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Abstract

Parameterized Resolution and, moreover, a general framework for parameterized proof
complexity was introduced by Dantchev, Martin, and Szeider [16] (FOCS’07). In that paper,
Dantchev et al. show a complexity gap in tree-like Parameterized Resolution for propositional
formulas arising from translations of first-order principles.

We broadly investigate Parameterized Resolution obtaining the following main results:

∙ We introduce a purely combinatorial approach to obtain lower bounds to the proof size
in tree-like Parameterized Resolution. For this we devise a new asymmetric Prover-
Delayer game which characterizes proofs in (parameterized) tree-like Resolution. By
exhibiting good Delayer strategies we then show lower bounds for the pigeonhole prin-
ciple as well as the order principle.

∙ Interpreting a well-known FPT algorithm for vertex cover as a DPLL procedure for
Parameterized Resolution, we devise a proof search algorithm for Parameterized Res-
olution and show that tree-like Parameterized Resolution allows short refutations of
all parameterized contradictions given as bounded-width CNF’s.

∙ We answer a question posed by Dantchev, Martin, and Szeider in [16] showing that
dag-like Parameterized Resolution is not fpt-bounded. We obtain this result by proving
that the pigeonhole principle requires proofs of size nΩ(k) in dag-like Parameterized
Resolution. For this lower bound we use a different Prover-Delayer game which was
developed for Resolution by Pudlák [27].

1 Introduction

Resolution is a well-known refutation system for unsatisfiable formulas in conjunctive normal
form based on the single Resolution rule {x}∪C {¬x}∪D

C∪D , where C,D are clauses and x is a vari-
able. It was introduced by Blake [10] and since the work of Robinson [30] and Davis, Putnam,
Logemann, and Loveland [17,18] has been highly employed in proof search and automated the-
orem proving. More recently, the study of Resolution has received a lot of attention and gained
great significance in at least two important fields of computer science: (1) Proof complexity,
where Resolution is the most intensively investigated proof system [2,6,9,11,14,24,34] and the
study of lower bounds for proof lengths in this system has opened the way to lower bounds in
much stronger proof systems [7,32]; (2) Algorithms for the satisfiability problem of CNF formu-
las, where the DPLL algorithm [4,17] is the core of the most important and modern algorithms
employed for the satisfiability problem [4,5]. Running DPLL on unsatisfiable formulas produces
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Resolution refutations in the simple form of a tree, thus Resolution proof lengths are connected
with the running time of DPLL procedures.

Very recently, Dantchev, Martin, and Szeider [16] introduced the proof system of Parameter-
ized Resolution, which is a Resolution system in the context of parameterized proof complexity,
an extension of the proof complexity approach of Cook and Reckhow to parameterized complex-
ity which was initiated in the same work [16]. Parameterized complexity is mainly motivated by
the quest for efficient algorithms which solve optimization problems [19,21,26]. Since Resolution
is very important for SAT solving, Parameterized Resolution combines these two approaches,
and its investigation might provide new insights into proof search for tractable fragments of
classically hard problems. Some results in this directions are already outlined in the work
of Gao [23] where he analyzes the effect of the standard DPLL algorithm on the problem of
weighted satisfiability for random d-CNF. However, the study of Parameterized Resolution and
our understanding of the possible implications for SAT-solving algorithms are still at a very
early stage.

In this work we broadly study the Parameterized Resolution system proving hardness results
for the lengths of proofs in both the tree-like and the dag-like version (thus answering a question
posed in [16]). We devise a proof search algorithm that shows the strength of these systems
over classical Resolution and yields some insight into questions in parameterized complexity.
We start with a short overview of parameterized proof complexity and then discuss in more
detail our contributions, their importance, how they extend the work [16] and previous work in
Resolution, and future perspectives opened.

1.1 Parameterized Complexity and Parameterized Proof Complexity

Parameterized complexity is a branch of complexity theory where problems are analyzed in a
finer way than in the classical approach: we say that a problem is fixed-parameter tractable
(FPT) with parameter k if it can be solved in time f(k)nO(1) for some computable function f
of arbitrary growth. In this setting, classically intractable problems may have efficient solutions
for small choices of the parameter, even if the total size of the input is large. Parameterized
complexity also has completeness theory. Many parameterized problems that appear to be
not fixed-parameter tractable have been classified as being complete under fpt-reductions for
complexity classes in the so-called weft hierarchy W[1] ⊆W[2] ⊆W[3] ⊆ . . .

Consider the problem Weighted CNF Sat of finding a truth assignment of Hamming
weight at most k that satisfies all clauses of a formula in conjunctive normal form. Many
parameterized combinatorial problems can be naturally encoded in Weighted CNF Sat:
finding a vertex cover of size at most k, finding a clique of size k, or finding a dominating set of
size at most k. In the theory of parameterized complexity, the hardness of the Weighted CNF
Sat problem is reflected by the fact that it is W[2]-complete. Parameterized complexity has a
very well-developed and deep theory and, as for the classical case, there are many open problems
concerning the separation of parameterized complexity classes as FPT and W[P] (see [19,22,26]
for a complete treatment of the field).

Recently, Dantchev, Martin, and Szeider [16] initiated the study of parameterized proof com-
plexity. After considering the notions of propositional parameterized tautologies and fpt-bounded
proof systems, they laid the foundations to study complexity of proofs in a parameterized set-
ting. The problem Weighted CNF Sat leads to parameterized contradictions:

Definition 1 (see [16]). A parameterized contradiction is a pair (F, k) consisting of a proposi-
tional formula F and k ∈ ℕ such that F has no satisfying assignment of weight ≤ k. We denote
the set of all parameterized contradictions by PCon.
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The notions of a parameterized proof system and of fpt-bounded proof systems were also
developed in [16] (see Section 2 for a discussion):

Definition 2 (Dantchev et al. [16]). A parameterized proof system for a parameterized language
L ⊆ Σ∗×ℕ is a function P : Σ∗×ℕ→ Σ∗×ℕ such that rng(P ) = L and P (x, k) can be computed
in time O(f(k)∣x∣O(1)) with some computable function f .

The system P is fpt-bounded if there exist computable functions s and t such that every
(x, k) ∈ L has a P -proof (y, k′) with ∣y∣ ≤ s(k)∣x∣O(1) and k′ ≤ t(k).

The main motivation behind the work of [16] was that of generalizing the classical approach
of Cook and Reckhow to the parameterized case and working towards a separation of param-
eterized complexity classes as FPT and W[P] by techniques developed in proof complexity. In
fact, we obtain an analogous result to the well-known Cook-Reckhow theorem from [15]:

Theorem 3. A parameterized language L ⊆ Σ∗ × ℕ has an fpt-bounded proof system if and
only if L ∈ para-NP.

Parameterized Resolution is a refutation system for the set of parameterized contradictions.
Given a set of clauses F in variables x1, . . . , xn with (F, k) ∈ PCon, a Parameterized Resolution
refutation of (F, k) is a Resolution refutation of F∪{¬xi1∨⋅ ⋅ ⋅∨¬xik+1

∣ 1 ≤ i1 < ⋅ ⋅ ⋅ < ik+1 ≤ n}.
Thus, in Parameterized Resolution we have built-in access to all parameterized clauses of the
form ¬xi1 ∨ ⋅ ⋅ ⋅ ∨ ¬xik+1

. All these clauses are available in the system, but when measuring the
size of a derivation we only count those which appear in the derivation.

Dantchev et al. [16] prove an extension of Riis’ gap theorem [29], getting a separation for the
complexity of tree-like Parameterized Resolution proofs for formulas arising from propositional
encodings of first-order principles P, that uniquely depends on P having or not infinite models.

1.2 Our Contributions

Dantchev, Martin, and Szeider [16] proved that tree-like Parameterized Resolution is not ftp-
bounded. However, their lower bound technique only works for formulas arising from proposi-
tional encodings of first-order principles having infinite models.

As our first main contribution (Section 3) we devise a purely combinatorial approach, based
on a new asymmetric Prover-Delayer game, to characterize proof size in tree-like Parameterized
Resolution. In particular, we use our characterization to prove lower bounds in this system. Our
game is inspired by the Prover-Delayer game of Pudlák and Impagliazzo [28], which is one of the
canonical tools to study lower bounds in tree-like Resolution [8,28] and tree-like Res(k) [20]. As
we argue in next subsection, our game is more general than the one of Pudlák and Impagliazzo
(which is a ”constant” case of our game) and can be used also for standard Resolution. Using this
game, lower bounds to the proof size in tree-like Parameterized Resolution immediately follow
from good strategies for the Delayer. We provide such strategies for the case of the pigeonhole
principle (Theorem 9) and for the case of a (partial) ordering principle (Theorem 16) obtaining
the hardness of refuting these two principles in tree-like Parameterized Resolution.

As our second contribution we investigate classes of parameterized contradictions that have
short refutations in Parameterized Resolution. The notion of efficient kernelization plays an
important role in the theory of parameterized complexity to design fpt-algorithms. Here we
propose a notion of kernel for parameterized proof complexity. We observe that if a formula has a
kernel, then it can be efficiently refuted in tree-like Parameterized Resolution. As an immediate
consequence several examples of formulas hard for tree-like Resolution are instead efficiently
refutable in the parameterized case: pebbling contradictions, linear ordering principles, graph
pigeonhole principles, and colorability principles. But sometimes a kernel of a formula is not
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explicit or immediate to find. In Theorem 11 we prove that contradictions of bounded width
have a kernel and thus very efficient tree-like Parameterized Resolution refutations. This implies
that formulas like random 3-CNF’s and (negations of) Tseitin tautologies are efficiently refutable
in tree-like Parameterized Resolution, even though they are known to be hard for systems even
stronger than (dag-like) Resolution.

Our third and most important contribution answers a question raised by Dantchev, Martin,
and Szeider [16, Section 4]: What is the complexity of the pigeonhole principle (PHP) in dag-like
Parameterized Resolution? Clearly this question becomes even more interesting in the light of
our previous upper bounds. Using a certain encoding of the parameterized axioms—based on
the same pigeonhole principle—one can get efficient proofs of PHP in Parameterized Resolution
(Proposition 17 in [16]). In contrast, we show that dag-like Parameterized Resolution is not fpt-
bounded by proving that PHP requires proofs of size nΩ(k) (Theorem 21). Again for this lower
bound we use an interpretation of proofs in Parameterized Resolution as games. Here we employ
a slight modification of Pudlák’s game for Resolution lower bounds as devised in [27], although,
as we argue in the next subsection, the analysis for the lower bound of PHP in Resolution
does not suffice for proving lower bounds in Parameterized Resolution. Our result on dag-like
Parameterized Resolution proofs for PHP represents the next step in the program proposed
by the work of [16] that approaches the separation of FPT from W[2] as in the Cook-Reckhow
program of separating NP from coNP for classical proof complexity.

1.3 Techniques and Proof Methods

1.3.1 Asymmetric Prover-Delayer Game and Information Content of Proofs

The original Prover-Delayer game, developed by Pudlák and Impagliazzo [28], arises from the
well-known fact [25] that a tree-like Resolution proof for a formula F can be viewed as a decision
tree which solves the search problem of finding a clause of F falsified by a given assignment. In
the game, Prover queries a variable and Delayer either gives it a value or leaves the decision to
Prover and receives one point. The number of Delayer’s points at the end of the game is then
proportional to the height of the proof tree. It is easy to argue that showing lower bounds by
this game only works if (the graph of) every tree-like Resolution refutation contains a balanced
sub-tree as a minor, and the height of that sub-tree then gives the size lower bound. This is
clearly a weakness of the method, for instance in case of the (non-parameterized) pigeonhole
principle, whose tree-like Resolution refutations are of size roughly n! but only contain balanced
sub-trees of height n.

Our new game, in contrast, assigns points to the Delayer asymmetrically (log c0 and log c1)
according to two functions c0 and c1 which depend on the principle, the variable queried, and
the current partial assignment. In fact, the original Prover-Delayer game of [28] is just a (2, 2)-
asymmetric game. Proving lower bounds in our new game, i. e., devising good Delayer strategies,
entails first of all to finding suitable functions c0 and c1. Functions c0 and c1 can be interpreted
in terms of information content of tree-like Resolution refutations. The points which Delayer
scores in one round should be proportional to the fraction of the current refutation that Prover
can avoid to check by deciding a value for the variable. This is easily understandable in the
case of the original game: the only good strategy for Prover to set a variable is choosing the
value that allows him to proceed the game in the smallest of the two sub-trees of the current
refutation which is in fact of size smaller than 1/2 of the current refutation size.
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1.3.2 Proof Search and Parameterized DPLL

Gao [23] suggested to use a standard DPLL algorithm to find refutations of certain random
parameterized d-CNF’s. Here we prove that bounded width CNF’s have a kernel and hence
are efficiently refutable in tree-like Parameterized Resolution. The core of our quite simple
argument is the interpretation of a classical parameterized algorithm for vertex cover as a
DPLL procedure.

A vertex cover for a graph G is a set C ⊆ V (G) such that for any {u, v} ∈ E(G) either
u ∈ C or v ∈ C. To determine whether G has a vertex cover of size at most k there is a
well-known [19, Chapter 3] fixed parameter tractable algorithm (here the parameter is k). This
algorithm is based on the following observation: if a vertex is not in C, then all its neighbors
must be in C. The algorithm is a simple recursive procedure which focuses on an arbitrary
vertex u, and on its neighbors v1, . . . , vl: if neither G ∖ {u} has a vertex cover of size k − 1 nor
G ∖ {u, v1, . . . , vl} has a vertex cover of size k − l, then G has no vertex cover of size k.

This is easily interpretable as a parameterized DPLL procedure on the 2-CNF FG =⋀
{u,v}∈E(G)(xu ∨ xv) where xu indicates whether u ∈ C. The DPLL procedure fixes an ar-

bitrary variable xu and splits on it. When xu = 1, then the DPLL algorithm proceeds with
analyzing FG ↾xu=1 which is equal to FG∖{u}. When xu = 0, then xv1 = 1, . . . , xvl = 1 by
unit propagation. Thus the DPLL proceeds on formula FG ↾{xu=0,xv1=1,...,xvl=1}= FG∖{u,v1,...,vl}.
If at any point the DPLL has more than k variables set to one, it stops and backtracks. In
Theorem 11 we extend this idea to a DPLL algorithm for bounded width formulas.

1.3.3 Proofs as Games in Dag-like Parameterized Resolution

In studying lower bounds for Parameterized Resolution one is immediately faced with the fol-
lowing observations that exclude some techniques used for proving lower bounds in classical
Resolution. First, Weighted CNF Sat is not resilient to restrictions in the sense that if
we apply a restriction to a parameterized contradiction (F, k) we obtain (F ′, k′) with k′ ≤ k.
Then, either we use restrictions with only 0’s which does not make sense, or we restrict k too
much. The width lower bound method for Resolution [6, 9], which is based on restrictions, can
therefore be excluded from the bag of techniques to prove lower bounds in Parameterized Res-
olution. Also one has to take into account that constant width CNF’s have efficient tree-like
Parameterized Resolution refutations. This implies that any technique employed to prove lower
bounds in Parameterized Resolution for formulas of high initial width must not be preserved
under the use of extension variables which reduce the width of a formula to a constant.

We decide to study the complexity of the pigeonhole principle in Parameterized Resolution
employing a refined analysis of the original proof by Haken [24], but using the interpretation of
his method as a game given by Pudlák in his work [27]. Following Pudlák [27] we can interpret
a refutation of (F, k) in Parameterized Resolution as the following interactive process: Delayer
claims to know an assignment � (a partial matching in the case of PHP) with at most k variables
set to 1 and which satisfies F . The Prover queries the Delayer for variable values, can save such
values in his memory (the ”record”) and can forget some of them at will. Prover wants to
expose Delayer lie by exhibiting either an initial or a parameterized clause which is falsified by
the assignment. Since there is a 1-1 correspondence between memory records and clauses in the
proof we want to show that Prover always needs a high (nΩ(k)) number of records to expose the
Delayer. This will be proved showing that to win the game Prover always has to write down a
sufficient part of the assignment � in his record.

To show exponential lower bounds for general Resolution, Pudlák analyses the probability
that a given Prover record is compatible with a chosen Delayer strategy (the assignment �), i. e.,
he bounds the probability that a record can appear during some game. However, this analysis
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does not suffice to prove lower bounds in Parameterized Resolution. Instead of compatibility,
we therefore focus on the stronger notion that a given record is winning in a game and we show
that each Prover record can only be winning against a small fraction of Delayer strategies.

1.4 Organization of the Paper

The remaining part of the paper is organized as follows. Section 2 contains all preliminary
notions and definitions concerning fixed-parameter tractability, parameterized proof systems,
and Parameterized Resolution. In Section 3 we define our asymmetric Prover-Delayer game and
establish its precise relation to proof size in tree-like Parameterized Resolution. We also show
the tree-like lower bound for the pigeonhole principle. Section 4 concentrates on upper bounds:
we introduce the notion of a kernel and prove that parameterized contradictions with kernels
and of bounded width have efficient tree-like refutations. Section 5 is devoted to the analysis of
different ordering principles. We prove that a formulation of linear ordering without a kernel
still has efficient tree-like refutations and, using the prover-delayer game, we obtain hardness of
a (partial) ordering principle for parameterized tree-like resolution. In Section 6 we show that
general Parameterized Resolution is not fpt-bounded by proving a lower bound for the pigeon
hole principle. Finally, in Section 7 we discuss open problems.

2 Parameterized Proof Complexity

2.1 Fixed-Parameter Tractability

A parameterized language is a language L ⊆ Σ∗×ℕ. For an instance (x, k), we call k the param-
eter of (x, k). A parameterized language L is fixed-parameter tractable if L has a deterministic
decision algorithm running in time f(k)∣x∣O(1) for some computable function f . The class of all
fixed-parameter tractable languages is denoted by FPT.

Besides FPT there is a wealth of complexity classes containing problems which are not
believed to be fixed-parameter tractable. The most prominent classes lie in the weft hierarchy
forming a chain

FPT ⊆W[1] ⊆W[2] ⊆ ⋅ ⋅ ⋅ ⊆W[P] ⊆ para-NP .

The classes of the weft hierarchy are usually defined as the closure of a canonical problem under
fpt-reductions. For W[2] this canonical problem is Weighted CNF Sat containing instances
(F, k) with a propositional formula F in CNF and a parameter k ∈ ℕ. Weighted CNF Sat
asks whether F has a satisfying assignment of weight k, where the weight of an assignment �,
denoted w(�), is the number of variables that � assigns to 1. Instead of asking for an assignment
� with w(�) = k we can also ask for � with w(�) ≤ k and still get a W[2]-complete problem
(cf. [16] and the appendix). Like in the classical duality between tautologies and satisfiability,
we obtain a complete problem for coW[2]:

Definition 1 (Dantchev, Martin, Szeider [16]). A parameterized contradiction is a pair (F, k)
consisting of a propositional formula F and k ∈ ℕ such that F has no satisfying assignment of
weight ≤ k. We denote the set of all parameterized contradictions by PCon.

For an in-depth treatment of notions from parameterized complexity we refer to the mono-
graphs [19,22,26].

2.2 Parameterized Proof Systems

We start with the general definition of a parameterized proof system of Dantchev, Martin, and
Szeider [16].
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Definition 2 (Dantchev, Martin, Szeider [16]). A parameterized proof system for a parame-
terized language L ⊆ Σ∗ × ℕ is a function P : Σ∗ × ℕ → Σ∗ × ℕ such that rng(P ) = L and
P (x, k) can be computed in time O(f(k)∣x∣O(1)) with some computable function f .

In this definition, there are two parameters: one stemming from the parameterized language,
but there is also a parameter in the proof. Verification of proofs then proceeds in ftp-time in
the proof parameter. We contrast this with the classical concept of Cook and Reckhow where
proofs are verified in polynomial time:

Definition 4 (Cook, Reckhow [15]). A proof system for a language L ⊆ Σ∗ is a polynomial-time
computable function P : Σ∗ → Σ∗ with rng(P ) = L.

This framework can also be applied to parameterized languages L ⊆ Σ∗ × ℕ. Thus, in
contrast to the parameterized proof systems from Definition 2, we say that a proof system for
the parameterized language L is just a polynomial-time computable function P : Σ∗ → Σ∗ × ℕ
with rng(P ) = L. The difference to Definition 2 is that proofs are now verified in polynomial
time. We will argue in Theorem 3 that this weaker and simpler notion is in fact equivalent to
the notion of parameterized proof systems from Definition 2 when considering lengths of proofs.

For lengths of proofs it is appropriate to adjust the notion of short proofs to the parameter-
ized setting. This was formalized by Dantchev, Martin, and Szeider as follows:

Definition 5 (Dantchev, Martin, Szeider [16]). A parameterized proof system P for a param-
eterized language L is fpt-bounded if there exist computable functions f and g such that every
(x, k) ∈ L has a P -proof (y, k′) with ∣y∣ ≤ f(k)∣x∣O(1) and k′ ≤ g(k).

Again, if we use polynomial-time computable proof systems for parameterized languages,
this definition simplifies a bit as follows:

Definition 6. A proof system P for a parameterized language L is fpt-bounded if there exists
a computable function f such that every (x, k) ∈ L has a P -proof of size at most f(k)∣x∣O(1).

We now want to determine which parameterized languages admit ftp-bounded proof systems.
Recall that by the theorem of Cook and Reckhow [15], the class of all languages with polynomi-
ally bounded proof systems coincides with NP. To obtain a similar result in the parameterized
world, we use the following parameterized version of NP.

Definition 7 (Flum, Grohe [21]). The class para-NP contains all parameterized languages which
can be decided by a nondeterministic Turing machine in time f(k)∣x∣O(1) for some computable
function f .

The following result is a direct analogue of the classical theorem of Cook and Reckhow [15]
for the parameterized setting. Moreover, it shows the equivalence of our two notions for proof
systems for parameterized languages with respect to the existence of fpt-bounded systems.

Theorem 3. Let L ⊆ Σ∗ × ℕ be a parameterized language. Then the following statements are
equivalent:

1. There exists an fpt-bounded proof system for L.

2. There exists an fpt-bounded parameterized proof system for L.

3. L ∈ para-NP.

7



Proof. For the implication 1⇒ 2, let P be an fpt-bounded proof system for L. Then the system
P ′ defined by P ′(y, k) = P (y) is an fpt-bounded parameterized proof system for L.

For the implication 2 ⇒ 3, let P be an fpt-bounded parameterized proof system for L
such that every (x, k) ∈ L has a P -proof (y, k′) with ∣y∣ ≤ f(k)p(∣x∣) and k′ ≤ g(k) for some
computable functions f, g and some polynomial p. Let M be a Turing machine computing P
in time ℎ(k)q(n) with computable ℎ and a polynomial q. Then L ∈ para-NP by the following
algorithm: on input (x, k) we guess a proof (y, k′) with ∣y∣ ≤ f(k)p(∣x∣) and k′ ≤ g(k). Then
we verify that P (y, k′) = (x, k) in time ℎ(k′)q(∣y∣) which by the choice of (y, k) yields an fpt
running time. If the test is true, then we accept the input (x, k), otherwise we reject.

For the implication 3⇒ 1, let L ∈ para-NP and let M be a nondeterministic Turing machine
for L running in time f(k)p(n) where f is computable and p is a polynomial. Then we define
the following proof system P for L:

P (x, k, w) =

{
(x, k) if w is an accepting computation of M on input (x, k)

(x0, k0) otherwise

where (x0, k0) ∈ L is some fixed instance. Apparently, P can be computed in polynomial time.
Moreover, P is fpt-bounded as every (x, k) ∈ L has a P -proof of size O(f(k)p(∣x∣)).

As in items 1 and 2 of Theorem 3, the two concepts of proof systems for parameterized
languages also turn out to be equivalent with respect to other notions, for instance when defining
parameterized simulations or considering the existence of optimal proof systems.

2.3 Parameterized Resolution

A literal is a positive or negated propositional variable and a clause is a set of literals. The
width of a clause is the number of its literals. A clause is interpreted as the disjunctions of its
literals and a set of clauses as the conjunction of the clauses. Hence clause sets correspond to
formulas in CNF. The Resolution system is a refutation system for the set of all unsatisfiable
CNF. Resolution uses as its only rule the Resolution rule

{x} ∪ C {¬x} ∪D
C ∪D

for clauses C,D and a variable x. The aim in Resolution is to demonstrate unsatisfiability of a
clause set by deriving the empty clause. If in a derivation every derived clause is used at most
once as a prerequisite of the Resolution rule, then the derivation is called tree-like, otherwise it
is dag-like. The size of a Resolution proof is the number of its clauses where multiple instances
of the same clause are counted separately. Undoubtedly, Resolution is the most studied and
best-understood propositional proof system (cf. [31]).

For the remaining part of this paper we will concentrate on Parameterized Resolution as
introduced by Dantchev, Martin, and Szeider [16]. Parameterized Resolution is a refutation
system for the set PCon of parameterized contradictions (cf. Definition 1). Given a set of
clauses F in variables x1, . . . , xn with (F, k) ∈ PCon, a Parameterized Resolution refutation of
(F, k) is a Resolution refutation of

F ∪ {¬xi1 ∨ ⋅ ⋅ ⋅ ∨ ¬xik+1
∣ 1 ≤ i1 < ⋅ ⋅ ⋅ < ik+1 ≤ n} .

Thus, in Parameterized Resolution we have built-in access to all parameterized clauses of the
form ¬xi1 ∨ ⋅ ⋅ ⋅ ∨ ¬xik+1

. All these clauses are available in the system, but when measuring the
size of a derivation we only count those which appear in the derivation. Note that parameterized
resolution is actually a proof system where verification proceeds in polynomial time.
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As before, if refutations are tree-like we speak of tree-like Parameterized Resolution. As
explained in [16], a tree-like Parameterized refutation of (F, k) can equivalently be described as
a boolean decision tree. A boolean decision tree for (F, k) is a binary tree where inner nodes are
labeled with variables from F and leafs are labeled with clauses from F or parameterized clauses
¬xi1 ∨ ⋅ ⋅ ⋅ ∨ ¬xik+1

. Each path in the tree corresponds to a partial assignment where a variable
x gets value 0 or 1 according to whether the path branches left or right at the node labeled
with x. The condition on the decision tree is that each path � must lead to a clause which is
falsified by the assignment corresponding to �. Therefore, a boolean decision tree solves the
search problem for (F, k) which, given an assignment �, asks for a clause falsified by �. It is
easy to verify that each tree-like Parameterized Resolution refutation of (F, k) yields a boolean
decision tree for (F, k) and vice versa, where the size of the Resolution proof equals the number
of nodes in the decision tree.

3 Tree-like Lower Bounds via Asymmetric Prover-Delayer Games

Let (F, k) ∈ PCon where F is a set of clauses in n variables x1, . . . , xn. We define a Prover-
Delayer game: Prover and Delayer build a (partial) assignment to x1, . . . , xn. The game is
over as soon as the partial assignment falsifies either a clause from F or a parameterized clause
¬xi1 ∨ ⋅ ⋅ ⋅ ∨ ¬xik+1

where 1 ≤ i1 < ⋅ ⋅ ⋅ < ik+1 ≤ n. The game proceeds in rounds. In each
round, Prover suggests a variable xi, and Delayer either chooses a value 0 or 1 for xi or leaves
the choice to the Prover. In this last case, if the Prover sets the value, then the Delayer gets
some points. The number of points Delayer earns depends on the variable xi, the assignment
� constructed so far in the game, and two functions c0(xi, �) and c1(xi, �). More precisely, the
number of points that Delayer will get is

0 if Delayer chooses the value,
log c0(xi, �) if Prover sets xi to 0, and
log c1(xi, �) if Prover sets xi to 1.

Moreover, the functions c0(x, �) and c1(x, �) are chosen in such a way that for each variable x
and assignment �

1

c0(x, �)
+

1

c1(x, �)
= 1 (1)

holds. Let us call this game the (c0, c1)-game on (F, k).
The connection of this game to size of proofs in tree-like Parameterized Resolution is given

by the next theorem:

Theorem 8. Let (F, k) be a parameterized contradiction and let c0 and c1 be two functions
satisfying (1) for all partial assignments � to the variables of F . If (F, k) has a tree-like
Parameterized Resolution refutation of size at most S, then the Delayer gets at most logS
points in each (c0, c1)-game played on (F, k).

Proof. Let (F, k) be a parameterized contradiction in variables x1, . . . , xn and let Π be a tree-
like Parameterized Resolution refutation of (F, k). Assume now that Prover and Delayer play
a game on (F, k) where they successively construct an assignment �. Let �i be the partial
assignment constructed after i rounds of the game, i. e., �i assigns i variables a value 0 or 1.
By pi we denote the number of points that Delayer has earned after i rounds, and by Π�i we
denote the sub-tree of the decision tree of Π which has as its root the node reached in Π along
the path specified by �i.

9



We use induction on the number of rounds i in the game to prove the following claim:

∣Π�i ∣ ≤
∣Π∣
2pi

.

To see that the theorem follows from this claim, let � be an assignment constructed during the
game yielding p� points to the Delayer. As a contradiction has been reached in the game, the
size of Π� is 1, and therefore by the inductive claim

1 ≤ ∣Π∣
2p�

,

yielding p� ≤ log ∣Π∣ as desired.
In the beginning of the game, Π�0 is the full tree and the Delayer has 0 points. Therefore

the claim holds.
For the inductive step, assume that the claim holds after i rounds and Prover asks for a

value of the variable x in round i+1. If the Delayer chooses the value, then pi+1 = pi and hence

∣Π�i+1 ∣ ≤ ∣Π�i ∣ ≤
∣Π∣
2pi

=
∣Π∣

2pi+1
.

If the Delayer defers the choice to the Prover, then the Prover uses the following strategy to set
the value of x. Let �x=0

i be the assignment extending �i by setting x to 0, and let �x=1
i be the

assignment extending �i by setting x to 1. Now, Prover sets x = 0 if ∣Π�x=0
i
∣ ≤ 1

c0(x,�i)
∣Π�i ∣,

otherwise he sets x = 1. Because 1
c0(x,�i)

+ 1
c1(x,�i)

= 1, we know that if Prover sets x = 1, then

∣Π�x=1
i
∣ ≤ 1

c1(x,�i)
∣Π�i ∣. Thus, if Prover’s choice is x = j with j ∈ {0, 1}, then we get

∣Π�i+1 ∣ = ∣Π�x=j
i
∣ ≤ ∣Π�i ∣

cj(x, �i)
≤ ∣Π∣
cj(x, �i)2pi

=
∣Π∣

2pi+log cj(x,�i)
=
∣Π∣

2pi+1
.

This completes the proof of the induction.

Notice that setting c0(x, �) = c1(x, �) = 2 for all variables x and partial assignments �,
we get the game of Pudlák and Impagliazzo [28]. Suitably choosing functions c0 and c1 and
defining a Delayer-strategy for the (c0, c1)-game we can prove a lower bound to the proof size in
tree-like Parameterized Resolution. We will illustrate this for the pigeonhole principle PHPn+1

n

which uses variables xi,j with i ∈ [n+ 1] and j ∈ [n], indicating that pigeon i goes into hole j.
PHPn+1

n consists of the clauses⋁
j∈[n]

xi,j for all pigeons i ∈ [n+ 1]

and ¬xi1,j ∨ ¬xi2,j for all choices of distinct pigeons i1, i2 ∈ [n+ 1] and holes j ∈ [n]. We prove
that PHPn+1

n is hard for tree-like Parameterized Resolution.

Theorem 9. Any tree-like Parameterized Resolution refutation of (PHPn+1
n , k) has size nΩ(k).

Proof. Let � be a partial assignment to the variables {xi,j ∣ i ∈ [n + 1], j ∈ [n]}. Let zi(�) =
∣{j ∈ [n] ∣ �(xi,j) = 0}∣, i. e., zi(�) is the number of holes already excluded by � for pigeon i.
We define

c0(xi,j , �) =
n− zi(�)

n− zi(�)− 1
and c1(xi,j , �) = n− zi(�)

10



which apparently satisfies (1). We now describe Delayer’s strategy in a (c0, c1)-game played on
(PHPn+1

n , k). If Prover asks for a value of xi,j , then Delayer decides as follows:

set �(xi,j) = 0 if there exists i′ ∈ [n+ 1] ∖ {i} such that �(xi′,j) = 1 or
if there exists j′ ∈ [n] ∖ {j} such that �(xi,j′) = 1

set �(xi,j) = 1 if there is no j′ ∈ [n] with �(xi,j′) = 1 and ∣zi(�)∣ ≥ n− k
let Prover decide otherwise.

Intuitively, Delayer leaves the choice to Prover as long as pigeon i does not already sit in a hole,
but there are at least k holes free for pigeon i, and there is no other pigeon sitting already in
hole j. If Delayer uses this strategy, then clauses from PHPn+1

n will not be violated in the game,
i. e., a contradiction will always be reached on some parameterized clause. To verify this claim,
let � be a partial assignment constructed during the game with w(�) ≤ k. Then, for every
pigeon which has not been assigned to a hole yet, there are at least k holes where it could go
(and of these only w(�) holes are already occupied by other pigeons). Thus � can be extended
to a one-one mapping of exactly k pigeons to holes.

Therefore, at the end of the game exactly k + 1 variables have been set to 1. Let us denote
by p the number of variables set to 1 by Prover and let d be the number of 1’s assigned by
Delayer. As argued before p + d = k + 1. Let us check how many points Delayer earns in this
game. If Delayer assigns 1 to a variable xi,j , then pigeon i was not assigned to a hole yet and,
moreover, there must be n−k holes which are already excluded for pigeon i by �, i. e., for some
J ⊆ [n] with ∣J ∣ = n−k we have �(xi,j′) = 0 for all j′ ∈ J . Most of these 0’s have been assigned
by Prover, as Delayer has only assigned a 0 to xi,j′ when some other pigeon was already sitting
in hole j′, and there can be at most k such holes. Thus, before Delayer sets �(pi,j) = 1, she has
already earned points for at least n− 2k variables xi,j′ , j

′ ∈ J , yielding at least

n−2k−1∑
z=0

log
n− z

n− z − 1
= log

n−2k−1∏
z=0

n− z
n− z − 1

= log
n

2k
= log n− log 2k

points for the Delayer. Let us note that because Delayer never allows a pigeon to go into more
than one hole, she will really get the number of points calculated above for every of the d
variables which she set to 1.

If, conversely, Prover sets variable xi,j to 1, then Delayer gets log(n− zi(�)) points for this,
but she also received points for most of the zi(�) variables set to 0 before. Thus, in this case
Delayer earns on pigeon i at least

log(n− zi(�)) +

zi(�)−k−1∑
z=0

log
n− z

n− z + k − 1

= log(n− zi(�)) + log
n

n− zi(�) + k

= log n− log
n− zi(�) + k

n− zi(�)

≥ log n− log k

points. In total, Delayer gets at least

d(log n− log 2k) + p(log n− log k) ≥ k(log n− log 2k)

points in the game. Applying Theorem 8, we obtain ( n2k )k as a lower bound to the size of each
tree-like Parameterized Resolution refutation of (PHPn+1

n , k).
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By inspection of the above Delayer strategy it becomes clear that the lower bound from
Theorem 9 also holds for the functional pigeonhole principle where in addition to the clauses
from PHPn+1

n we also include ¬xi,j1 ∨ ¬xi,j2 for all pigeons i ∈ [n + 1] and distinct holes
j1, j2 ∈ [n].

4 Kernels and Small Refutations

The notion of efficient kernelization plays an important role in the theory of parameterized
complexity. A kernelization for a parameterized language L is a polynomial-time procedure
A : Σ∗ × ℕ→ Σ∗ × ℕ such that for each (x, k)

1. (x, k) ∈ L if and only if A(x, k) ∈ L and

2. if A(x, k) = (x′, k′), then k′ ≤ k and ∣x′∣ ≤ f(k) for some computable function f indepen-
dent of ∣x∣.

It is clear that if a parameterized language admits a kernelization, then the language is fixed-
parameter tractable, but also the converse is true (cf. [22]). For parameterized proof complexity
we suggest a similar notion of kernel for parameterized contradictions:

Definition 10. A set Γ ⊆ PCon of parameterized contradictions has a kernel if there exists a
computable function f such that every (F, k) ∈ Γ has a subset F ′ ⊆ F of clauses satisfying the
following conditions:

1. F ′ contains at most f(k) variables and

2. (F ′, k) is a parameterized contradiction.

Note that a sequence of parameterized contradictions with a kernel of size f(k) admits fpt-
bounded tree-like Resolution refutations of size at most 2f(k). Nevertheless, there are CNF’s
without a kernel, but with fpt-bounded refutations, for example (x1 ∨ x2 ∨ ⋅ ⋅ ⋅ ∨ xn) ∧ ¬x1 ∧
¬x2 ∧ ⋅ ⋅ ⋅ ∧ ¬xn.

We now give some examples of CNF’s with kernels:

Pebbling contradictions. Fix a constant l and an acyclic connected directed graph G of
constant maximum in-degree with a single sink vertex z. For any vertex v in G, let Pred(v) be
the set of immediate predecessors of v. For any v we use the propositional variables xv1, . . . , x

v
l .

The pebbling contradiction consists of the conjunction of the constraints⎛⎝ ⋀
u∈Pred(v)

(xu1 ∨ . . . ∨ xul )

⎞⎠ −→ xv1 ∨ . . . ∨ xvl

for any v ∈ V (G) and constraints ¬xz1,¬xz2, . . . ,¬xzl . This means that for any source vertex
s (which has an empty set of predecessors) one of the variables xsi is true. By induction this
holds for every vertex in G, in particular also for the sink z contradicting the last l clauses. For
constant l and constant maximum in-degree, the pebbling formula can be encoded as a CNF of
polynomial size in the number of vertices of G.

To see that the pebbling contradictions have a kernel, consider the first k + 1 vertices in a
topological ordering of V (G). The corresponding propagation formulas form a parameterized
contradiction, because these formulas enforce k + 1 true variables. For graphs of constant
maximum in-degree, these formulas have O(1) variables each, so their CNF encoding has size
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O(k) and constitutes a kernel. This is remarkable, because forms of pebbling tautologies are
hard for tree-like Resolution in the non-parameterized setting [8].

Colorability. Fix a constant c and a graph G which is not c-colorable. The c-coloring
contradiction is defined on variables pu,j where u is a vertex of G and j is one of the c colors.
The CNF claims that G is c-colorable: (1) for any vertex u we have the clause

⋁
1≤j≤c pu,j

claiming that the vertex u gets a color; (2) for any edge {u, v} in G and any color j, the clause
¬pu,j ∨ ¬pv,j claims that no pair of adjacent vertices gets the same color.

It is easy to see that the clauses of type (1) corresponding to any k+1 vertices form a kernel
and thus have a short refutation. This contrasts with the fact that for random G and c ≥ 3 this
formula is hard in Resolution [3].

Graph pigeonhole principle. Fix G to be a bounded-degree bipartite graph, with the
set of vertices partitioned into two sets: U of size n + 1 (the pigeons) and V of size n (the
holes). PHP(G) is a variant of the pigeonhole principle where a pigeon can go only into a small
set of holes as specified by the edges of G. If G is an expander, then the principle is hard for
Resolution [9]. PHP(G) consists of the following clauses: (1) for u ∈ U we have

⋁
v∈Γ(u) pu,v;

(2) for any v ∈ V and any u1, u2 ∈ Γ(v) we have the clause ¬pu1,v ∨¬pu2,v. It is clear that k+ 1
clauses of type (1) constitute a kernel.

Ordering principles. In Section 5 we will give different formulations of the total ordering
principle. We will see that the propositional translations of the first-order formulation given in
[16] have easy refutations (as observed in [16]) because of the presence of a kernel. We emphasize
that the same ordering principle requires exponential-size tree-like Resolution refutations in the
non-parameterized setting [12].

Bounded-width CNF. The kernels in the previous examples are very explicit, but this
is not always the case (as in vertex cover, see Section 1.3.2). Is it easy to find a kernel if it
is known to exist? The answer to this question has consequences regarding automatizability
of tree-like Parameterized Resolution. We see now a general strategy for finding kernels and
fpt-bounded refutations for parameterized contradictions of bounded width. This technique
essentially generalizes the one used for vertex cover explained in the introduction.

Theorem 11. If F is a CNF of width d and (F, k) is a parameterized contradiction, then
(F, k) has a tree-like Parameterized Resolution refutation of size O(dk+1). Moreover, there
is an algorithm that for any (F, k) either finds such tree-like refutation or finds a satisfying
assignment for F of weight ≤ k. The algorithm runs in time O(∣F ∣ ⋅ k ⋅ dk+1).

Proof. Assume (F, k) is a parameterized contradiction. We want to find a refutation for F
with parameter k (i. e., at most k variables can be set to true). We first consider a clause
C = x1∨x2∨ . . .∨xl where l ≤ d with all positive literals. Such clause exists because otherwise
the full zero assignment would satisfy F .

By induction on k we will prove that (F, k) has a parameterized tree-like refutation of size
at most 2 ⋅

∑k+1
i=0 d

i−1. For k = 0 the clauses {¬xi}li=1 are parameterized axioms of the system,
thus C is refutable in size at most 1 + 2l ≤ 1 + 2d.

Now consider k > 0. For any 1 ≤ i ≤ l, let Fi be the restriction of F obtained by setting
xi = 1. Each (Fi, k − 1) is a parameterized contradiction, otherwise (F, k) would not be. By
inductive hypothesis (Fi, k− 1) has a tree-like refutation of size at most s = 2

∑k
i=0 d

i− 1. This
refutation can be turned into a tree-like derivation of ¬xi from (F, k). Now we can derive all ¬xi
for 1 ≤ i ≤ l and refute clause C. Such refutation has length 1+l+ls ≤ 1+d+ds = 2⋅

∑k+1
i=0 d

i−1.
By inspection of the proof, it is clear that the refutation can be computed by a simple

procedure which at each step looks for a clause C with only positive literals, and builds a refu-
tation of (F, k) recursively by: building l refutations of (Fi, k−1); turning them in l derivations
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(F, k) ⊢ ¬xi; and resolving against C. This procedure can be easily implemented in the claimed
running time.

So far we considered (F, k) to be a parameterized contradiction. If that is not the case, then
the algorithm fails. It can fail in two ways: (a) it does not find a clause with only positive literals;
(b) one among (Fi, k − 1) is not a parameterized contradiction. The algorithm will output the
full zero assignment in case (a) and {xi = 1}∪� in case (b), where � is an assignment witnessing
(Fi, k − 1) ∕∈ PCon. By induction we can show that on input (F, k) this procedure returns a
satisfying assignment of weight ≤ k.

We state two interesting consequences of this result.

Corollary 12. For each d ∈ ℕ, the set of all parameterized contradictions in d-CNF has a
kernel.

Proof. The refutations constructed in Theorem 11 contain O(dk) initial clauses in O(dk+1)
variables. These clauses form a kernel.

The following corollary expresses some restricted form of automatizability (cf. also the dis-
cussion in Section 7).

Corollary 13. If Γ ⊆ PCon has a kernel, then there exists an fpt-algorithm which on input
(F, k) ∈ Γ returns both a kernel and a refutation of (F, k).

Proof. Let Γ have a kernel of size f(k). Then the kernel only contains clauses of width ≤ f(k).
On input (F, k) we run the algorithm of Theorem 11 on the CNF formula consisting of all
clauses of F with width ≤ f(k). This yields a kernel together with its refutation.

Tseitin tautologies. Fix a bipartite graph G = (L,R,E) such that the degree of the
vertices on the left side is constant and the degree of all vertices on the right side is even. Fix
now an arbitrary boolean function f : L → {0, 1} such that

∑
u∈L f(u) ≡ 1 (mod 2). The

Tseitin tautology for (G, f) claims that there is no way to define g : R → {0, 1} such that for
any u ∈ L,

∑
v∈Γ(u) g(v) ≡ f(u) (mod 2). This fact follows by a simple parity argument. The

CNF formulation of this claim uses variables xv for v ∈ R. The CNF is constituted by the
encoding of the constraints

∑
v∈Γ(u) xv ≡ f(u) (mod 2) for every u ∈ L. Each linear constraint

requires exponential size to be represented in CNF, but this is not an issue here because left-side
vertices have constant degree. Hence Tseitin formulas have bounded width. By Theorem 11
they have a kernel, but in contrast to our previous examples this kernel is not very explicit.

Corollary 14. There are formulas (e. g. Tseitin tautologies) which are hard for general Reso-
lution but easy for tree-like Parameterized Resolution.

5 Ordering Principles

In this section we discuss Parameterized Resolution refutations for various ordering principles
OP , also called least element principles. The principle claims that any finite partially ordered
set has a minimal element. There is a direct propositional translation of OP to a family OPn

of CNF’s. Each CNF OPn expresses that there exists a partially ordered set of size n such that
any element has a predecessor. We are also interested in the linear ordering principle LOP in
which the set is required to be totally ordered.

Dantchev, Martin, and Szeider [16] show that a propositional formulation of LOP has small
refutations in tree-like Parameterized Resolution. They also show that such efficient refutation
does not exists for OP . We observe that their formulation of LOP has short proofs because
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it contains very simple kernels. We describe LOP∗, an alternative formulation of the linear
ordering principle which does not contain a kernel but nevertheless has (less trivial) fpt-bounded
tree-like refutations.

We now describe the three propositional formulations of the ordering principles. For a
model with n elements, OPn, LOPn, and LOP∗n are three CNF’s over variables xi,j for i ∕= j
and i, j ∈ [n].

OP: the general ordering principle has the following clauses:

¬xi,j ∨ ¬xj,i for every i, j (Antisymmetry)

¬xi,j ∨ ¬xj,k ∨ xi,k for every i, j, k (Transitivity)⋁
j∈[n]∖{i}

xj,i for every i (Predecessor)

LOP: is the same as OP with the addition of totality constraints:

xi,j ∨ xj,i for every i, j (Totality)

LOP∗: is a different encoding of LOP where we consider only variables xi,j for i < j. The
intended meaning is that xi,j is true whenever j precedes i in the ordering, and false if i precedes
j. The reader may think xi,j to indicate if i and j are an inversion in the permutation for the
indexes described by the total order. In particular the full true assignment represents the linear
order (n, n−1, n−2, . . . , 2, 1) while the full false assignment represents (1, 2, . . . , n−2, n−1, n).
This representation will help in the proof of Theorem 15.

LOP∗n is obtained by substituting in LOPn any occurrence of xj,i for j > i with ¬xi,j . In
this way all totality and antisymmetry clauses vanish, and transitivity translates according to
relative ranks of the involved indexes.

¬xi,j ∨ ¬xj,k ∨ xi,k for all i < j < k (Transitivity 1)

xij ∨ xj,k ∨ ¬xi,k for all i < j < k (Transitivity 2)⋁
j<i

¬xj,i ∨
⋁
i<j

xi,j for all i (Predecessor)

Both OP and LOP are the canonical propositional translations of the first-order formulations
of the general and total ordering principle, respectively. In [16] the upper bound for LOP and the
lower bound for OP are proved by model-theoretic criteria on the first-order logic formulations.

We remark that in the non-parameterized setting, neither OP , LOP , nor LOP∗ have short
tree-like Resolution refutations [12], but all of them have general Resolution refutations of
polynomial size [33]. It is interesting that in the parameterized setting LOP and LOP∗ become
easy for tree-like, while OP remains hard. Thus, OP provides a separation between tree-like
and dag-like Parameterized Resolution.

It is easy to see that LOP has short tree-like refutations in Parameterized Resolution: notice
that the totality clauses for any k + 1 pairs of indexes form a parameterized contradiction of
2k + 2 variables at most, and so they are a kernel. Unfortunately, LOP is easy to refute for
uninteresting reasons: the kernel is very simple. The alternative formulation LOP∗ does not
have a kernel because all clauses of bounded width are satisfiable by the all zero assignment
which represents a total order. Nevertheless LOP∗ admits fpt-bounded tree-like refutations.

Theorem 15. The formulas LOP∗n have fpt-bounded tree-like refutations in Parameterized Res-
olution.
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Proof. Let (LOP∗n, k) be the given instance and assume w. l. o. g. that k ≤ n. We are going
to derive LOP∗k+1 from LOP∗n in polynomial length. This concludes the proof of the theorem

because LOP∗k+1 has O(k2) variables and consequently has a tree-like refutation of length 2O(k2).
The idea of the refutation is that for any total order either the least element is among

1, . . . , k + 1 or there is an element less than all of them. This means that there are at least
k+1 inversions with respect to the canonical order (i. e., k+1 variables are set to 1). To obtain
LOP∗k+1 we have to derive ⋁

1≤j<i
¬xj,i ∨

⋁
i<j≤k+1

xi,j

for any 1 ≤ i ≤ k + 1. W. l. o. g. we discuss the case i = 1 which requires simpler notation, the
other k cases are analogous.

Our goal then is to derive
⋁

1<j≤k+1 x1,j . For any l > k + 1 consider the following clauses:
the first is an axiom of Parameterized Resolution, the others are transitivity axioms.

¬x1,l ∨ ¬x2,l ∨ . . . ∨ ¬xk+1,l (2)

x1,2 ∨ x2,l ∨ ¬x1,l (3)

x1,3 ∨ x3,l ∨ ¬x1,l (4)

...

x1,k+1 ∨ xk+1,l ∨ ¬x1,l (5)

By applying Resolution between clause (2) and the transitivity clauses we obtain

x1,2 ∨ x1,3 ∨ . . . ∨ x1,k+1 ∨ ¬x1,l (6)

We just proved that if 1 is the least index among the first k+ 1, then no index above k+ 1 can
be less than 1, otherwise there would be at least k+1 true variables. The predecessor constraint
for 1 contains the literal x1,l for every l; thus applying Resolution between that and clause (6)
for every l > k + 1 yields

⋁
1<j≤k+1 x1,j .

We obtained the predecessor axiom for index 1 in LOP∗k+1 by a derivation of size O(kn).
With k + 1 such deductions we obtain LOP∗k+1. As the whole refutation of LOP∗n has length

O(k2n) + 2O(k2), it is fpt-bounded.

The following theorem has been first proved in [16]. Their proof is based on a model-theoretic
criterion. We give a combinatorial proof based on Prover-Delayer games.

Theorem 16. Any tree-like Parameterized Resolution refutation of (OPn, k) has size nΩ(k).

Proof. Let � be an assignment to the variables of OP . The Delayer will keep the following
information:

∙ G(�) = (V (�), E(�)) the graph obtained taking as edges the (i, j)’s such that �(xi,j) = 1;

∙ G∗(�) the transitive closure of G(�) and GT (�) the transpose graph of G(�).

In particular, for any vertex j in G(�), the Delayer considers the following information

∙ zj(�) = ∣{i ∈ [n] ∣ �(xi,j) is not assigned}∣,

∙ Pred j(�) = {i ∈ [n] ∣ �(xi,j) = 1}, and

∙ PPred j(�) the subset of Pred j(�) of those edges set to 1 by the Prover .
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Loosely speaking the Delayer, taking as few decisions as possible, wants to force: (1) the
game to end on a parameterized clause, and (2) the Prover to decide only one predecessor for
each node. To reach the former, in some cases she will be forced to decide a predecessor of a
node j to avoid that after few more trivial queries the game ends on a predecessor clause. To
get (2) she will be forced to say that some node can’t be predecessor of some node j. In both
cases we will prove that Delayer will keep her number of decisions bounded.

Let � be the assignment built so far in the game and let xi,j be the variable queried by
Prover. Delayer acts as follows:

1. if (i, j) ∈ E(�)∗, then answer 1;

2. if (i, j) ∈ (E(�)∗)T , then answer 0;

3. if ∣Pred j(�)∣ = 0 and zj(�) ≤ k + 1, then answer 1;

4. if ∣PPred j(�)∣ ≥ 1, then answer 0;

5. otherwise, she leaves the decision to the Prover.

To simplify the argument we assume that in the game, after each decision by the Prover or
after a decision by the Delayer according to Rule (3), the Prover asks all variables corresponding
to edges that are in G∗(�) and (G(�)∗)T but not in G(�). This will not change our result since
on these nodes Delayer does not score any point.

Let P �(t) be the set of edges set to � ∈ {0, 1} by the Prover after stage t ends. Let D�(t) be
the set of edges set to � ∈ {0, 1} by the Delayer. Finally, let D∗(t) ⊆ D1(t) be the set of edges
set to 1 by the Delayer according to Rule (3) of her strategy. P �j (t), D�

j(t), and D∗j (t) are the
subsets of the respective sets formed by those edges having end-node j, i. e., edges of the form
(i, j) for some i.

Let �t be the assignment built after stage t and let �∗t be the extensions of �t obtained by
assigning all edges from G∗(�t) to 1 and all edges from (G(�t)

∗)T to 0. We define Nj(t) =
{ (i, j) ∣ i ∈ [n], (i, j) ∈ dom(�∗t ) ∖ P 0(t) }.

Lemma 17. At each stage t of the game, it holds:

1. ∣P 1(t)∣+ ∣D∗(t)∣ ≥
√
∣E(�t)∣;

2. if ∣P 1
j (t)∣+ ∣D∗j (t)∣ = 0, then ∣Nj(t)∣ ≤ k;

3. if w(�t) ≤ k, then �∗t does not falsify any predecessor clause;

4. for each j ∈ [n], ∣D∗j (t)∣ ≤ 1 and ∣P 1
j (t)∣ ≤ 1.

Proof. Condition (1) follows since ∣P 1(t)∣ + ∣D1(t)∣ = ∣E(�t)∣, and ∣E(�t)∣ ≤ ∣E∗(�t)∣ ≤
(∣P 1(t)∣+ ∣D∗(t)∣)2.

Condition (2): ∣P 1
j (t)∣+ ∣D∗j (t)∣ = 0 implies that the vertex j has no predecessor. The only

way to set a predecessor to a vertex which already has one is by Rule (1), but a vertex without
predecessors cannot get one by transitive closure. Then an edge xi,j is in dom(�∗t ) ∖ P 0(t) if
and only if i is a successor of j in G∗(�t). Hence there must be a directed tree rooted in j
and containing all such successors. As G(�t)

T contains at most k edges, there are at most k
successors of j. Hence ∣Nj(t)∣ ≤ k.

Condition (3): consider a predecessor clause Cj which is not satisfied by �t. Then there are
at least k+1 variables xi,j unset, since otherwise, according to Rule (3) Delayer should have set
one predecessor for j. If ∣P 1

j (t)∣ ≥ 1, then Cj would be satisfied. Then by ∣P 1
j (t)∣+ ∣D∗j (t)∣ = 0
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and by condition (2) at most k additional literals of Cj are set to 0 by �∗t . The claim follows
since there is at least one unset literal in Cj .

Condition (4): the first time that a predecessor of some node j is decided in the game is
either by a decision of the Prover or by a decision of the Delayer according to Rule (3). Since
Delayer applies Rule (3) only in the case no predecessor has been yet decided, it follows that
∣D∗j (t)∣ ≤ 1. Moreover, by Rule (4) Delayer prevents the Prover to set more than one predecessor

for each node, hence ∣P 1
j (t)∣ ≤ 1.

Lemma 18. After the last stage f of the game the following holds:

∙ a parameterized clause is falsified;

∙ ∣P 1(f)∣+ ∣D∗(f)∣ ≥
√
k + 1.

Proof. For the first condition, we notice that Rules (1) and (2) in the Delayer’s strategy guar-
antee that neither antisymmetry nor transitivity axioms will be ever falsified during the game.
Assuming that �f has weight strictly less then k+1, then by Lemma 17 (part 3), no predecessor
clause is falsified. Hence w(�f ) = k + 1 and a parameterized clause is falsified.

The second property follows by Lemma 17 (part 1) and by ∣E(�f )∣ ≥ w(�f ) which is equal
to k + 1 because of the first part of this lemma.

Set c1(xi,j , �) = zj(�) and c0(xi,j , �) =
zj(�)
zj(�)−1 . For a given play of the game, let ti,j be the

stage of the game when the variable xi,j is set. Let scj(t) be the number of points scored by
the Delayer up to stage t for answers of the Prover to the variables x1,j , x2,j , . . . , xn,j . Then the
number of points scored by the Delayer at the end of the game is

∑n
j=1 scj(f).

Lemma 19. The following implications hold

1. If ∣P 1
j (f)∣ = 1, then scj(f) ≥ log n− log(k + 1).

2. If ∣D∗j (f)∣ = 1, then scj(f) ≥ log n− log(2k + 1).

Proof. For the first claim, let (i, j) ∈ D∗j (f) and let ti,j be the stage when xi,j was set. We

claim that ∣P 0
j (ti,j)∣ ≥ n − (2k + 1). W. l. o. g. we can assume that the variables xi′,j set to 0

by the Prover are the first ones with end-node j to be set to 0, because c0(xi′,j , �) is strictly
decreasing with respect to zj(�). Hence the Delayer gets at least

2k+2∑
l=n

log
l

l − 1
= log n− log(2k + 1)

points on variables x1,j , . . . , xn,j .
It remains to prove the claim that ∣P 0

j (ti,j)∣ ≥ n − (2k + 1). According to Rule (3) of the

strategy, there are at least n−(k+1) variables xi′,j set to 0 in �ti,j . Hence ∣P 0
j (ti,j)∣+∣D0

j (ti,j)∣ ≥
n− (k + 1). Since at this stage i is the first predecessor of j to be fixed, then the Delayer has
not set variables xi′,j to 0 according to Rule (4), but only by Rule (2). Moreover, for the same
reason, if t′ is the stage preceding ti,j we have that: ∣D0

j (ti,j)∣ = ∣D0
j (t
′)∣ = ∣Nj(t

′)∣ ≤ k, where

the last inequality holds by Lemma 17 (part 2). Then ∣P 0
j (ti,j)∣ ≥ n− (2k + 1).

We now show the second claim of the lemma. Let ti,j be the stage in which Prover sets some
xi,j to 1, and let � be the partial assignment corresponding to that stage. W. l. o. g. we assume
that all variables in P 0

j (ti,j) are set before any variable in D0
j (ti,j), because c0 is monotone

decreasing in the size of the second argument. Fix p = ∣P 0
j (ti,j)∣. By Lemma 17 (part 2) we get
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∣Nj(t
′)∣ ≤ k where t′ is the stage preceding ti,j . Hence we know that zj(�) ≥ n − k − p. The

amount of points got by Delayer on vertex j is at least

n−p+1∑
l=n

log
l

l − 1
+ log(n − k − p) = logn − log

n− p
n− k − p

≥ log n − log(k + 1) .

The Delayer scores
∑n

j=1 scj(f). By Lemma 18 there are at least
√
k + 1 vertices such that

either ∣D∗j (f)∣ ≥ 1 or ∣P 1
j (f)∣ ≥ 1. For each vertex such events are mutually exclusive by the

definition of the rules. Then by Lemma 19 Delayer gets at least
√
k + 1(log n − log(2k + 1))

points. By Theorem 8 we get the lower bound.

6 Parameterized Resolution is not fpt-bounded

We show a lower bound for the pigeonhole principle in Parameterized Resolution by using the
game of Pudlák [27]. While this game is also played between Prover and Delayer, it is very
different from our asymmetric Prover-Delayer game of Section 3. In the asymmetric game,
Delayer is using one strategy which tries to force Prover on a long path, thereby showing
that the proof tree is large. In Pudlák’s game, the Delayer uses a family of strategies (called
“superstrategy” by Pudlák) with the aim to force Prover through every part of the proof.

6.1 Parameterized Proofs as Games

We will now explain how Pudlák’s game from [27] can be adapted to show lower bounds in
Parameterized Resolution. Consider any Parameterized Resolution refutation of a parameter-
ized contradiction (F, k). An arbitrary assignment falsifies the empty clause at the end of the
refutation, and because of soundness of the inference rule, one of its predecessor clauses must be
falsified as well. The argument can be repeated, finding a falsified predecessor for any falsified
clause in the refutation. This defines a walk in the refutation which starts at the empty clause
and goes back to one of the initial clauses or a parameterized axiom, touching just falsified
clauses. In the case of (Parameterized) Resolution it is easy to determine with a single variable
query what predecessor is falsified: if A ∨ B is inferred from A ∨ x and B ∨ ¬x, knowing the
value of x is sufficient to walk back one step.

This allows to interpret a refutation as the following interactive process: a Delayer claims to
know an assignment with at most k variables set to 1 and which satisfies F . The Prover queries
the Delayer for variable values, can save such values in memory and can forget some of them at
will. The Prover wants to expose Delayer lie by exhibiting either an initial or a parameterized
clause which is falsified by the assignment. Following Pudlák, we call the memory configuration
of the Prover at any step a record.

A Prover strategy is a finite directed acyclic graph with a single source marked by the empty
record. The strategy must (a) define which variable to query in the next step; (b) define what
values queried so far are kept in the record; (c) expose the Delayer at any leaf record. The Prover
complexity is the size of the strategy, which is the number of distinct records that appear in
all possible games (i. e., we ignore the behaviour of Prover on records which are not reachable
from the initial empty record).

There is a 1-1 correspondence between Prover strategies and parameterized refutations of
(F, k). Namely, a parameterized refutation of (F, k) can be used by Prover to traverse it
backwards from the empty clause up to the initial or parameterized clauses, with the invariant

19



that at each step he keeps in his record the set of values which falsify the clause in the proof.
Any inference of the refutation translates to a step in such exploration as

A ∨ x B ∨ ¬x
A ∨ B

corresponds to

¬A ∧ ¬B
x=0

wwooooooooooo
x=1

''OOOOOOOOOOO

¬A ∧ ¬x ¬B ∧ x

where Prover saves new information in his record (the value of x), but also deletes some previous
information (corresponding to ¬A or ¬B). It is easy to see that also the reverse translation
from strategies into proofs is possible: the negation of the records in a strategy translate into
clauses, deletions into weakening, and queries into inference steps.

6.2 Delayer Strategies as Refutation Lower Bounds

Because of this correspondence between refutations and Prover strategies, we want to show
that Prover always needs a high (nΩ(k)) number of records to expose the Delayer. Notice
that a Prover strategy which never forgets information reaches a falsified initial clause in less
steps, but then a record occurs in less games. Instead, a record appearing in different games
typically contains little information, thus a strategy of small size may require Prover to forget
a lot of information. Indeed a Prover strategy which never forgets information corresponds to
a tree-like Parameterized Resolution refutation, which is a weaker proof system than general
Parameterized Resolution.

So far we argued that Prover strategies represent refutations. We now show that a ran-
domized Delayer strategy is the key to obtain lower bounds on the size of such refutations. We
may think of such a Delayer strategy as a collection of single strategies (Pudlák [27] calls this
a “superstrategy”) which force Prover to generate many records. Without loss of generality we
also allow Delayer to give up, which lets Prover win even before exposing Delayer. The key to
lower bounds is then given by the following fact:

Fact 20. Fix a Prover strategy P which has a set of records R, and a randomized Delayer
strategy D. If for each record r ∈ R

Pr
D

[ Prover wins on record r ] ≤ 1

S

then ∣R∣ ≥ S.

Proof. The probability that strategy P wins against the Delayer is at most ∣R∣S by union bound,
and is at least 1 by definition. This proves the claim.

6.3 The Lower Bound for the Pigeonhole Principle

Theorem 21. Any refutation of (PHPn+1
n , k) in Parameterized Resolution requires size nΘ(k).

Proof. For the upper bound we can easily build a decision tree which explores all nO(k) assign-
ments with weight at most k.

The lower bound is based on the game interpretation of a Resolution refutation. Any line in
the refutation is a game position between Prover and Delayer. We show that for any refutation
(i. e., any Prover) there exists a randomized Delayer strategy such that the probability of a
game position to be a winning position for the Prover is very small. The Prover wins with
probability 1, so there must be a lot of winning positions (i. e., lines in the refutation).
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During the game the Prover record is represented as a matrix P with n + 1 rows and n
columns, with values in {0, 1, ∗}. An entry P (i, j) = 1 means that Prover has recorded the
information of pigeon i going into hole j, and likewise P (i, j) = 0 means that pigeon i is not in
hole j. For P (i, j) = ∗, Prover does not have any information. Thus the matrix P corresponds
to a partial assignment to the variables xi,j . The Prover wins whenever this assignment falsifies
either an initial clause from PHPn+1

n or a parameterized clause (i. e., there are at least k ones
on the record), or if the Delayer surrenders.

We specify the following sets of “forbidden holes” for a pigeon i,

F (i) =

⎧⎨⎩ j ∈ [n]

∣∣∣∣ either P (i, j) = 0
or P (i′, j) = 1 for some i′ ∕= i
or P (i, j′) = 1 for some j′ ∕= j

⎫⎬⎭
and we say that pigeon i has ∣F (i)∣ forbidden holes on record P (or just “on the record” if P is
clear from the context).

The Delayer strategy. The Delayer chooses uniformly at random a partial matching � of
n− 2k pigeons to n− 2k holes. In the game, if Prover asks about a pigeon from dom(�), then
Delayer will always answer according to the matching �. We denote dom(�) = [n+ 1] ∖ dom(�)
and rng(�) = [n] ∖ rng(�). These are the unassigned pigeons and holes for which Delayer has
not made a decision before the start of the game. During the game Delayer only cares about
the cells in P indexed by dom(�) × rng(�), because only here Prover can force her into a
contradiction with an initial clause. We call P ′ the minor of P of size (2k + 1)× (2k) on rows
from dom(�) and columns from rng(�). The Delayer keeps also another private matrix D not
known to the Prover, also of size (2k + 1) × (2k). This matrix essentially encodes the “next
answer” for any Prover question in dom(�)× rng(�).

The Delayer strategy is completely specified by how the Delayer answers to the questions and
how she computes D at each step. The Delayer answers to the Prover question xi,j according
to the following scheme:

1. For pigeons i ∈ dom(�), Delayer answers 1 if �(i) = j and 0 if �(i) ∕= j.

2. For pigeons i ∕∈ dom(�) and holes j ∈ rng(�), Delayer answers 0.

3. For pigeons i ∕∈ dom(�) and holes j ∕∈ rng(�), Delayer answers D(i, j).

The answers are both based on � andD. The matrixD is recomputed at each step, according
to the values of P ′. Let G = { i ∈ dom(�) : ∣F (i) ∩ rng(�)∣ ≥ k }, i. e., G contains all pigeons
not assigned by � for which Prover has already excluded more than k of the remaining 2k holes
left free by �. Because Delayer does not want to allow Prover to easily reach a contradiction
on the pigeons from G (for instance, Prover could just continue to query holes for some pigeon
i ∈ G), Delayer secretly assigns a hole to each pigeon in G. To achieve this, Delayer defines
D as an arbitrary completion of P ′ (i. e., ∗’s are replaced by 0/1), such that D represents a
partial matching which assigns exactly all pigeons from G to some set of holes from rng(�).

More precisely, D is any matrix in {0, 1}(2k+1)×(2k) which satisfies:

1. D is a completion of P ′, i. e., D(i, j) = P ′(i, j) for P ′(i, j) ∕= ∗.

2. Exactly the pigeons in G are matched, i. e.,

(a) For any i ∈ G there exists j ∈ rng(�) such that D(i, j) = 1;

(b) For any i ∈ dom(�) ∖G and any j ∈ rng(�), D(i, j) = 0.
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3. D is a matching, i. e.,

(a) For any i, i′ ∈ dom(�), i ∕= i′, and j ∈ rng(�), either D(i, j) = 0 or D(i′, j) = 0;

(b) For any i ∈ dom(�) and j, j′ ∈ rng(�), j ∕= j′, either D(i, j) = 0 or D(i, j′) = 0.

It is possible that such D does not exists: in this case the Delayer surrenders. Given the
choice of �, the strategy of the Delayer is completely determined. Thus we will also call � the
strategy of the Delayer.

Losing positions for the Delayer. The idea of the Delayer strategy is to play honestly
on a large fraction of the variables, while trying to cheat only on the cells of P ′. The Delayer
always answers consistently with a partial matching, so the only way for Prover to expose her
is to either find k assigned ones, or to force her to give up. We characterize the particular kinds
of records where the game may end.

Claim 22. If the Prover wins, at that time in the game either P contains at least k ones, or
G contains at least k pigeons.

Proof. We first see that Prover never wins by falsifying a clause from PHPn+1
n . By definition of

her strategy, Delayer always answers according to a partial matching which matches all pigeons
from dom(�) ∪G. Thus no conflict between pigeons arises. Also P can never falsify any of the
big initial clauses

⋁
j∈[n] xi,j . This is clear for pigeons i ∈ dom(�) because � assigns some hole

to i. But it also holds for pigeons i ∈ dom(�) because after there are k forbidden holes for i
from rng(�), Delayer secretly reserves a hole for i in D. Thus, during the game there can never
be more than n − k forbidden holes for some pigeon without Delayer having already reserved
some hole for it.

It remains to show that if ∣G∣ ≤ k, then Delayer can always find a D as required by the
strategy, thus she does not surrender. Consider the private matrix Dold computed by the Delayer
at the previous step and denote Gold to be set of pigeons matched in Dold . If in the previous
step of the game Prover only deleted some information from the record, then G ⊆ Gold and
thus Delayer can compute D. Assume now that Prover increased the information on the record
and therefore G ⊇ Gold . The elements in G ∖ Gold have exactly k forbidden holes because in
each step of the game the number of forbidden holes per pigeon can increase at most by one,
and they where below the threshold k at the previous step. Consider the matching induced
by Dold . Each element of G ∖ Gold still has k available holes, thus even excluding the holes
occupied by pigeons from Gold , they still have at least k− ∣Gold ∣ available holes each. A simple
greedy matching strategy will be sufficient to match all pigeons from G ∖ Gold of which there
are ≤ k − ∣Gold ∣ many.

We conclude that the game ends either because P contains at least k ones, or because the
Delayer surrenders, which means ∣G∣ > k.

Intuition for the remaining part of the proof. The proof is a probabilistic argument.
For a random �, the probability that a clause in the refutation corresponds to the final position
in the interactive game is 1

nΩ(k) . Any game ends somewhere, so there must be nΩ(k) clauses.
The probability estimation is based on two observations: (a) if a game interaction produces

a record, this record is compatible with the � chosen by the Delayer; (b) if Delayer gives up, it
means that P ′ contains too much information for the Delayer to continue cheating.

The record analysis is divided in three cases: in cases (I) and (II) we argue that if a record
contains a large amount of information, then there is little chance for a random � to be com-
patible with said record. In particular, case (I) corresponds to the Prover exposing k ones in
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the Delayer answers, and in case (II) Prover’s record contains a huge amount of zeros. In both
cases, Delayer succeeded in forcing Prover to write down a good part from the matching �.

For case (III) we argue about a record with less than k ones and small amount of information.
Such record must force the Delayer to give up. This means that the small amount of information
must be concentrated on P ′. For random � and random relative position of P ′ with respect to
P , this happens with small probability. Intuitively, in case (III) Prover is forced to “guess” at
least dom(�) or rng(�) which he can achieve only with small probability.

Prover probability of winning. We now show that in each game position (i. e., in each line
of the refutation), Prover has winning probability 1

nΩ(k) against Delayer’s randomized strategy.

This proves that any refutation contains nΩ(k) lines.
Observe that as a necessary condition for a record to be a winning position for Prover,

the record has to be compatible with the choice of �. This is because Delayer always answers
according to � on pigeons from dom(�), and thus there is no way that information which is
inconsistent with � can be written in Prover’s record. We will use this fact in the following
steps.

We will consider three cases for a record: (I) the record contains exactly k ones, (II) the
record contains at least n2/3+2k+1 pigeons which each have at least kn1/3 log n forbidden holes,
(III) the record has < k ones and contains at most n2/3 + 2k pigeons which have more than
kn1/3 log n forbidden holes each. Those three cases cover all possible records in the game. The
result follows by proving that in each case, the probability that a record is a winning position
for Prover is 1

nΩ(k) .

Case I. Prover has exactly k ones on the record. On such records, the Prover always wins, but
only for those game plays that actually lead to Prover’s record. A necessary condition for this
is that P is compatible with �. Let S be the set of pigeons with a 1 on the record. Then

Pr
�

[P is winning against � ] ≤ Pr
�

[P is compatible with � ] ≤

Pr
�

[
∣S ∩ dom(�)∣ < k

2

]
+ Pr

�

[
P is compatible with �

∣∣ ∣S ∩ dom(�)∣ ≥ k

2

]
.

The probability that ∣S ∩ dom(�)∣ < k
2 is equal to the probability that the uniform random set

dom(�) ⊂ [n+ 1] of size 2k + 1 intersects the set S ⊂ [n+ 1] of size k in at least k/2 positions.
Let dom(�) = {i1, . . . , i2k+1}. Then

Pr
�

[
∣S ∩ dom(�)∣ ≥ k

2

]
= Pr

i1,...,i2k+1

[
∃ 1 ≤ l1 < . . . < lk/2 ≤ 2k + 1 s.t. {il1 , . . . , ilk/2} ⊆ S

]
≤

≤
∑

1≤l1<...<lk/2≤2k+1

Pr
i1,...,ik/2

[
{il1 , . . . , ilk/2} ⊆ S

]
≤
(

2k + 1

k/2

)
⋅

(
k
k/2

)(
n+1
k/2

) ≤ 1

nΩ(k)
.

The probability of � to be compatible with P , given that ∣S ∩ dom(�)∣ ≥ k
2 , is bounded by the

probability of guessing the matching in P for the pigeons in S ∩ dom(�), that is

1

n
⋅ 1

n− 1
⋅ ⋅ ⋅ ⋅ ⋅ 1

n− ∣S ∩ dom(�)∣+ 1
≤ 1

nΩ(k)
.

This completes Case I.

Case II. The Prover has a set S of at least n2/3 + 2k + 1 pigeons with kn1/3 log n forbidden
holes each on the record P . At least n2/3 of them are in dom(�). As in Case I the probability
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of strategy � to lose in position P is bounded by the probability of � being compatible with
P . For compatibility it is necessary that a random � does not match any of the (at least)
n2/3 pigeons in dom(�) with any of their corresponding forbidden holes. Let us consider the
matching holes for such pigeons as a randomly chosen sequence ℎ1 . . . ℎn2/3 . Assuming that
ℎ1 . . . ℎl−1 are compatible choices there are at most n − kn1/3 log n − l + 1 good choices for ℎl
over n− l + 1 possible choices. Thus ℎl is compatible with probability at most

n− kn1/3 log n− l + 1

n− l + 1
= 1− kn1/3 log n

n− l + 1
≤ 1− k log n

n2/3
.

The probability of the whole sequence to be compatible is then bounded by(
1− k log n

n2/3

)n2/3

≤ 1

eΩ(k logn)
≤ 1

nΩ(k)
.

Case III. Record P does not contain k ones, and the set S of pigeons with more than kn1/3 log n
forbidden holes has size at most n2/3 + 2k. If Prover wins with record P against strategy �,
then Claim 22 implies ∣G∣ > k. Thus the probability of strategy � to lose on record P is at most
the probability that in dom(�) there are k pigeons with at least k forbidden holes contained in
rng(�) each. We split the analysis into two further sub-cases.

Case III. (a) Assume first that ∣S ∩ dom(�)∣ ≥ k. Intuitively, in this case Prover has managed
to place a good number of pigeons (≥ k) with many forbidden holes into dom(�). For these
pigeons from S ∩ dom(�), it will be easy for Prover to exclude ≥ k holes of rng(�), and thus
force these pigeons into G. But in total, S only contains few pigeons (≤ n2/3 + 2k), and this
means that Prover has to “guess” dom(�) which is hard for him.

For the formal analysis, let i1, . . . , i2k+1 denote the elements of dom(�). They form a
uniformly chosen set of size 2k + 1 in [n + 1]. The probability that they intersect S in k
positions is at most

Pr
i1,...,i2k+1

[ ∣S ∩ {i1, . . . , i2k+1}∣ ≥ k ] ≤

∑
1≤l1<l2<...<lk≤2k+1

Pr
il1 ,...,ilk

[ {il1 , . . . , ilk} ⊆ S ] ≤
(

2k + 1

k

)(n2/3+2k
k

)(
n
k

) ≤ 1

nΩ(k)
.

Case III. (b) The other possibility is that ∣S ∩ dom(�)∣ < k. But then for P to be winning
against �, there must exist at least one pigeon i ∈ dom(�)∖S such that ∣F (i)∩ rng(�)∣ ≥ k. By
union bound this is at most 2k+1 times the probability of such event for a fixed i ∈ dom(�)∖S.
By j1, . . . , j2k we denote the elements of rng(�), they form a uniformly chosen set of size 2k in
[n]. Then

Pr
j1,...,j2k

[ ∣F (i) ∩ {j1, . . . , j2k}∣ ≥ k ] ≤

∑
1≤l1<l2<...<lk≤2k

Pr
jl1 ,...,jlk

[ {jl1 , . . . , jlk} ⊆ F (i) ] ≤
(

2k

k

)(kn1/3 logn
k

)(
n
k

) ≤ 1

nΩ(k)
.

This completes the proof.
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7 Future Perspectives

Alekhnovich and Razborov [2] were the first to establish very interesting connections between
(classical) proof complexity and parameterized complexity.

Definition 23. A proof system P is automatizable if there exists an algorithm which for a
tautology F with a P -proof of size S finds a P -proof for F of size at most SO(1) and runs in
time SO(1).

Alekhnovich and Razborov [2] proved that if (classical) Resolution was automatizable, then
W[P] coincides with FPR, the randomized version of FPT. Since separating FPT from W[2]
is a similar but probably harder problem than proving W[P] ∕= FPR, proving lower bounds to
successively stronger parameterized proof systems on one side, and strengthening the result
of Alekhnovich and Razborov on the other seems, in our view, a promising approach towards
unconditional non-automatizability of (classical) Resolution and other proof systems, which is
an important problem in proof complexity.

DPLL is the core of the algorithm to prove that tree-like Resolution is quasi-polynomially
automatizable (see [4]). In the analysis of that algorithm the main feature is the observation
that in a binary tree of size S one of the two sub-trees is of size at most S/2. This suggests
that our asymmetric Prover-Delayer game, which provides a finer estimation of the size of the
sub-trees, might lead to some new family of algorithms based on DPLL.

The concept of automatizability can be easily extended to parameterized proof systems and
it appears to be an interesting problem to investigate. However, there are some differences with
respect to (classical) Resolution. Namely, a quasi-polynomial approximation of the shortest
proof is meaningless in the context of Parameterized Resolution, because every (F, k) ∈ PCon
with ∣F ∣ = n has a refutation of size c⋅

(
n
k+1

)
for some constant c. If k ≤ log n this is smaller than

nlogn; otherwise
(
n
k+1

)
≤ 2(k+1)2

which is fpt with respect to k. Hence for any (F, k) ∈ PCon
there exists a refutation of size f(k)q(n) where f is some computable function and q is some
quasi-polynomial function. We are in the situation discussed in [2], where we want to discrim-
inate between polynomial and quasi-polynomial efficiency. Another difficulty is that known
non-automatizability results in [1,2,4] all use formulas which are interesting and meaningful on
assignments of big weight.
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Appendix

A Weighted Satisfiability and Completeness for W[1] and W[2]

Deciding whether a parameterized CNF is satisfiable or not is related with complexity classes
W[1] and W[2] (see [19, 22, 26] for more information about these classes). In particular, we are
interested in the following weighted satisfiability problem for bounded-width formulas:

Problem: Weighted d-CNF Sat (complete for W[1], see [19])
Input : F , a CNF where all clauses have at most d literals.

Parameter : k, a non-negative integer.
Question: Does there exist a satisfying assignment for F with weight equal to k?

The unbounded width version of this problem is defined as:

Problem: Weighted CNF Sat (complete for W[2], see [19])
Input : F , a CNF.

Parameter : k, a non-negative integer.
Question: Does there exist a satisfying assignment for F with weight equal to k?
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In Theorem 11 we show that for CNF of constant width the problem of finding an assignment
with weight at most k is in FPT. Thus W[1]-completeness really depends on the equality
requirement (this observation was also made in [13,19]1). Dantchev et al. [16] claim without full
proof that this is not the case for W[2] completeness. We include the full proof for completeness.

Proposition 24 (Dantchev, Martin, Szeider [16]). Deciding if an arbitrary CNF F has a
satisfying assignment of weight at most k is W[2]-complete.

Proof. We refer to this problem as the “relaxed” version of Weighted CNF Sat, which is in
contrast referred as the “exact” version. Consider k+1 new variables y1, . . . , yk+1. The formula
F ∧ (y1 ∨ y2 ∨ ⋅ ⋅ ⋅ ∨ yk+1) has a satisfying assignment of weight k + 1 if and only if F has a
satisfying assignment of weight at most k. Furthermore, translating back such assignment to
an assignment for F is a simple projection. This proves that the relaxed version is reducible to
the exact one, and thus the former is in W[2].

To prove completeness consider the following reduction from the exact version to the relaxed
one. Let (F, k) be the input, where F is a CNF in variables x1, . . . , xn. Consider the following
CNF  which in addition to x1, . . . , xn uses new variables yi,j for i ∈ [n] and j ∈ [k]:⋁

i

yi,j for any j ∈ [k]

¬yi,j ∨ ¬yi′,j for any i ∕= i′ ∈ [n] and j ∈ [k]

¬yi,j ∨ ¬yi,j′ for any i ∈ [n] and j ∕= j′ ∈ [k]

yi,1 ∨ yi,2 ∨ . . . ∨ yi,k ∨ ¬xi for any i ∈ [n]

¬yi,j ∨ xi for any i ∈ [n] and j ∈ [k]

Formula  is satisfiable if and only if there is a set of k indices in [n] matched with [k]. Variable
xi is true if and only if i is in such set. Thus any satisfying assignment for  has weight 2k.
The reduction from the exact version to the relaxed version of Weighted CNF Sat is given
by (F, k) 7→ (F ∧  , 2k). This proves that the relaxed version is W[2]-hard.

Observe that using unbounded clauses is crucial in the previous proof, and that this reduction
does not work with bounded width CNF’s. In general, any reduction from Weighted d-CNF
Sat to its relaxed version would imply W[1] ⊆ FPT and NP ⊆ DTIME(2o(n)) (for the latter
implication see [19, Corollary 17.7]).

1We thank Martin Grohe for pointing out the reference [13] to us.
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