorithm [8] together with Lemma 2.
d) follows from Lemma 2 together with the fact that every MDL formula with >
as the only atomic subformula is satisfied in every transitive singleton, i.e. the
frame consisting of only one state which has itself as successor. ut

3.1 Poor Man’s Dependence Logic

We now turn to the Σp
2-complete cases. These include monotone poor man’s

logic, with and without dependence atoms.

Theorem 4. If {�,♦,∧, · ,©∨} ⊆ M ⊆ {�,♦,∧, · ,>,⊥,©∨} or {�,♦,∧,⊥,©∨
} ⊆M ⊆ {�,♦,∧,>,⊥,dep,©∨} then MDL-SAT(M) is Σp

2-complete.

Proof. Proving the upper bound for the second case reduces to proving the
upper bound for the first case by Lemma 2. For the first case it holds with
Lemma 1 that MDL-SAT(�,♦,∧, · ,>,⊥,©∨) ∈ ∃ · coNP = Σp

2 since MDL-
SAT(�,♦,∧, · ,>,⊥) ∈ coNP, which follows directly from Ladner’s AP-algo-
rithm for modal logic satisfiability [8].

For the lower bound we consider the quantified constraint satisfaction prob-
lem QCSP2(R1/3) shown to be Πp

2-complete by Bauland et al. [2]. This problem
can be reduced to the complement of MDL-SAT(�,♦,∧, · /⊥,©∨) in polynomial
time.

An instance of QCSP2(R1/3) consists of universally quantified Boolean vari-
ables p1, . . . , pk, existentially quantified Boolean variables pk+1, . . . , pn and a set
of clauses each consisting of exactly three of those variables. QCSP2(R1/3) is

Complexity Results for Modal Dependence Logic 7

the set of all those instances for which for every truth assignment for p1, . . . , pk

there is a truth assignment for pk+1, . . . , pn such that in each clause exactly one
variable evaluates to true.2

For the reduction from QCSP2(R1/3) to the complement of MDL-SAT(�,♦,
∧, · /⊥,©∨) we extend a technique from the coNP-hardness proof for MDL-
SAT(�,♦,∧,⊥) by Donini et al. [4, Theorem 3.3]. Let p1, . . . , pk be the uni-
versally quantified and pk+1, . . . , pn the existentially quantified variables of a
QCSP2(R1/3) instance and let C1, . . . , Cm be its clauses (we assume w.l.o.g. that
each variable occurs in at least one clause). Then the corresponding MDL(�,♦,∧,
⊥,©∨) formula is

ϕ :=
k∧

i=1

(
∇i1 . . .∇im ∇i1 . . .∇im �i−1♦�k−i p

©∨ �m �m �i−1♦�k−i p
)

∧
n∧

i=k+1

∇i1 . . .∇im ∇i1 . . .∇im �k p)

∧ �m �m �k ⊥

where p is an arbitrary atomic proposition and ∇ij :=
{

♦ if pi ∈ Cj

� else .

For the corresponding MDL(�,♦,∧, · ,©∨) formula replace every ⊥ with ¬p.
To prove the correctness of our reduction we will need two claims.

Claim 1. For r, s ≥ 0 a MDL(�,♦,∧, · ,>,⊥) formula ♦ϕ1 ∧ · · · ∧♦ϕr ∧�ψ1 ∧
· · · ∧�ψs is unsatisfiable iff there is an i ∈ {1, . . . , r} such that ϕi ∧ψ1 ∧ · · · ∧ψs

is unsatisfiable.
Proof of Claim 1. “⇐”: If ϕi ∧ ψ1 ∧ · · · ∧ ψs is unsatisfiable, so is ♦ϕi ∧ �ψ1 ∧
· · · ∧�ψs and even more ♦ϕ1 ∧ · · · ∧ ♦ϕr ∧�ψ1 ∧ · · · ∧�ψs.

“⇒: Suppose that ϕi ∧ ψ1 ∧ · · · ∧ ψs is satisfiable for all i ∈ {1, . . . , r}. Then
♦ϕ1 ∧ · · · ∧♦ϕr ∧�ψ1 ∧ · · · ∧�ψs is satisfiable in a frame that consists of a root
state and for each i ∈ {1, . . . , r} a separate branch, reachable from the root in
one step, which satisfies ϕi ∧ ψ1 ∧ · · · ∧ ψs. <<

Note that ♦ϕ1 ∧ · · · ∧ ♦ϕr ∧�ψ1 ∧ · · · ∧�ψs is always satisfiable if r = 0.
Definition. Let v : {p1, . . . , pk} → {0, 1} be a valuation of {p1, . . . , pk}. Then
ϕv denotes the MDL(�,♦,∧, · /⊥) formula∧

i∈{1,...,k},
v(pi)=1

∇i1 . . .∇im ∇i1 . . .∇im �i−1♦�k−i p

∧
∧

i∈{1,...,k},
v(pi)=0

�m �m �i−1♦�k−i p

∧
n∧

i=k+1

∇i1 . . .∇im ∇i1 . . .∇im �k p

∧ �m �m �k ¬p /⊥
2 For our reduction it is necessary that in each clause the variables are pairwise differ-

ent whereas in QCSP2(R1/3) this need not be the case. However, the Πp
2-hardness

proof can easily be adapted to account for this (see Lemma 8 in the Appendix).

8 Peter Lohmann and Heribert Vollmer

Claim 2. Let v : {p1, . . . , pk} → {0, 1} be a valuation. Then ϕv is unsatisfiable
iff v can be continued to a valuation v′ : {p1, . . . , pn} → {0, 1} such that in each
of the clauses {C1, . . . , Cm} exactly one variable evaluates to true under v′.
Proof of Claim 2. By iterated use of Claim 1, ϕv is unsatisfiable iff there are
i1, . . . , i2m with

ij ∈
{
i ∈ {1, . . . , n} | ∇ij′ = ♦

}
\
{
i ∈ {1, . . . , k} | v(pi) = 0

}
=
{
i ∈ {1, . . . , n} | pi ∈ Cj′

}
\
{
i ∈ {1, . . . , k} | v(pi) = 0

}
,

where j′ :=
{
j if j ≤ m
j −m else , such that

ϕv(i1, . . . , i2m) :=
∧

i∈{1,...,k},
i∈{i1,...,i2m},

v(pi)=1

�i−1♦�k−i p

∧
∧

i∈{1,...,k},
v(pi)=0

�i−1♦�k−i p

∧
∧

i∈{k+1,...,n},
i∈{i1,...,i2m}

�k p

∧ �k ¬p /⊥

is unsatisfiable (i) and such that there are no a, b ∈ {1, . . . , 2m} with a < b,
∇iba′ = ∇ibb′ = ♦ (this is the case iff pib

∈ Ca′ and pib
∈ Cb′) and ia 6= ib

(ii). The latter condition is already implied by Claim 1 as it simply ensures that
no subformula is selected after it has already been discarded in an earlier step.
Note that ϕv(i1, . . . , i2m) is unsatisfiable iff for all i ∈ {1, . . . , k}: v(pi) = 1 and
i ∈ {i1, . . . , i2m} or v(pi) = 0 (and i /∈ {i1, . . . , i2m}) (i′).

We are now able to prove the claim.
“⇐”: For j = 1, . . . , 2m choose ij ∈ {1, . . . , n} such that pij

∈ Cj′ and
v′(pij) = 1. By assumption, all ij exist and are uniquely determined. Hence,
for all i ∈ {1, . . . , k} we have that v(pi) = 0 (and then i /∈ {i1, . . . , i2m}) or
v(pi) = 1 and there is a j such that ij = i (because each variable occurs in
at least one clause). Therefore condition (i′) is satisfied. Now suppose there are
a < b that violate condition (ii). By definition of ib it holds that pib

∈ Cb′ and
v′(pib

) = 1. Analogously, pia
∈ Ca′ and v′(pia

) = 1. By the supposition pib
∈ Ca′

and pia 6= pib
. But since v′(pia) = v′(pib

) = 1, that is a contradiction to the fact
that in clause Ca′ only one variable evaluates to true.

“⇒”: If ϕv is unsatisfiable, there are i1, . . . , i2m such that (i′) and (ii) hold.
Let the valuation v′ : {p1, . . . , pn} → {0, 1} be defined by

v′(pi) :=
{

1 if i ∈ {i1, . . . , i2m}
0 else .

Note that v′ is a continuation of v because (i′) holds.
We will now prove that in each of the clauses C1, . . . , Cm exactly one variable

evaluates to true under v′. Therefore let j ∈ {1, . . . ,m} be arbitrarily chosen.

Complexity Results for Modal Dependence Logic 9

By choice of ij it holds that pij
∈ Cj . It follows by definition of v′ that

v′(pij
) = 1. Hence, there is at least one variable in Cj that evaluates to true.

Now suppose that besides pij another variable in Cj evaluates to true. Then
by definition of v′ it follows that there is a ` ∈ {1, . . . , 2m}, ` 6= j, such that this
other variable is pi`

. We now consider two cases.
Case j < `: This is a contradiction to (ii) since, by definition of `, pi`

is in
Cj′ as well as, by definition of i`, in C`′ and ij 6= i`.

Case ` < j: Since j ∈ {1, . . . ,m} it follows that ` ≤ m. Since C`′ = C(`+m)′

it holds that pi`+m
∈ C`′ and pi`+m

∈ C(`+m)′ . Furthermore ` < ` + m and
thus, by condition (ii), it must hold that i` = i`+m. Therefore pi`+m

∈ Cj and
v′(pi`+m

) = 1. Because j < ` + m this is a contradiction to condition (ii) as in
the first case. <<

The correctness of the reduction now follows with the observation that ϕ is

equivalent to ©∨
v:{p1,...,pk}→{0,1}

ϕv and that ϕ is unsatisfiable iff ϕv is unsatisfiable

for all valuations v : {p1, . . . , pk} → {0, 1}.
The QCSP2(R1/3) instance is true iff every valuation v : {p1, . . . , pk} → {0, 1}

can be continued to a valuation v′ : {p1, . . . , pn} → {0, 1} such that in each of
the clauses {C1, . . . , Cm} exactly one variable evaluates to true under v′ iff, by
Claim 2, ϕv is unsatisfiable for all v : {p1, . . . , pk} → {0, 1} iff, by the above
observation, ϕ is unsatisfiable. ut

Next we turn to (non-monotone) poor man’s logic.

Theorem 5. If {�,♦,∧, · ,dep} ⊆ M then MDL-SAT(M) is NEXPTIME-
complete.

Proof. Sevenster showed that the problem is in NEXPTIME in the case of©∨/∈M
[13, Lemma 14]. Together with Lemma 1 and the fact that ∃ · NEXPTIME =
NEXPTIME the upper bound applies.

For the lower bound we reduce 3CNF-DQBF, which was shown to be NEXP-
TIME-hard by Peterson et al. [11, Lemma 5.2.2]3, to our problem.

An instance of 3CNF-DQBF consists of universally quantified Boolean vari-
ables p1, . . . , pk, existentially quantified Boolean variables pk+1, . . . , pn, depen-
dence constraints Pk+1, . . . , Pn ⊆ {p1, . . . , pk} and a set of clauses each con-
sisting of three (not necessarily distinct) literals. Here, Pi intuitively states
that the value of pi only depends on the values of the variables in Pi. Now,
3CNF-DQBF is the set of all those instances for which there is a collection of
functions fk+1, . . . , fn with fi : {0, 1}Pi → {0, 1} such that for every valuation
v : {p1, . . . , pk} → {0, 1} there is at least one literal in each clause that evaluates
to true under the valuation v′ : {p1, . . . , pn} → {0, 1} defined by

v′(pi) :=
{
v(pi) if i ∈ {1, . . . , k}
fi(v � Pi) if i ∈ {k + 1, . . . , n} .

3 Peterson et al. showed NEXPTIME-hardness for DQBF without the restriction that
the formulae must be in 3CNF. However, the restriction does not lower the com-
plexity since every propositional formula is satisfiability-equivalent to a formula in
3CNF whose size is bounded by a polynomial in the size of the original formula.

10 Peter Lohmann and Heribert Vollmer

The functions fk+1, . . . , fn act as restricted existential quantifiers, i.e., for an
i ∈ {k + 1, . . . , n} the variable pi can be assumed to be existentially quantified
dependent on all universally quantified variables in Pi (and, more importantly,
independent of all universally quantified variables not in Pi). Dependencies are
thus explicitly specified through the dependence constraints and can contain –
but are not limited to – the traditional sequential dependencies, e.g. the quan-
tifier sequence ∀p1∃p2∀p3∃p4 can be modeled by the dependence constraints
P2 = {p1} and P4 = {p1, p3}.

For the reduction from 3CNF-DQBF to MDL-SAT(�,♦,∧, · ,dep) we use
an idea from the PSPACE-hardness proof of MDL-SAT(�,♦,∧, ·) over a re-
stricted frame class by Hemaspaandra [5, Theorem 4.2]. Let p1, . . . , pk be the
universally quantified and pk+1, . . . , pn the existentially quantified variables of a
3CNF-DQBF instance ϕ and let Pk+1, . . . , Pn be its dependence constraints and
{l11, l12, l13}, . . . , {lm1, lm2, lm3} its clauses. Then the corresponding MDL(�,♦,
∧, · ,dep) formula is

g(ϕ) :=
n∧

i=1

�i−1(♦�n−ipi ∧ ♦�n−ipi) (i)

∧
m∧

i=1

♦n(li1 ∧ li2 ∧ li3 ∧ fi) (ii)

∧
m∧

i=1

�ndep(l′i1, l
′
i2, l
′
i3; fi) (iii)

∧ �k♦n−k
(
f1 ∧ · · · ∧ fm ∧

∧n
i=k+1 dep(Pi; pi)

)
(iv)

where p1, . . . , pn, f1, . . . , fm are atomic propositions and l′ij :=
{
p if lij = p
p if lij = p

.

Now if ϕ is valid, consider the frame which consists of a complete binary tree
with n levels (not counting the root) and where each of the 2n possible labelings
of the atomic propositions p1, . . . , pn occurs in exactly one leaf. Additionally, for
each i ∈ {1, . . . ,m} fi is labeled in exactly those leaves in which li1 ∨ li2 ∨ li3 is
false. This frame obviously satisfies (i), (ii) and (iii). And since the modalities in
(iv) model the quantors of ϕ, fi is true exactly in the leaves in which li1∨ li2∨ li3
is true and the dep atoms in (iv) model the dependence constraints of ϕ, (iv) is
also true and therefore g(ϕ) is satisfied in the root of the tree.

As an example see Fig. 1 for a frame satisfying g(ϕ) if the first clause in ϕ is
{p1, pn}.

If, on the other hand, g(ϕ) is satisfiable, let W be a frame and t a world in
W such that W, {t} |= g(ϕ). Now (i) enforces W to contain a complete binary
tree T with root t such that each labeling of p1, . . . , pn occurs in a leaf of T .

We can further assume w.l.o.g. that W itself is a tree since in MDL different
worlds with identical proposition labelings are indistinguishable and therefore
every frame can simply be unwinded to become a tree. Since the modal depth of
g(ϕ) is n we can assume that the depth of W is at most n. And since (i) enforces
that every path in W from t to a leaf has a length of at least n, all leaves of W
lie at levels greater or equal to n. Altogether we can assume that W is a tree,
that all its leaves lie at level n and that it has the same root as T . The only
difference is that the degree of W may be greater than that of T .

Complexity Results for Modal Dependence Logic 11

...

p1

p2

...
pn

p1

p2

...
pn

f1

· · ·

p1

p2

...
pn

p1

p2

...
pn

f1

· · ·

p1

pn

pn

pn

pn

p2

p2

p1

Fig. 1. Frame satisfying g(ϕ)

But we can nonetheless assume that up to level k the degree of W is 2 (∗).
This is the case because if any world up to level k− 1 had more successors than
the two lying in T , the additional successors could be omitted and (i), (ii), (iii)
and (iv) would still be fulfilled. For (i), (ii) and (iii) this is clear and for (iv) it
holds because (iv) begins with �k.

We will now show that, although T may be a proper subframe of W , T is
already sufficient to fulfill g(ϕ). From this the validity of ϕ will follow immedi-
ately.
Claim. T, {t} |= g(ϕ).
Proof of Claim. We consider sets of leaves of W that satisfy f1 ∧ · · · ∧ fm ∧∧n

i=k+1 dep(Pi; pi) and that can be reached from the set {t} by the modality
sequence �k♦n−k. Let S be such a set and let S be chosen so that there is no
other such set that contains less worlds outside of T than S does. Assume there
is a s ∈ S that does not lie in T .

Let i ∈ {1, . . . ,m} and let s′ be the leaf in T that agrees with s on the labeling
of p1, . . . , pn. Then, with W, {s} |= fi and (iii), it follows that W, {s′} |= fi.

Let S′ := (S \ {s}) ∪ {s′}. Then it follows by the previous paragraph that
W,S′ |= f1 ∧ · · · ∧ fm. Since W,S |=

∧n
i=k+1 dep(Pi; pi) and s′ agrees with s

on the propositions p1, . . . , pn it follows that W,S′ |=
∧n

i=k+1 dep(Pi; pi). Hence,
S′ satisfies f1 ∧ · · · ∧ fm ∧

∧n
i=k+1 dep(Pi; pi) and as it only differs from S by

replacing s with s′ it can be reached from {t} by �k♦n−k because s and s′ agree
on p1, . . . , pk and, by (∗), W does not differ from T up to level k. But this is a
contradiction to the assumption since S′ contains one world less than S outside
of T . Thus, there is no s ∈ S that does not lie in T and therefore (iv) is fulfilled
in T . Since (i), (ii) and (iii) are obviously also fulfilled in T , it follows that
T, {t} |= g(ϕ). <<

12 Peter Lohmann and Heribert Vollmer

(ii) ensures that for all i ∈ {1, . . . ,m} there is a leaf in W in which ¬(li1 ∨
li2 ∨ li3) ∧ fi is true. This leaf can lie outside of T . However, (iii) ensures that
all leaves that agree on the labeling of li1, li2 and li3 also agree on the labeling
of fi. And since there is a leaf where ¬(li1 ∨ li2 ∨ li3) ∧ fi is true, it follows that
in all leaves, in which ¬(li1 ∨ li2 ∨ li3) is true, fi is true. Conversely, if fi is true
in an arbitrary leaf of W then so is li1 ∨ li2 ∨ li3 (∗∗).

The modality sequence �k♦n−k models the quantors of ϕ and
∧n

i=k+1 dep(Pi;
pi) models its dependence constraints. And so there is a bijective correspondence
between sets of worlds reachable in T by �k♦n−k from {t} and that satisfy∧n

i=k+1 dep(Pi; pi) on the one hand and truth assignments to p1, . . . , pn gener-
ated by the quantors of ϕ and satisfying its dependence constraints on the other
hand. Additionally, by (∗∗) follows that f1 ∧ · · · ∧ fm implies

∧m
i=1(li1 ∨ li2 ∨ li3)

and since T, {t} |= g(ϕ), ϕ is valid. ut

3.2 Cases with Only One Modality

We finally examine formulas with only one modality.

Theorem 6. Let M ⊆ {�,♦,∧,∨, · ,>,⊥,©∨} with � /∈M or ♦ /∈M . Then the
following hold:

a) MDL-SAT(M ∪ {dep}) ≤p
m MDL-SAT(M ∪ {>,⊥}), i.e., adding the dep

operator does not increase the complexity if we only have one modality.
b) For every MDL(M ∪ {dep}) formula ϕ it holds that ©∨ is equivalent to ∨,

i.e., ϕ is equivalent to every formula that is generated from ϕ by replacing
some or all occurrences of ©∨ by ∨ and vice versa.

Proof. Every negation ¬dep of a dependence atom is by definition always equiv-
alent to ⊥ and can thus be replaced by the latter. For positive dep atoms and
the ©∨ operator we consider two cases.

Case ♦ /∈ M . If an arbitrary MDL(�,∧,∨, · ,>,⊥,dep,©∨) formula ϕ is sat-
isfiable then it is so in an intransitive singleton frame, i.e. a frame that only
contains one world which does not have a successor, because there every subfor-
mula that begins with a � is automatically satisfied. In a singleton frame all dep
atoms obviously hold and ©∨ is equivalent to ∨. Therefore the (un-)satisfiability
of ϕ is preserved when substituting every dep atom in ϕ with > and every ©∨
with ∨ (or vice versa).

Case � /∈M . If an arbitrary MDL(♦,∧,∨, · ,>,⊥,dep,©∨) formula ϕ is satis-
fiable then, by the downward closure property, there is a frame W with a world
s such that W, {s} |= ϕ. Since there is no � in ϕ, every subformula of ϕ is also
evaluated in a singleton set (because a ♦ can never increase the cardinality of
the evaluation set). And as in the former case we can replace every dep atom
with > and every ©∨ with ∨ (or vice versa). ut

Thus we obtain the following consequences – note that with the preceding
results this takes care of all cases in Table 1.

Complexity Results for Modal Dependence Logic 13

Corollary 7. a) If {∧, · } ⊆M ⊆ {�,♦,∧,∨, · ,>,⊥,dep,©∨}, M ∩{∨,©∨} 6= ∅
and |M ∩ {�,♦}| = 1 then MDL-SAT(M) is NP-complete.

Proof. a) follows from [5, Theorem 6.2(2)] and Theorem 6a,b. b) follows from
[5, Theorem 6.4(c,d)] and Theorem 6a. c) follows from [5, Theorem 6.4(e,f)] and
Theorem 6a,b.

For d) the proof of [5, Theorem 6.4(b)] can be adapted as follows. Let ϕ be an
arbitrary MDL(M) formula. By the same argument as in the proof of Theorem 6b
we can replace all top-level (i.e. not lying inside a modality) occurrences of ©∨ in
ϕ with ∨ to get the equivalent formula ϕ′. ϕ′ is of the form �ψ1 ∨ · · · ∨ �ψk ∨
♦σ1 ∨ · · · ∨♦σm ∨ a1 ∨ · · · ∨ as where every ψi and σi is a MDL(M) formula and
every ai is an atomic formula. If k > 0 or any ai is a literal, > or a dependence
atom then ϕ′ is satisfiable. Otherwise it is satisfiable iff one of the σi is satisfiable
and this can be checked recursively in polynomial time. ut

4 Conclusion

In this paper we completely classified the complexity of the satisfiability problem
for modal dependence logic for all fragments of the language defined by restrict-
ing the modal and propositional operators to a subset of those considered by
Väänänen and Sevenster. Interestingly, our results show a dichotomy for the
dep operator; either the complexity jumps to NEXPTIME-completeness when
introducing dep or it does not increase at all – and in the latter case the dep
operator does not increase the expressiveness of the logic.

In a number of precursor papers, e. g., [9] on propositional logic or [3] on
modal logic, not only subsets of the classical operators {�,♦,∧,∨, · } were con-
sidered but also propositional connectives given by arbitrary Boolean functions.
The main result of Lewis, e. g., can be succinctly summarized as follows: Propo-
sitional satisfiability is NP-complete if and only if in the input formulas the
connective ϕ ∧ ¬ψ is allowed (or can be “implemented” with the allowed con-
nectives).

We consider it interesting to initiate such a more general study for modal
dependence logic and determine the computational complexity of satisfiability if
the allowed connectives are taken from a fixed class in Post’s lattice. Contrary to
propositional or modal logic, however, the semantics of such generalized formulas
is not clear a priori – for instance, how should exclusive-or be defined in depen-
dence logic? Even for simple implication, there seem to be several reasonable
definitions, cf. [1].

A further possibly interesting restriction of dependence logic might be to
restrict the type of functional dependency. Right now, dependence just means
that there is some function whatsoever that determines the value of a variable
from the given values of certain other variables. Also here it might be interesting
to restrict the function to be taken from a fixed class in Post’s lattice, e. g., to
be monotone or self-dual.

Related is the more general problem of finding interesting fragments of modal
dependence logic where adding the dep operator does not let the complexity of

14 Peter Lohmann and Heribert Vollmer

satisfiability testing jump up to NEXPTIME but still increases the expressive-
ness of the logic.

Finally, it seems advisable to study the expressiveness of MDL further –
especially of the classical disjunction ©∨ and other extensions, e. g., implication.
Also, the relation between MDL and first-order dependence logic seems to be
an interesting field as there is no canonical embedding of MDL into first-order
dependence logic.

References

1. Abramsky, S., Väänänen, J.: From IF to BI. Synthese 167(2), 207–230 (2009)
2. Bauland, M., Böhler, E., Creignou, N., Reith, S., Schnoor, H., Vollmer, H.: The

complexity of problems for quantified constraints. Theory of Computing Systems
(To appear), http://dx.doi.org/10.1007/s00224-009-9194-6

3. Bauland, M., Hemaspaandra, E., Schnoor, H., Schnoor, I.: Generalized modal sat-
isfiability. In: STACS. pp. 500–511 (2006), revised version: [7]

4. Donini, F.M., Lenzerini, M., Nardi, D., Hollunder, B., Nutt, W., Marchetti-
Spaccamela, A.: The complexity of existential quantification in concept languages.
Artif. Intell. 53(2-3), 309–327 (1992)

5. Hemaspaandra, E.: The complexity of poor man’s logic. Journal of Logic and Com-
putation 11(4), 609–622 (2001), corrected version: [6]

6. Hemaspaandra, E.: The complexity of poor man’s logic. CoRR cs.LO/9911014v2
(2005)

7. Hemaspaandra, E., Schnoor, H., Schnoor, I.: Generalized modal satisability. CoRR
abs/0804.2729 (2008)

8. Ladner, R.E.: The computational complexity of provability in systems of modal
propositional logic. Siam Journal on Computing 6(3), 467–480 (1977)

9. Lewis, H.: Satisfiability problems for propositional calculi. Mathematical Systems
Theory 13, 45–53 (1979)

10. Meier, A., Mundhenk, M., Thomas, M., Vollmer, H.: The complexity of satisfia-
bility for fragments of CTL and CTL?. Electronic Notes in Theoretical Computer
Science 223, 201 – 213 (2008), Proceedings of the Second Workshop on Reachability
Problems in Computational Models (RP 2008)

11. Peterson, G., Reif, J., Azhar, S.: Lower bounds for multiplayer noncooperative
games of incomplete information. Computers & Mathematics with Applications
41(7-8), 957 – 992 (2001)

12. Reith, S., Wagner, K.W.: The complexity of problems defined by boolean circuits.
In: Proceedings International Conference Mathematical Foundation of Informatics,
(MFI99). pp. 25–28. World Science Publishing (2000)

13. Sevenster, M.: Model-theoretic and computational properties of modal dependence
logic. Journal of Logic and Computation 19(6), 1157–1173 (2009)

14. Väänänen, J.: Dependence logic: A new approach to independence friendly logic.
No. 70 in London Mathematical Society student texts, Cambridge University Press
(2007)

15. Väänänen, J.: Modal dependence logic. In: Apt, K.R., van Rooij, R. (eds.) New
Perspectives on Games and Interaction, Texts in Logic and Games, vol. 4, pp.
237–254. Amsterdam University Press (2008)

http://dx.doi.org/10.1007/s00224-009-9194-6

Complexity Results for Modal Dependence Logic 15

Appendix

Lemma 8. QCSP2(R1/3) with pairwise different variables in each clause is Πp
2-

hard.

Proof. We give a reduction from 3CNF-QBF2. The only differences between an
instance of QCSP2(R1/3) and an instance of 3CNF-QBF2 are that in the latter
a clause may contain negated variables, more than one literal that evaluates to
true and the same variable more than once.

Our reduction works as follows. The quantification of all original variables
stays unchanged. All newly introduced variables are existentially quantified. Our
new set of clauses consists of the clauses

i) {t, f, f ′}, {t, f ′, f ′′}, {t, f ′′, f}, where t, f, f ′, f ′′ are new variables,
ii) for each original variable x: {x, x′, f} and

iii) for each original clause {x, y, z}: {f, x̂, a}, {a′, ŷ, b}, {b′, ẑ, f},
{a, a′, a′′}, {b, b′, b′′},

where a, a′, a′′, b, b′, b′′ are new variables and û :=
{
p if u = p
p′ if u = ¬p .

(i) enforces the new variable f to evaluate to ⊥ and (ii) simulates negated vari-
ables. (iii) uses R1/3-clauses to allow for more than one of the three literals x,
y and z to be true by splitting one old clause in three new clauses. But at the
same time it still ensures that at least one of them is true by making the new
variables interdependent in such a way that at most two of them can be true.

