
The Complexity of Reasoning for Fragments of Autoepistemic Logic∗

Nadia Creignou
Laboratoire d’Informatique Fondamentale, CNRS, Aix-Marseille Université

163, avenue de Luminy, 13288 Marseille, France
creignou@lif.univ-mrs.fr

Arne Meier, Michael Thomas, Heribert Vollmer
Institut für Theoretische Informatik, Gottfried Wilhelm Leibniz Universität

Appelstr. 4, 30167 Hannover, Germany
{meier,thomas,vollmer}@thi.uni-hannover.de

Abstract

Autoepistemic logic extends propositional logic by the
modal operator L. A formula ϕ that is preceded by an L is
said to be “believed”. The logic was introduced by Moore
1985 for modeling an ideally rational agent’s behavior and
reasoning about his own beliefs. In this paper we analyze
all Boolean fragments of autoepistemic logic with respect
to the computational complexity of the three most common
decision problems expansion existence, brave reasoning and
cautious reasoning. As a second contribution we classify
the computational complexity of counting the number of
stable expansions of a given knowledge base. To the best of
our knowledge this is the first paper analyzing the counting
problem for autoepistemic logic.

1. Introduction

Non-monotonic logics are among the most important
calculi in the area of knowledge representation and reasoning.
Autoepistemic logic, introduced 1985 by Moore [20], is
one of the most prominent non-monotonic logic. It was
originally created to overcome difficulties present in the
non-monotonic modal logics proposed by McDermott and
Doyle [18], but was also shown to embed several other non-
monotonic formalisms such as Reiter’s default logic [25] or
McCarthy’s circumscription [17].

Autoepistemic logic extends classical logic with a unary
modal operator L expressing the beliefs of an ideally ratio-
nal agent. The sentence Lϕ means that the agent can derive
ϕ based on its knowledge. To formally capture the set of
beliefs of an agent, the notion of stable expansions was intro-

∗Supported in part by DFG grant VO 630/6-1.

duced. Stable expansions are defined as the fixed points of
an operator deriving the logical consequences of the agent’s
knowledge and belief. A given knowledge base may admit
no or several such stable expansions. Hence, the following
questions naturally arise. Given a knowledge base Σ, does
Σ admits a stable expansion at all? And given a knowledge
base Σ and a formula ϕ, is ϕ contained in at least one (resp.
all) stable expansion of Σ.

While all these problems are undecidable for first-order
autoepistemic logic, they are situated at the second level of
the polynomial hierarchy in the propositional case [12]; and
thus harder to solve than the classical satisfiability or impli-
cation problem unless the polynomial hierarchy collapses
below its second level. This increase in complexity raises
the question for the sources of the hardness on the one hand,
and for tractable restrictions on the other hand.

In this paper, we study the computational complexity of
the three decision problems mentioned above for fragments
of autoepistemic logic, given by restricting the propositional
part, i.e., by restricting the set of allowed Boolean connec-
tives. We bound the complexity of all three reasoning tasks
for all finite sets of allowed Boolean functions. This ap-
proach has first been taken by Lewis, who showed that the
satisfiability problem for (pure) propositional logic is NP-
complete if the negation of the implication (x 6→ y) can
be composed from the set of available Boolean connectives,
and is polynomial-time solvable in all other cases. Since
then, this approach has been applied to a wide range of prob-
lems including equivalence and implication problems [26, 5],
satisfiability and model checking in modal and temporal log-
ics [2, 4, 3, 19], default logic [6], and circumscription [28].

Our goal is to exhibit fragments of lower complexity
which might lead to better algorithms for cases in which the
set of Boolean connectives can be restricted. Furthermore
we aim to understand the sources of hardness and to provide

1

Dagstuhl Seminar Proceedings 10061
Circuits, Logic, and Games
http://drops.dagstuhl.de/opus/volltexte/2010/2523

an understanding which connectives take the role of (x 6→ y)
in the context of autoepistemic logic.

Though at first sight, an infinite number of sets B of
allowed propositional connectives has to be examined, we
prove, making use of results from universal algebra, that
essentially only seven cases can occur: (1) B can express
all Boolean connectives, (2) B can express all monotone
Boolean connectives, (3) B can express all linear connec-
tives, (4) B is equivalent to {∨}, (5) B is equivalent to {∧},
(6) B is equivalent to {¬}, (7) B is empty. We first show,
extending Gottlob’s results, that the above problems are
complete for a class from the second level of the polynomial
hierarchy for the cases (1) and (2). In case (4) the complexity
drops to completeness for a class from the first level of the
hierarchy, whereas for (3) the problem becomes solvable in
polynomial time while being hard for ⊕L. Finally, for the
cases (5) to (7) it even drops down to solvability in logspace.

Besides the decision variant, another natural question
is concerned with the number of stable expansions. This
refers to the so called counting problem for stable expan-
sions. Recently, counting problems have gained quite a lot
of attention in non-monotonic logics. For circumscription,
the counting problem (that is, determining the number of
minimal models of a propositional formula) has been studied
in [11, 10]. For propositional abduction, a different non-
monotonic logic, some complexity results for the counting
problem (that is, computing the number of so called “solu-
tions” of a propositional abduction problem) were presented
in [14, 9]. Algorithms based on bounded treewidth have
been proposed in [15] for the counting problems in abduc-
tion and circumscription. Here, we consider the complexity
of the problem to count the number of stable expansions
for a given knowledge base. To the best of our knowledge,
this problem is addressed here for the first time. We show
that it is #·coNP-complete in cases (1) and (2) from the
above, drops to #P-completeness for the case (4), and is
polynomial-time computable in cases (3) and (5) to (7).

The rest of this paper is organized is follows. Sections 2
and 3 contain preliminaries and the formal definition of au-
toepistemic logic. In Section 4 we classify the complexity of
the decision problems mentioned above for all finite sets of
allowed Boolean functions. Section 5 contains the classifica-
tion of the problem to count the number of stable expansion.
Finally, Section 6 concludes with a discussion of the results.

2. Preliminaries

We use standard notions of complexity theory. For deci-
sion problem, the arising complexity degrees encompass the
classes L, P, NP, coNP, Σp

2 and Πp
2 . For more background

information, the reader is referred to [22]. We furthermore
require the class⊕L defined as the class of languages L such
that there exists a nondeterministic logspace Turing machine

that exhibits an odd number of accepting paths iff x ∈ L
for all x [8]. It is known that L ⊆ ⊕L ⊆ P. Regarding
hardness proofs of decision problems, we consider logspace
many-one reductions, defined as follows: a language A is
logspace many-one reducible to some language B (written
A ≤log

m B) if there exists a logspace-computable function f
such that x ∈ A ⇐⇒ f(x) ∈ B.

In the context of counting problems, denote by FP the
set of all functions computable in polynomial time, and for
an arbitrary complexity class C, define #·C as the class the
functions f for which there exists a set A ∈ C (the witness
set for f) such that there exists a polynomial p such that for
all (x, y) ∈ A, |y| ≤

∣∣p(x)
∣∣, and

f(x) =
∣∣{y | (x, y) ∈ A}

∣∣,
see [13]. In particular, we make use of the classes #P :=
#·P and #·coNP. To obtain hardness results for counting
problems, we will employ parsimonious reductions defined
as follows: A counting function f parsimoniously reduces
to function h if there is a function g ∈ FP such that for
all x, f(x) = h

(
g(x)

)
. Note the analogy to the simple

m-reductions for decision problems defined above.
We moreover assume familiarity with propositional logic.

As we are going to consider problems parameterized by
the set of Boolean connectives, we require some algebraic
tools to classify the complexity of the infinitely many aris-
ing problems. A clone is a set B of Boolean functions that
is closed under superposition, i.e., B contains all projec-
tions and is closed under arbitrary compositions(see [23,
Chapter 1] or [7]). For a set B of Boolean functions, we
denote by [B] the smallest clone containing B and call
B a base for [B]. Post classified the lattice of all clones
and found a finite base for each clone [24]. A list of all
Boolean clones together with a basis for each of them can
be found, e.g., in [7]. In order to introduce the clones rel-
evant to this paper, say that an n-ary Boolean functions
f is monotone if a1 ≤ b1, a2 ≤ b2, . . . , an ≤ bn im-
plies f(a1, . . . , an) ≤ f(b1, . . . , bn), and that f is linear
if f ≡ x1 ⊕ · · · ⊕ xn ⊕ c for a constant c ∈ {0, 1} and vari-
ables x1, . . . , xn. The clones relevant to this paper together
with their bases are listed in Table 1.

3. Autoepistemic Logic

Autoepistemic logic extends propositional logic by a
modal operator L stating that its argument is “believed”.
Syntactically, the set of autoepistemic formulae Lae is de-
fined defined via

ϕ ::= p | f(ϕ, . . . , ϕ) | Lϕ,

where f is a Boolean function and p is a proposition. The
consequence relation |= of the underlying propositional logic

2

Name Definition Base
BF All Boolean functions {∧,¬}
M {f : f is monotone} {∨,∧, 0, 1}
L {f : f is linear} {⊕, 1}
V {f : f ≡ c0 ∨

∨n
i=1 cixi where the cis are constant} {∨, 0, 1}

E {f : f ≡ c0 ∧
∧n
i=1 cixi where the cis are constant} {∧, 0, 1}

N {f : f depends on at most one variable} {¬, 0, 1}
I {f : f is a projection or a constant} {id, 0, 1}

Table 1. A list of Boolean clones with definitions and bases.

is extended to Lae by simply treating Lϕ as an atomic for-
mula. An (autoepistemic) B-formula is an autoepistemic
formula using only functions from a finite set B of Boolean
functions as connectives. The set of all autoepistemic B-
formulae will be denoted by Lae(B).

Let B be any finite set of Boolean functions. For Σ ⊆
Lae(B), we write Th(Σ) for the deductive closure of Σ, i.e.,
Th(Σ) := {ϕ | Σ |= ϕ}. For ϕ ∈ Lae(B), let SF(ϕ) be
the set of its subformulae and let SFL(ϕ) := {Lψ | Lψ ∈
SF(ϕ)} be the set of its L-prefixed subformulae. The above
notions are canonically extended to sets of formulae.

The key notion in autoepistemic logic are stable sets of
beliefs grounded on the given premises. These sets, called
stable expansions, are defined as the fixed points of the
consequences of knowledge and belief.

Definition 3.1. Let Σ ⊆ Lae(B). A set ∆ ⊆ Lae is a stable
expansion of Σ if it satisfies the condition

∆ = Th(Σ ∪ L(∆) ∪ ¬L(∆̄)),

where L(∆) := {Lϕ | ϕ ∈ ∆} and ¬L(∆̄) := {¬Lϕ |
ϕ 6∈ ∆}.

The three main decision problems in the context of
autoepistemic logic are deciding whether a given set of
premises has a stable expansion, and deciding whether a
given formula in contained in at least one (resp. all) stable
expansion. As we are to study the complexity of these prob-
lems for finite restricted sets B of Boolean functions, we
formally define the expansion existence problem as

Problem: EXP(B)

Input: A set Σ ⊆ Lae(B)

Output: Does Σ have a stable expansion?

and the brave (resp. cautious) reasoning problems as

Problem: MEMb(B) (resp. MEMc(B))
Input: A set Σ ⊆ Lae(B), a formula ϕ ∈ Lae(B)

Output: Is ϕ contained in some (resp. any) stable ex-
pansion of Σ?

A central tool for the study of the computational complex-
ity of the above problems is the following finite characteriza-
tion of stable expansions given by Niemelä [21].

Definition 3.2. For a set Σ ⊆ Lae, a set Λ ⊆ SFL(Σ) ∪
¬SFL(Σ) is Σ-full if for each Lϕ ∈ SFL(Σ),

1. Σ ∪ Λ |= ϕ iff Lϕ ∈ Λ,

2. Σ ∪ Λ 6|= ϕ iff ¬Lϕ ∈ Λ.

Lemma 3.3 ([21]). Let Σ ⊆ Lae.

1. Let Λ be a Σ-full set, then for every Lϕ ∈ SFL(Σ)
either Lϕ ∈ Λ or ¬Lϕ ∈ Λ.

2. There is a one-to-one correspondence of Σ-full sets and
stable expansions of Σ.

To make this one-to-one correspondence more precise,
say that a formula is quasi-atomic if it is atomic or else
begins with an L. Further denote by SFq(ϕ) the set of all
maximal quasi-atomic subformulae of ϕ (in the sense that a
quasi-atomic subformula is maximal if it is not a subformula
of another quasi-atomic subformula of ϕ). Write SE(Λ) for
the stable expansion corresponding to Λ and say that Λ is its
kernel.

Definition 3.4. Let Σ ⊆ Lae and let ϕ ∈ Lae. We define
the consequence relation |=L recursively as

Σ |=L ϕ ⇐⇒ Σ ∪ SB(ϕ) |= ϕ,

where SB(ϕ) := {Lχ ∈ SFq(ϕ) | Σ |=L χ} ∪ {¬Lχ |
Lχ ∈ SFq(ϕ),Σ 6|=L χ}.

The point in defining the consequence relation |=L is
that, once a Σ-full set has been determined, it describes
membership in the stable expansion corresponding to Λ.

Lemma 3.5 ([21]). Let Σ ⊆ Lae, let Λ be a Σ-full set and
ϕ ∈ Lae. It holds that Σ ∪ Λ |=L ϕ iff ϕ ∈ SE(Λ).

4. Complexity Results

The complexity of the before defined decision problems
for autoepistemic logic has already been investigated by
Niemelä [21] and Gottlob [12]. Niemelä [21] proved that
in order to show that a set Σ has a stable expansion, we

3

may guess a subset Λ ⊆ SFL(Σ) ∪ ¬SFL(Σ) nondetermin-
istically and check that it is Σ-full (see Definition 3.2 and
Lemma 3.3). Thus the problem of deciding whether Σ has
a stable expansion is nondeterministically Turing-reducible
to the propositional implication problem. Thus he proved
that the extension existence problem is in Σp

2 . According
to Definition 3.4 and Lemma 3.5 the problem of deciding
whether there exists a stable expansion Σ containing a given
formula φ can be solved with a polynomial number of calls
to an NP-oracle by a nondeterministic Turing reduction as
follows. Guess a subset Λ; check that Λ is Σ-full and check
that φ ∈ SE(Λ). Therefore, the brave reasoning problem is
in Σp

2 , whereas the cautious reasoning problem is in Πp
2 . Cor-

responding hardness results were obtained by Gottlob [12].
More precisely he obtained completeness results for the spe-
cial case B = {∧,∨,¬}.

We investigate here the complexity of these problems for
every B. Observe that the upper bounds, i.e., membership
in Σp

2 (resp. Πp
2) still hold for any B. In order to classify

the complexity for the infinitely many cases of B we will
make use of Post’s lattice as follows: Suppose that B ⊆
B′ for some finite sets B,B′ of Boolean functions. Then
every function in B can be expressed as a composition of
functions from B′; in other words: for every f ∈ B there
is a propositional formula φf over connectives B′ defining
f , and every Lae(B)-formula can be transformed into an
equivalent Lae(B′)-formula. If moreover in the formulae φf
every free variable appears only once (in this case we say that
φf is a small formula for f ; and in the proofs below we will
see that we can always construct such small formulae), then
the transformation of a Lae(B)-formula ψ into an equivalent
Lae(B′)-formula ψ′ is efficient in the sense that the length of
ψ′ can be bounded by a polynomial in the length of ψ. Thus,
the upper bound for the complexity of EXP(B′) yields an
upper bound for the complexity of EXP(B), and a lower
bound for the complexity of EXP(B) yields a lower bound
for the complexity of EXP(B′). If [B] = [B′] then EXP(B)
and EXP(B′) are of the same complexity (w.r.t. logspace
reductions). Thus, the complexity of EXP(B) is determined
by the clone [B]. This already brings some structure into the
infinitely many problems EXP(B′). We next note that we
may w.l.o.g. assume the availability of the Boolean constants.

Lemma 4.1. Let P be any of the problems EXP, MEMc,
or MEMb. Then P(B) ≡log

m P(B ∪ {0, 1}) for all finite
sets B of Boolean functions.

Proof. For the nontrivial direction, let Σ ∈ Lae. We map
Σ to Σ′ := Σ[1/t, 0/Lf] ∪ {t}, where t and f are fresh
propositions. Then the stable expansions of Σ′ and Σ are in
one-to-one correspondence, as any expansion of Σ′ includes
t and ¬Lf .

As a consequence of Lemma 4.1, it suffices to consider
the clones of the form [B ∪ {0, 1}] (as can be seen immedi-

BF

M

EV

L

N

I in L

in P, ⊕L-hard
NP-complete
Σp

2-complete

Figure 1. The relevant clones and their in-
clusion structure. The shading indicates the
complexity of EXP(B).

ately from the list of clones given in [7]). These are the seven
clones I, N, V, E, L, M, and BF (see Fig. 1). All other cases
will have the same complexity of these, by the explanations
above.

Before we start proving our classification, we note one
further observation:

Lemma 4.2. For every set Σ ⊆ Lae, Lae is a stable expan-
sion of Σ iff Σ ∪ SFL(Σ) is inconsistent.

Proof. Suppose that Lae is a stable expansion of Σ and let Λ
denote its kernel. Then Σ∪Λ |=L 0 by virtue of Lemma 3.5.
As Σ ∪ Λ |=L 0 iff Σ ∪ Λ |= 0, we obtain Λ = SFL(Σ)
(notice that {Lχ | Lχ ∈ SFq(0)} = ∅, cf. Definition 3.4).
In conclusion, Σ∪SFL(Σ) must be inconsistent. Conversely
suppose that Σ∪SFL(Σ) is inconsistent. Then so is Th(Σ∪
L(Lae)). Consequently, any stable expansion must contain
all autoepistemic formulae.

4.1. Expansion Existence

Theorem 4.3. Let B be a finite set of Boolean functions.

• If [B ∪ {0, 1}] is BF or M then EXP(B) is Σp
2-

complete.

• If [B ∪ {0, 1}] is V then EXP(B) is NP-complete.

• If [B ∪ {0, 1}] is L then EXP(B) is ⊕L-hard and con-
tained in P.

• If [B ∪ {0, 1}] is E or N or I then EXP(B) is in L
(solvable in logspace).

The proof of this theorem requires several propositions.

Proposition 4.4. Let B be a finite set of Boolean functions
such that M ⊆ [B]. Then EXP(B) is Σp

2-complete.

Proof. Let B be a finite set of Boolean functions as required.
We have to prove Σp

2-hardness.

4

Let ϕ := ∃x1 · · · ∃xn∀y1 · · · ∀ymψ be a quantified
Boolean formula in disjunctive normal form. In [12], Got-
tlob shows that ϕ is satisfied iff the set Σ := {Lψ,Lx1 ↔
x1, . . . , Lxn ↔ xn} has a stable expansion. The idea of
our proof is to modify the given reduction to only use mono-
tone connectives, thus showing that EXP(B) is Σp

2-hard for
every finite set B ⊆ M. More precisely, we define

ψ′ := ψ[¬x1/x′1, . . . ,¬xn/x′n,¬y1/y′1, . . . ,¬ym/y′m]

and let

Σ′ := {Lψ′} ∪ {xi ∨ Lx′i, Lxi ∨ x′i | 1 ≤ i ≤ n} ∪
{yj ∨ y′j | 1 ≤ j ≤ m}.

Clearly Σ′ ⊆ Lae({∧,∨}). Moreover, for every 1 ≤ i ≤
n, we have that any stable expansion of Σ contains either
Lxi or Lx′i but not both: assume that Λ is a Σ′-full set
such that Lxi ∈ Λ and Lx′i ∈ Λ. Then Σ′ ∪ Λ 6|= xi, x

′
i,

although Lxi, Lx′i ∈ Λ; a contradiction to Λ being Σ′-full.
Otherwise, if Λ were a Σ′-full set such that Lxi /∈ Λ and
Lx′i /∈ Λ, then Σ′ ∪ Λ |= xi, x

′
i, although Lxi, Lx′i /∈ Λ.

In conclusion, any Σ′-full set and equivalently any stable
expansion contains either Lxi or Lx′i but not both. Similarly,
all stable expansions of Σ′ include at least one of yj or y′j
(or both).

We show that Σ′ has a stable expansion iff ϕ is valid.
First suppose that Σ′ has a stable expansion ∆. Let Λ denote
its kernel. As Σ′ ∪ SFL(Σ′) is consistent, we obtain that
∆ 6= Lae from Lemma 4.2. By the argument above, either
Lxi ∈ ∆ or Lx′i ∈ ∆, but not both. Moreover, Lψ′ ∈ ∆,
whence ψ′ must be derivable from Σ′ ∪ Λ. Note that this
implies that ψ′ is satisfied by all assignments setting either
yi or y′i to 1, in particular by all assignments that assign a
complementary value to yi and y′i for every i. Define a truth
assignment σ : {xi | 1 ≤ i ≤ n} → {0, 1} from Λ such
that σ(xi) := 1 if Lxi ∈ Λ, and σ(xi) := 0 otherwise. It
follows that σ |= ∀y1 · · · ∀ymψ, thus ϕ is valid.

Now suppose that ϕ is valid. Then there exists an assign-
ment σ : {xi | 1 ≤ i ≤ n} → {0, 1} such that any exten-
sion of σ to y1, . . . , ym satisfies ψ. Let Λ = {Lxi,¬Lx′i |
σ(xi) = 1}∪{¬Lxi, Lx′i | σ(xi) = 0}∪{Lψ′}. We claim
that Λ is a Σ′-full set. If Lxi ∈ Λ, then ¬Lx′i ∈ Λ; hence
{Lx′i ∨ xi,¬Lx′i} implies xi. Conversely, if Σ ∪ Λ |= xi
then ¬Lx′i has to be in Λ, because xi occurs in Lψ′ and the
clause Lx′i ∨ xi only. From this, we obtain Lxi ∈ Λ. There-
fore, Σ ∪ Λ |= xi iff Lxi ∈ Λ. Similarly, one proves that
Σ ∪ Λ 6|= xi iff ¬Lxi ∈ Λ. The same holds for x′i for each i.
Due to the construction of Λ, the fact that the clause yi ∨ y′i
enforces y′i to be assigned a value equal to or bigger than the
one assigned to ¬yi, the definition of ψ′ and its monotonic-
ity, we also have Σ′ ∪ Λ |= ψ′. Hence, following Definition
3.2, Λ is a Σ′-full set and Σ′ has a stable expansion.

Finally, note that in any finite set of Boolean functions
B such that M ⊆ [B], conjunction and disjunction can be

defined by small formulae, i.e., there exist formulae φ∧ ≡
x ∧ y and φ∨ ≡ x ∨ y such that x and y occur exactly once
these formulae, see [27].

We cannot transfer the above result to EXP(B) for [B] =
V, because we may not assume ψ to be in conjunctive normal
form. But, using a similar idea, we can show that the problem
is NP-complete.

Proposition 4.5. Let B be a finite set of Boolean functions
such that [B ∪ {0, 1}] = V. Then EXP(B) is NP-complete.

Proof. We first show that EXP(B) is efficiently verifiable,
thus proving membership in NP. Given a set Σ ⊆ Lae and
a candidate Λ for a Σ-full set, substitute Lϕ by the Boolean
value assigned to by Λ and call the resulting set Σ′. Note
that Σ′ is still equivalent to a set of disjunctions. Therefore
the conditions Σ′ |= ϕ if Lϕ ∈ Λ and Σ′ 6|= ϕ if ¬Lϕ ∈ Λ
can be verified in polynomial time, for IMP(B) ∈ P [5].

To show NP-hardness, we reduce 3SAT to EXP(B) as
follows. Letϕ :=

∧
1≤i≤n ci with clauses ci = `i1∨`i2∨`i3,

1 ≤ i ≤ n be given and let x1, . . . , xm enumerate the
propositions occurring in ϕ. From ϕ we construct the set

Σ := {Lc′i | 1 ≤ i ≤ n}∪{xi∨Lx′i, Lxi∨x′i | 1 ≤ i ≤ m},

where c′i = ci[¬x1/x′1, . . . ,¬xm/x′m] for 1 ≤ i ≤ n. Anal-
ogously to Proposition 4.4, we obtain that for any stable
expansion ∆ of Σ either xi ∈ ∆ or x′i ∈ ∆, but not both.
First, suppose that ∆ is a stable expansion of Σ. It is easily
observed that Σ ∪ SFL(Σ) is consistent, therefore ∆ 6= Lae.
Let Λ be the kernel of ∆. As ∆ 6= Lae and Lc′i ∈ Σ for all
1 ≤ i ≤ n, Definition 3.2 implies that Σ ∪ Λ |=L c′i and
hence Σ ∪ Λ |= ci for all 1 ≤ i ≤ n. From this it follows
that ϕ is satisfied by the assignment σ setting σ(xi) = 1 iff
Lxi ∈ ∆.

Conversely, suppose that ϕ is satisfied by the assign-
ment σ. Define the set Λ := {Lxi,¬Lx′i | σ(xi) =
1} ∪ {Lx′i,¬Lxi | σ(xi) = 0} ∪ {Lc′i | 1 ≤ i ≤ n}.
As σ |= ci for any 1 ≤ i ≤ n, we obtain that Σ ∪ Λ |= c′i.
Concluding, Λ is a Σ-full set.

Next, we turn to the case [B ∪ {0, 1}] = L. Say that an
L-prefixed formula is L-atomic if it is of the form Lϕ for
some atomic formula ϕ.

Lemma 4.6. Let Σ ⊆ Lae({⊕, 1}). If SFL(Σ) contains
only L-atomic formulae, then one can decide in polynomial
time whether Σ has a stable expansion.

Proof. The idea is to use Gaussian elimination twice. Let Σ
be as required and suppose that Σ consists of m formulas.
Then the set Σ can be seen as a system of linear equations and
thus written as Ax = By + C, where x = (x1, . . . , xn)T,
y = (Lx1, . . . , Lxn)T, A and B are Boolean matrices hav-
ing m rows, and C is a Boolean vector.

5

By applying Gaussian elimination to A we obtain an
equivalent system A′x = B′y+C ′ with an upper triangular
matrix A′. Let r denote the number of free variables in A′x
and suppose w.l.o.g. that these are x1, . . . , xr. By subse-
quently eliminating the variables xr+1, . . . , xn, we arrive at
a system T equivalent to Σ of the form:

{xi=fi(x1, . . . , xr)+gi(Lx1, . . . , Lxn)+ci | r<i≤n}
∪ {0=gi(Lx1, . . . , Lxn)+ci | n<i≤ m+r},

where for each i the functions fi and gi are linear, and ci is
the constant 0 or 1.

Observe that Σ ∪ SFL(Σ) is inconsistent iff
T [Lx1/1, . . . Lxn/1] has no solution. In this case Σ
has Lae as a stable expansion. Let us now show how to
construct a Σ-full set Λ such that SE(Λ) 6= Lae.

Since the variables x1, . . . , xr are free, they cannot be
derived from Σ ∪ Λ whatever Λ is. The same occurs for
every i ≥ r + 1 such that fi(x1, . . . , xr) is not a constant
function. Suppose this is the case for r + 1 ≤ i ≤ s.
Then any Σ-full set has to contain ¬Lxj for 1 ≤ j ≤ s.
Let T ′ be the system obtained by considering all remaining
equations while replacing Lxi with 0 for each 1 ≤ i ≤ s.
For each equation in T ′, the function fi (if present) is a
constant function εi. Therefore T ′ consists of the following
equations:

{xi = εi + g′i(Lxs+1, . . . , Lxn) + ci | s < i ≤ n}
∪ {0 = g′i(Lxs+1, . . . , Lxn) + ci | n < i ≤ m+ r}

with g′i(Lxs+1, . . . , Lxn) := gi(0, . . . , 0, Lxs+1, . . . , Lxn)
for s < i ≤ m+r. Thus, for every Λ ⊆ SFL(Σ)∪¬SFL(Σ)
such that {¬Lx1, . . . ,¬Lxs} ⊆ Λ and every i, Σ ∪ Λ |= xi
(resp., Σ ∪ Λ 6|= xi) if and only if T ′ ∪ Λ |= xi (resp.,
T ′ ∪ Λ 6|= xi).

Claim. Let I and J form a partition of {s+ 1, . . . , n}. Then
(Lxs+1, . . . , Lxn) withLxi = 0 if i ∈ I andLxj = 1 if j ∈
J is a solution of the system T ′[xs+1/Lxs+1, . . . , xn/Lxn]
if and only if Λ = {¬Lx1, . . . ,¬Lxs} ∪ {¬Lxi | i ∈ I} ∪
{Lxj | j ∈ J} is a Σ-full set.

To prove the claim, let Λ = {¬Lx1, . . . ,¬Lxs} ∪
{¬Lxi | i ∈ I} ∪ {Lxj | j ∈ J} be a Σ-full set. Ob-
serve that Σ∪Λ is consistent and that either T ′ ∪Λ |= xi or
T ′∪Λ |= ¬xi. Denote by λ the truth assignment induced by
Λ on SFL(Σ). Then, for every i > s, Lxi ∈ Λ iff λ(Lxi) =
1 iff T ′∪Λ |= xi iff εi+g′i

(
λ(Lxs+1), . . . , λ(Lxn)

)
+ci =

1; and ¬Lxi ∈ Λ iff λ(Lxi) = 0 iff T ′ ∪ Λ |= ¬xi iff
εi + g′i

(
λ(Lxs+1), . . . , λ(Lxn)

)
+ ci = 0. This means that

for every i, we have εi+g′i
(
λ(Lxs+1), . . . , λ(Lxn)

)
+ci =

λ(Lxi). Therefore λ is a solution of the system {Lxi =
εi + gi(0, . . . , 0, Lxs+1, . . . , Lxn) + ci | s < i ≤ n}, and
hence of the system T ′[xs+1/Lxs+1, . . . , xn/Lxn].

Conversely, suppose that λ is a solution of the sys-
tem T ′[xs+1/Lxs+1, . . . , xn/Lxn]. In particular, λ sat-
isfies λ(Lxi) = εi + g′i

(
λ(Lxs+1), . . . , λ(Lxn)

)
+ ci |

s + 1 ≤ i ≤ n}. Set Λ := {¬Lx1, . . . ,¬Lxs} ∪ {¬Lxi |
s + 1 ≤ i ≤ n, λ(xi) = 0} ∪ {Lxi | s + 1 ≤ i ≤
n, λ(xi) = 1}. Then T ′ ∪ Λ is equivalent to {Lxi =
εi + g′i

(
λ(Lxs+1), . . . , λ(Lxn)

)
+ ci | s < i ≤ n} ∪ {0 =

g′i
(
λ(Lxs+1), . . . , λ(Lxn)

)
+ ci | n < i ≤ m+ r}. There-

fore T ′ ∪ Λ |= xi iff λ(Lxi) = 1 and T ′ ∪ Λ |= ¬xi iff
λ(Lxi) = 0. Hence, Λ is a Σ-full set. This proves the claim.

We conclude that Σ has a stable expansion iff
T ′[xs+1/Lxs+1, . . . , xn/Lxn] has a solution.

Note that solving this last system by Gaussian elimina-
tion also gives the total number of possible Σ-full sets: the
number of consistent stable expansions is equal to the num-
ber of solutions of T ′[xs+1/Lxs+1, . . . , xn/Lxn]; (while
testing for the inconsistent stable expansion can also be ac-
complished in polynomial-time as seen at the beginning of
the proof).

Proposition 4.7. Let B be a finite set of Boolean functions
such that [B ∪ {0, 1}] = L. Then EXP(B) is ⊕L-hard and
contained in P.

Proof. Let B be as required and Σ be a set of autoepistemic
B-formulae. Then Σ can be written in polynomial time as a
set
{
ck ⊕

⊕
i∈Ik xi

∣∣ k ∈ N, ck ∈ {0, 1}
}

(see, e.g., [5]).
We transform this set to Σ′ as follows: introduce a fresh

variable yφ for every non-atomic formula φ such that Lφ ∈
Σ; add the equations yφ ≡ φ; and replace all occurrences
of Lφ by Lyφ. We claim that the Σ-full sets and the Σ′-full
sets are in one-to-one correspondence. This establishes the
upper bound, because Σ′ satisfies the conditions of Lemma
4.6.

To prove the claim, let Λ ⊆ SFL(Σ) ∪ ¬SFL(Σ). We
give an inductive argument on the number of non-L-atomic
formulae in Σ. To this end, choose an Lϕ ∈ SFL(Σ) such
that ϕ does not contain L-prefixed subformulae. Define

Σϕ := Σ[Lϕ/Lyϕ] ∪ {ϕ ≡ yϕ},
Λϕ := (Λ \ {Lϕ,¬Lϕ}) ∪ {Lyϕ | Lϕ ∈ Λ} ∪

{¬Lyϕ | ¬Lϕ ∈ Λ}.

That is, Σϕ differs from Σ in that we substituted one non-L-
atomic subformula.

Observe that Σ ∪ Λ |= ϕ iff Σϕ ∪ Λϕ |= yϕ. Therefore,
since Lϕ ∈ Λ iff Lyϕ ∈ Λϕ and ¬Lϕ ∈ Λ iff ¬Lyϕ ∈ Λϕ,
it holds that Λ is Σ-full iff Λϕ is Σϕ-full.

Now notice that any Σ containing non-L-atomic subfor-
mulae contains a “minimal” non-L-atomic subformula Lϕ
in the sense that ϕ is does not contain L-prefixed subformu-
lae. Repeating the above argument eventually yields Σ′, for

6

which the existence of stable expansions can be tested in
polynomial time by Lemma 4.6.

To establish ⊕L-hardness, we give a reduction from
IMP(B) for [B ∪ {0, 1}] = L, i.e., the problem to decide
whether Γ |= ψ for a given set Γ of B-formulae and a given
B-formula ψ. Since IMP(B) is ⊕L-complete in this case,
our lemma follows.

We map (Γ, ψ) to Σ := Γ′ ∪ {Lq}, where q is a fresh
proposition and

Γ′ := {ϕ⊕ q | ϕ ∈ Γ ∪ {¬ψ}, ϕ(1, . . . , 1) = 0} ∪
{ϕ | ϕ ∈ Γ ∪ {¬ψ}, ϕ(1, . . . , 1) = 1}.

Observe that Γ′ is satisfied by the assignment setting all
variables to 1. We claim that Γ |= ψ iff Σ has a stable
expansion.

First suppose that Γ |= ψ. Then Γ ∪ {¬ψ} and con-
sequently Γ′[q/0] are unsatisfiable. As Γ′[q/1] |= q[q/1],
we obtain that Γ′ |= q. Consequently, {Lq} is a Σ-full set
and Σ has the (consistent) stable expansion SE({Lq}). For
the converse, suppose that Γ 6|= ψ. Then Γ ∪ {¬ψ} and
Γ′[q/0] are satisfiable. From this we obtain that Γ′ 6|= q.
So there exists an assignment σ such that σ(Γ′) = 1 and
σ(q) = 0. For Λ = {Lq}, we now have Σ ∪ Λ = Σ 6|= q, as
witnessed by an appropriate extension of σ. Thus, {Lq} is
not Σ-full. On the other hand, for Λ = {¬Lq}, we obtain
Σ∪Λ ≡ Γ∪ {Lq,¬Lq} |= q. Hence, Λ = {¬Lq} is not Σ-
full either; concluding that Σ has no stable expansions.

Proposition 4.8. Let B be a finite set of Boolean functions
such that [B] ⊆ N or [B] ⊆ E. Then EXP(B) is solvable in
L. It moreover holds that, for every set Σ ⊆ Lae(B), there
is at most one consistent stable expansion.

Proof. Let B be a finite set of Boolean functions such that
[B] ⊆ N and let Σ ⊆ Lae(B) be given. For Σ to have a
consistent stable expansion, ϕ has to be in Σ for all Lϕ ∈ Σ,
while ϕ must not to be in Σ for all ¬Lϕ ∈ Σ or L¬ϕ ∈ Σ.
As Σ ≡

∧
Σ, the result for [B] ⊆ E follows from the

above.

The proof of Theorem 4.3 now immediately follows from
Propositions 4.4–4.8. Note that by Lemma 4.1 and the discus-
sion following that lemma, this covers all cases and, hence,
Theorem 4.3 gives a complete classification.

From this theorem and its proof one can easily settle the
complexity of the existence of a consistent stable expansion
as well as the complexity of the brave and cautious reasoning.

Corollary 4.9. For all finite sets B of Boolean functions,
the complexity of the problem to decide whether a set of
autoepistemic B-formulae has a consistent stable expansion
is the same as for the problem to decide the existence of a
stable expansion.

Proof. The corollary follows immediately from the proof
of Theorem 4.3. Indeed, in each hardness proof (see Propo-
sitions 4.4, 4.5 and 4.7) we have shown that the set of B-
premises constructed in that proof, Σ or Σ′, does not admit
Lae as a stable expansion. Therefore, Σ or Σ′ has a sta-
ble expansion iff it has a consistent stable expansion. This
proves all the hardness results. As for the upper bounds,
Propositions 4.4 and 4.5 are easily seen to extend to the
existence of a consistent stable expansion. For the tractable
cases [B] ⊆ E and [B] ⊆ N, one can decide the existence of
a consistent stable expansion in logarithmic space. This fol-
lows from the proof of Proposition 4.8. Finally, for [B] ⊆ L,
observe that the proof Proposition 4.7 actually allows to com-
pute full sets corresponding to consistent stable expansions
in polynomial time.

4.2. Brave and Cautious Reasoning

Theorem 4.10. Let B be a finite set of Boolean functions.

• If [B ∪ {0, 1}] is BF or M then MEMb(B) is Σp
2-

complete, whereas MEMc(B) is Πp
2-complete.

• If [B ∪ {0, 1}] is V then MEMb(B) is NP-complete,
whereas MEMc(B) is coNP-complete.

• If [B∪{0, 1}] is L then MEMb(B) and MEMc(B) are
⊕L-hard and in P.

• If [B ∪ {0, 1}] is E or N or I then MEMb(B) and
MEMc(B) are in L.

To prove Theorem 4.10, we require two lemmas that pro-
vide upper bounds on the complexity of MEMb(B) and
MEMc(B) via reduction to the expansion existence prob-
lem.

Lemma 4.11. Let B be a finite set of Boolean functions
such that [B] = L. Then MEMb(B) ≤log

m EXP(B).

Proof. Let B be a finite set of Boolean functions such that
[B] = L. Given Σ ⊆ Lae(B) and ϕ ∈ Lae(B), map the
pair (Σ, ϕ) to Σ′ := Σ ∪ {Lϕ ⊕ p ⊕ 1, Lp}, where p is a
fresh proposition. We claim that ϕ is contained in a stable
expansion of Σ iff Σ′ ∈ EXP(B).

First suppose that ϕ is contained in a stable expansion
∆ of Σ and let Λ denote its kernel. We claim that Λ′ :=
Λ ∪ {Lϕ,Lp} is Σ′-full:

• Σ′ ∪ Λ′ |= ϕ, because Σ ∪ Λ |=L ϕ;

• Σ′ ∪ Λ′ |= p, because Σ ∪ {Lϕ,Lϕ⊕ p⊕ 1} |= p;

• for all Lψ ∈ Λ, we have Σ′∪Λ′ ≡ Σ∪Λ∪{Lϕ,Lϕ⊕
p ⊕ 1, Lp} |=L ψ; whereas for all ¬Lψ ∈ Λ, we still
have Σ′ ∪Λ′ ≡ Σ∪Λ∪ {Lϕ,Lϕ⊕ p⊕ 1, Lp} 6|=L ψ.

7

Hence, Σ′ has a stable expansion.
Conversely, suppose that ϕ is not bravely entailed. Hence

Σ does not have Lae as a stable expansion and ¬Lϕ ∈
∆ for all stable expansions ∆ of Σ. Observe that Σ′ ∪
SFL(Σ′) = Σ ∪ SFL(Σ) ∪ {Lϕ⊕ p⊕ 1, Lp} ∪ {Lϕ,Lp}
is consistent, therefore Lae is not a stable expansion of Σ′.
Hence, assume that ∆′ is a consistent stable expansion of Σ′.
Then either Lp ∈ ∆′ or ¬Lp ∈ ∆′. In the former case, ∆′

would also have to contain Lϕ, while ϕ can not be derived.
A contradiction to ∆′ being a stable expansion of Σ′. In
the latter case, we have that Th(Σ′ ∪ L(∆′) ∪ ¬L(∆̄′)) ⊇
{¬Lp,Lp}. Thus Th(Σ′∪L(∆′)∪¬L(∆̄′)) = Lae) ∆′—
a contradiction to ∆′ being a stable expansion. We conclude
that Σ′ does not posses any stable expansions.

Lemma 4.12. Let B be a finite set of Boolean functions
such that [B] = L. Then MEMc(B) ≤log

m EXP∗(B), where
EXP∗(B) denotes the problem of deciding the existence of
a consistent stable expansion.

Proof. The proof is similar to the proof of Lemma 4.11. Let
B be a finite set of Boolean functions such that [B] = L.
Given Σ ⊆ Lae(B) and ϕ ∈ Lae(B), map the pair (Σ, ϕ)
to Σ′ := Σ ∪ {Lϕ⊕ p, Lp}, where p is a fresh proposition.
We claim that ϕ is contained in any stable expansion of Σ iff
Σ′ 6∈ EXP∗(B).

First suppose that there exists a stable expansion ∆ of Σ
that does not contain ϕ. Let Λ denote its kernel. Then, for
the same arguments as above, Λ′ := Λ ∪ {¬Lϕ,Lp} is a
Σ′-full set. Conversely, suppose that ϕ is contained in all
stable expansions ∆ of Σ. Let ∆′ denote a consistent stable
expansion of Σ′. If Lp ∈ ∆′, then ∆′ would also have to
contain ¬Lϕ, while ϕ can be derived. A contradiction to
∆′ being a stable expansion of Σ′. Otherwise, if ¬Lp ∈ ∆′,
then Σ′ ∪ L(∆′) ∪ ¬L(∆̄′) is inconsistent—contradictory
to ∆′ being a consistent stable expansion. We conclude that
Σ′ does not posses any consistent stable expansion.

Proof of Theorem 4.10. According to Lemma 4.1 one can
suppose w.l.o.g. that B contains the two constants 0 and
1. Since 1 belongs to all stable expansion, a set Σ of B-
premises has a stable expansion iff 1 belongs to some stable
expansion of Σ. Since 0 does not belong to any consistent
stable expansion, a set Σ of B-premises has no consistent
stable expansion iff 0 belongs to any stable expansion of Σ.
Therefore, the lower bounds follow from Theorem 4.3 and
Corollary 4.9.

As for the upper bounds, membership in Σp
2 and Πp

2 in
the general case follows from the discussion preceding The-
orem 4.3.

For [B] ⊆ V, the proof of Proposition 4.5 shows that,
given Σ ⊆ Lae(B), we can compute a Σ-full set Λ in NP
resp. coNP. By Lemma 3.5, it remains to check whether
Σ ∪ Λ |=L ϕ. To this end, we nondeterministically guess a

set T ⊆ SFq(ϕ), verify that Σ∪Λ∪{Lχ | χ ∈ T}∪{¬Lχ |
χ ∈ SFq(ϕ) \ T} |= ϕ, and recursively check that

• Σ ∪ Λ |=L χ for all χ ∈ T ,

• Σ ∪ Λ 6|=L χ for all χ ∈ SFq(ϕ) \ T .

This recursion terminates after at most |ϕ| steps as
|SFq(ϕ)| ≤ SF(ϕ) ≤ |ϕ| and Σ∪Λ |=L χ iff Σ∪Λ |= χ for
all for all propositional formulae χ. The above hence consti-
tutes a polynomial-time Turing reduction to the implication
problem for propositional B-formulae. As implication test-
ing for B-formulae is in P, we obtain that Σ ∪ Λ |=L ϕ is
polynomial-time decidable; thence MEMb(B) ∈ NP and
MEMc(B) ∈ coNP.

For [B] ⊆ N and [B] ⊆ E, the proof of Proposition 4.8
shows that, given Σ ⊆ Lae(B), computation of a Σ-full
set Λ can be performed in L, while deciding Σ ∪ Λ |=L ϕ
reduces to testing whether Σ ∪ Λ |= ψ for the (unique)
atomic subformula ψ ∈ SF(ϕ).

Finally, for [B ∪ {0, 1}] = L, the claim follows from
Lemmas 4.11 and 4.12, Proposition 4.7 and Corollary 4.9.

5. Counting Complexity

Besides deciding existence of stable expansions or entail-
ment of formulae, another natural question is concerned with
the total number of stable expansions of a given autoepis-
temic theory. We define the counting problem for stable
extensions as

Problem: #EXP(B)

Input: A set Σ ⊆ Lae(B)

Output: The number of stable expansions of Σ.

The complexity of this problem is classified by the following
theorem.

Theorem 5.1. Let B be a finite set of Boolean functions.

• If [B ∪{0, 1}] is BF or M then #EXP(B) is #·coNP-
complete.

• If [B ∪ {0, 1}] is V then #EXP(B) is #P-complete.

• If [B∪{0, 1}] ⊆ L or [B∪{0, 1}] ⊆ E then #EXP(B)
is in FP.

Proof. We first prove the lower bounds. It is easily observed
that the reduction given in the proof of Lemma 4.1 is par-
simonious. For the claimed lower bounds it hence suffices
to prove the #·coNP-hardness of #EXP(B) for [B] = M
and the #·coNP-hardness of #EXP(B) for [B] = V. For
the former, notice that the reduction given in Proposition 4.5
is also a parsimonious reduction from #3SAT, which is

8

#P-complete-complete via parsimonious reductions [29].
For the latter, notice that the proof of Proposition 4.4 estab-
lishes a parsimonious reduction from the problem #Π1SAT,
which is #·coNP-complete via parsimonious reductions
[11].

We are thus left to prove the upper bounds. Let B be a fi-
nite set of Boolean functions such that [B] = BF. In the para-
graph starting Section 4, it has been argued that the problem
of deciding EXP(B) nondeterministically Turing-reduces to
the propositional implication problem (see also [21]): given
Σ ⊆ Lae(B), guess a subset Λ+ ⊆ SFL(Σ) and verify that
Λ := Λ+ ∪ {¬Lϕ | ϕ ∈ SFL(Σ), Lϕ /∈ Λ+} is a Σ-full set
using the conditions given in Definition 3.2. It is thus clear
that #EXP is contained in #·PNP, as a Turing machine
implementing the above algorithm can be build in a way
such that there is a bijection between its computation paths
and the possible sets Λ+. The first claim now follows from
#·PNP = #·coNP [13].

Next, let B be such that [B] = V. Then there exists a
nondeterministic Turing machine M such that the number
of accepting path of M on input Σ ⊆ Lae(B) corresponds
to the number of stable expansions of Σ (cf. the proof of
Proposition 4.5). Hence, #EXP(B) ∈ #P.

Next, suppose that [B] ⊆ L and let Σ denote the
given autoepistemic theory. Let T ′ denote the system
of linear equations obtained from Σ in the proofs of
Lemma 4.6. Then the number of consistent stable expan-
sions of Σ is equal to the number of solutions of the system
T ′[xs+1/Lxs+1, . . . , xn/Lxn], which can be computed in
polynomial time by Gaussian elimination. Moreover, Lae is
a stable expansion of Σ iff Σ∪SFL(Σ) is inconsistent, which
is polynomial-time decidable. Hence, #EXP(B) ∈ FP.

Finally, the case [B] ⊆ E follows from the fact that for
any Σ ⊆ Lae(B) an equivalent representation Σ′ ∈ Lae(I)
can be computed efficiently.

6. Conclusion

In this paper we followed the approach of Lewis to build
formulae from a given finite set B of allowed Boolean func-
tions [16] and studied the complexity of the expansion ex-
istence, the brave (resp. cautious) reasoning problem, and
the counting problem for stable expansions involving B-
formulae.

We showed that for all sets of allowed Boolean functions,
the computational complexity of the expansion existence
and reasoning problems is divided into four presumably
different levels (see Figure 1): all three problems remain
complete for classes of the second level of the polynomial
hierarchy as long as the connectives ∧ and ∨ can be ex-
pressed; if, otherwise, only disjunctions can be expressed the
complexity drops to completeness for the first level of the
polynomial hierarchy; in all remaining cases, the problems

become tractable (either contained in L or contained in P
and ⊕L-hard). We obtained a non-trivial polynomial-time
upper bound for the case of not-unary affine functions. Note
however that the exact complexity of the problems in this
case remains open. This clone has also remained unclassified
in a number of previous related works on different modal
and non-monotonic logics [2, 28].

As for the problem of counting the number of stable
expansions, its computational complexity is trichotomic:
#·coNP-complete, #P-complete, or contained in FP. We
think it is important to note that for our classification of
counting problems the conceptually simple parsimonious
reductions are sufficient, while for related classifications in
the literature less restrictive (and more complicated) reduc-
tions such as subtractive or complementive reductions had
to be used (see, e.g., [11, 10, 1] and some of the results of
[14]). Parsimonious reductions are not only the conceptually
simplest ones since they are direct analogues of the usual
many-one reductions among languages. They also form the
strongest (strictest) type of reduction with a number of good
properties, e. g. all relevant counting classes are closed under
parsimonious reductions (and not under the other mentioned
types of reductions). Thus, one of the contributions of our
paper is a natural counting problem complete in the class
#·coNP under the simplest type of reductions.

Future work, besides closing the gap for the clone L,
should compare the classification obtained here to related
classifications for non-monotonic logics such as default logic
[6] or circumscription [28]. It will be interesting to study if
the embeddings between the three logics mentioned in the
introduction obey the border between the clones.

References

[1] M. Bauland, E. Böhler, N. Creignou, S. Reith, H. Schnoor,
and H. Vollmer. The complexity of problems for quantified
constraints. Theory of Computing Systems, 2009. Electroni-
cally available at http://dx.doi.org/10.1007/s00224-009-9194-
6.

[2] M. Bauland, E. Hemaspaandra, H. Schnoor, and I. Schnoor.
Generalized modal satisfiability. In 23nd Symposium on
Theoretical Aspects of Computer Science, pages 500–511,
2006.

[3] M. Bauland, M. Mundhenk, T. Schneider, H. Schnoor,
I. Schnoor, and H. Vollmer. The tractability of model check-
ing for LTL: the good, the bad, and the ugly fragments. Elec-
tronic Notes in Theoretical Computer Science, 231:277–292,
2009.

[4] M. Bauland, T. Schneider, H. Schnoor, I. Schnoor, and
H. Vollmer. The complexity of generalized satisfiability for
linear temporal logic. Logical Methods in Computer Science,
5(1), 2008.

[5] O. Beyersdorff, A. Meier, M. Thomas, and H. Vollmer. The
complexity of propositional implication. Information Pro-
cessing Letters, 109(18):1071–1077, 2009.

9

[6] O. Beyersdorff, A. Meier, M. Thomas, and H. Vollmer. The
complexity of reasoning for fragments of default logic. In
Proceedings 12th Theory and Applications of Satisfiability
Testing (SAT), volume 5584 of Lecture Notes in Computer
Science, pages 51–64. Springer, 2009.

[7] E. Böhler, N. Creignou, S. Reith, and H. Vollmer. Playing
with Boolean blocks, part I: Post’s lattice with applications
to complexity theory. SIGACT News, 34(4):38–52, 2003.

[8] G. Buntrock, C. Damm, U. Hertrampf, and C. Meinel. Struc-
ture and importance of logspace MOD-classes. Mathematical
Systems Theory, 25:223–237, 1992.

[9] N. Creignou, J. Schmidt, and M. Thomas. Complexity of
propositional abduction for restricted sets of Boolean func-
tions. In Proc. 12th International Conference on the Princi-
ples of Knowledge Representation and Reasoning, 2010. To
appear.

[10] A. Durand and M. Hermann. On the counting complexity
of propositional circumscription. Information Processing
Letters, 106:164–170, 2008.

[11] A. Durand, M. Hermann, and P. G. Kolaitis. Subtractive
reductions and complete problems for counting complexity
classes. Theoretical Computer Science, 340(3):496–513,
2005.

[12] G. Gottlob. Complexity results for nonmonotonic logics.
Journal of Logic Computation, 2(3):397–425, 1992.

[13] L. Hemaspaandra and H. Vollmer. The satanic notations:
counting classes beyond #P and other definitional adventures.
Complexity Theory Column 8, ACM-SIGACT News, 26(1):2–
13, 1995.

[14] M. Hermann and R. Pichler. Counting complexity of propo-
sitional abduction. In Proceedings of the 20th International
Joint Conference on Artificial Intelligence, pages 417–422,
2007.

[15] M. Jakl, R. Pichler, S. Rümmele, and S. Woltran. Fast count-
ing with bounded treewidth. In 15th International Conference
on Logic for Programming, Artificial Intelligence, and Rea-
soning, number 5330 in Lecture Notes in Computer Science,
pages 436–450. Springer-Verlag, 2008.

[16] H. Lewis. Satisfiability problems for propositional calculi.
Mathematical Systems Theory, 13:45–53, 1979.

[17] J. McCarthy. Circumscription – A form of non-monotonic
reasoning. Artificial Intelligence, 13:27–39, 1980.

[18] D. McDermott and J. Doyle. Non-monotonic logic I. Artifi-
cial Intelligence, 13:41–72, 1980.

[19] A. Meier, M. Mundhenk, M. Thomas, and H. Vollmer. The
complexity of satisfiability for fragments of CTL and CTL?.
Electr. Notes Theor. Comput. Sci., 223:201–213, 2008.

[20] R. C. Moore. Semantical considerations on modal logic.
Artificial Intelligence, 25:75–94, 1985.

[21] I. Niemela. Towards automatic autoepistemic reasoning. In
Proceedings European Workshop on Logics in AI, volume
478 of Lecture Notes in Computer Science, pages 428–443.
Springer, 1991.

[22] C. H. Papadimitriou. Computational Complexity. Addison-
Wesley, Reading, MA, 1994.

[23] N. Pippenger. Theories of Computability. Cambridge Uni-
versity Press, Cambridge, 1997.

[24] E. Post. The two-valued iterative systems of mathematical
logic. Annals of Mathematical Studies, 5:1–122, 1941.

[25] R. Reiter. A logic for default reasoning. Artificial Intelligence,
13:81–132, 1980.

[26] S. Reith. On the complexity of some equivalence problems
for propositional calculi. In Proc. 28th International Sym-
posium on Mathematical Foundations of Computer Science,
pages 632–641, 2003.

[27] H. Schnoor. The complexity of the Boolean formula value
problem. Technical report, Theoretical Computer Science,
Leibniz University of Hannover, 2005.

[28] M. Thomas. The complexity of circumscriptive inference
in Post’s lattice. In Proc. 10th International Conference on
Logic Programming and Nonmonotonic Reasoning, volume
5753 of Lecture Notes in Computer Science, pages 290–302.
Springer, 2009.

[29] L. G. Valiant. The complexity of enumeration and reliability
problems. SIAM Journal of Computing, 8(3):411–421, 1979.

10

