
Scalably Scheduling Processes with Arbitrary Speedup Curves

Jeff Edmonds∗ Kirk Pruhs†

Abstract

We give a scalable ((1+ǫ)-speed O(1)-competitive) nonclairvoyant algorithm for scheduling
jobs with sublinear nondecreasing speed-up curves on multiple processors with the objective of
average response time.

1 Introduction

Computer chip designers are agreed upon the fact that chips with hundreds to thousands of proces-
sors chips will dominate the market in the next decade. The founder of chip maker Tilera asserts

that a corollary to Moore’s law will be that the number of cores/processors will double every 18
months [15]. Intel’s director of microprocessor technology asserts that while processors will get

increasingly simple, software will need to evolve more quickly than in the past to catch up [15]. In
fact, it is generally agreed that developing software to harness the power of multiple processors is

going to be a much more difficult technical challenge than the development of the hardware. In
this paper, we consider one such software technical challenge: developing operating system algo-

rithms/policies for scheduling processes with varying degrees of parallelism on a multiprocessor.
We will consider the setting where n processes/jobs arrive to the system of m processors over

time. Job Ji arrives at time ri, and has a work requirement wi. At each point of time, a scheduling

algorithm specifies which job is run on each processor at that time. An operating system schedul-
ing algorithm generally needs to be nonclairvoyant, that is, the algorithm does not require internal

knowledge about jobs, say for example the jobs’ work requirement, since such information is gen-
erally not available to the operating systems. Job Ji completes after its wi units of work has been

processed. If a job Ji completes at time Ci, then its response time is Ci − ri. In this paper we
will consider the schedule quality of service metric total response time, which for a schedule S is

defined to be F (S) =
∑n

i=1(Ci − ri). For a fixed number of jobs, total response time is essentially
equivalent to average response time. Average response time is by far the mostly commonly used

schedule quality of service metric. Before starting our discussion of multiprocessor scheduling, let
us first review resource augmentation analysis and single processor scheduling.

For our purposes here, resource augmentation analysis compares an online scheduling algorithm

against an offline optimal scheduler with slower processors. Online scheduling algorithm A is s-
speed c-competitive if

max
I

F (As(I))

F (Opt1(I))
≤ c

where As(I) is the schedule produced by algorithm A with speed s processors on input I , and
Opt1(I) is the optimal schedule for unit speed processors on input I , and F (S) is the total response

∗York University, Canada. jeff@cs.yorku.ca. Supported in part by NSERC Canada.
†Computer Science Department. University of Pittsburgh. kirk@cs.pitt.edu. Supported in part by an IBM faculty

award, and by NSF grants CNS-0325353, CCF-0514058, IIS-0534531, and CCF-0830558.

1

Dagstuhl Seminar Proceedings 10071
Scheduling
http://drops.dagstuhl.de/opus/volltexte/2010/2546

time for schedule S [13, 17]. An algorithm A is said to be scalable if for every ǫ > 0, there is a

constant cǫ such A is (1+ǫ)-speed cǫ-competitive [18, 19]. A scalable algorithm is O(1)-competitive
on inputs I where Opt1(I) is approximately Opt1+ǫ(I), which intuitively are inputs that do not

fully load the server. So as the load increases, the performance of a scalable algorithm should be
reasonably close to the performance of the optimal algorithm up until the server is almost fully

loaded. For a more detailed explanation see [18, 19].
The nonclairvoyant algorithm Shortest Elapsed Time First (SETF) is scalable [13] for scheduling

jobs on a single processor for the objective of total response time. SETF shares the processor equally
among all processes that have been processed the least to date. Intuitively, SETF gives priority to

more recently arriving jobs, until they have been processed as much as older jobs, at which point all
jobs are given equal priority. The process scheduling algorithm used by most standard operating
systems, e.g. Unix, essentially schedules jobs in way that is consistent with this intuition. No

nonclairvoyant scheduling algorithm can be O(1)-competitive for total response time if compared
against the optimal schedule with the same speed [16]. The intuition is that one can construct

adversarial instances where the load is essentially the capacity of the system, and there is no time
for the nonclairvoyant algorithm to recover from any scheduling mistakes.

One important issue that arises when scheduling jobs on a multiprocessor is that jobs can have
widely varying degrees of parallelism. That is, some jobs may be be considerably sped up when

simultaneously run on to multiple processors, while some jobs may not be sped up at all (this could
be because the underlying algorithm is inherently sequential in nature, or because the process

was not coded in a way to make it easily parallelizable). To investigate this issue, we adopt the
following general model used in [8]. Each job consists of a sequence of phases. Each phase consists
of a positive real number that denotes the amount of work in that phase, and a speedup function

that specifies the rate at which work is processed in this phase as a function of the number of
processors executing the job. The speedup functions may be arbitrary, other than we assume that

they are nondecreasing (a job doesn’t run slower if it is given more processors), and sublinear (a job
satisfies Brent’s theorem, that is increasing the number of processors doesn’t increase the efficiency

of computation).
The most obvious scheduling algorithm in the multiprocessor setting is Equi-partition (Equi),

which splits the processors evenly among all processes. Equi is analogous to the Round Robin or
Processor Sharing algorithm in the single processor setting. In what is generally regarded as a

quite complicated analysis, it is shown in [8] that Equi is a (2+ǫ)-speed (2s
ǫ)-competitive for total

response time. It is also known that, even in the case of a single processor, speed at least 2+ǫ is
required in order for Equi to be O(1)-competitive for total response time [13].

1.1 Our Results

In this paper we introduce a nonclairvoyant algorithm, which we call LAPS〈β,s〉, and show that it
is scalable for scheduling jobs with sublinear nondecreasing speedup curves with the objective of

total response time.

LAPS〈β,s〉(Latest Arrival Processor Sharing) Definition: This algorithm is parameterized by

a real β ∈ (0, 1]. Let nt be the number of jobs alive at time t. The processors are equally partitioned
among the ⌈βnt⌉ jobs with the latest arrival times (breaking ties arbitrarily but consistently). Here

s is the speed of the processor, which will be useful in our analysis.

Note that LAPS〈β,s〉 is a generalization of Equi since LAPS〈1,s〉 identical to Equis. But as β
decreases, LAPS〈β,s〉, in a manner reminiscent of SETF, favors more recently released jobs. The

main result of this paper, which we prove in section 3, is then:

2

Theorem 1. LAPS〈β,s〉, with speed s = (1+β+ǫ) processors, is
(

4s
βǫ

)
-competitive algorithm for

scheduling processes with sublinear nondecreasing speedup curves for the objective of average re-

sponse time. The same result holds if LAPS〈β,s〉 is given s times as many speed one processors as
the adversary.

Essentially this shows that, perhaps somewhat surprisingly, that a nonclairvoyant scheduling
algorithm can perform roughly as well in the setting of scheduling jobs with arbitrary speedup curves

on a multiprocessor, as it can when scheduling jobs on a single processor. Our proof of Theorem
1 uses a simple amortized local competitiveness argument with a simple potential function. When

β = 1, that is when LAPS〈β,s〉 = Equis, we get as a corollary of Theorem 1 that Equi is (2+ǫ)-speed

(2s
ǫ)-competitive, matching the bound given in [8], but with a much easier proof.

There is a unique feature of LAPS〈β,s〉 that is worth mentioning. LAPS〈β,s〉 is only O(1)-

competitive when s is sufficiently larger (depending on β) than 1. Previously analyses showing
(1+ǫ)-speed O(1)-competitive were for algorithms that were not parameterized by ǫ. For example,

in was shown in [13] that on one processor SETF is simultaneously (1+ǫ)-speed (1+1
ǫ)-competitive

for all ǫ > 0 simultaneously. Thus we need to introduce a new notion of scalability. We say that an

algorithm As, that is parameterized by a speed s, is scalable if for every ǫ > 0, there is a constant
cǫ such the algorithm A1+ǫ is (1+ǫ)-speed cǫ-competitive. So note that here the algorithm depends
on the choice of ǫ.

Theorem 1 also improves the best known competitiveness result for broadcast/multicast pull
scheduling. It is easiest to explain broadcast scheduling in context of a web server serving static

content. In this setting, it is assumed that the web server is serving content on a broadcast channel.
So if the web server has multiple unsatisfied requests for the same file, it need only broadcast

that file once, simultaneously satisfying all the users who issued these requests. [11] showed how
to convert any s-speed c-competitive nonclairvoyant algorithm for scheduling jobs with arbitrary

speedup curves into a 2s-speed c-competitive algorithm for broadcast scheduling. Using this result,
and the analysis of Equi from [8], [11] showed that a version of Equi (4+ǫ)-speed O(1)-competitive

for broadcast scheduling with the objective of average response time. Using Theorem 1 we can
then deduce that a broadcast version of LAPS〈β,s〉 is (2+ǫ)-speed O(1)-competitive for broadcast

scheduling with the objective of average response time.

1.2 Related Results

For the objective of total response time on a single processor, the competitive ratio of every de-
terministic nonclairvoyant algorithm is Ω(n1/3), and the competitive ratio of every randomized

nonclairvoyant algorithm against an oblivious adversary is Ω(logn) [16]. There is a randomized al-
gorithm, Randomized Multi-Level Feedback Queues, that is O(logn)-competitive against an obliv-

ious adversary [2, 14]. The online clairvoyant algorithm Shortest Remaining Processing time is
optimal for total response time. The competitive analysis of SETFs for single processor scheduling

was improved for cases when s ≫ 1 in [3].
Variations of Equipartition are built into many technologies. For example, the congestion control

protocol in the TCP Internet protocol essentially uses Equipartition to balance bandwidth to TCP
connections through a bottleneck router. Extensions of the analysis of Equi in [8] to analyzing

TCP can be found in [9, 10]. Other extensions to the analysis of Equi in [8] for related scheduling
problems can found in [20–22]. In our results here, we essentially ignore the extra advantage that
the online algorithm gains from having faster processors instead of more processors. [8] gives a

better competitive ratio for Equi in the model with faster processors.

3

There are many related scheduling problems with other objectives, and/or other assumptions

about the machine and job instance. Surveys can be found in [18, 19].

2 Preliminaries

In this section, we review the formal definitions introduced in [8]. An instance consists of a
collection J = {J1, . . . , Jn} where job Ji has a release/arrival time ri and a sequence of phases〈
J1

i , J2
i , . . . , Jqi

i

〉
. Each phase is an ordered pair 〈wq

i , Γ
q
i 〉, where wq

i is a positive real number that

denotes the amount of work in the phase and Γq
i is a function, called the speedup function, that

maps a nonnegative real number to a nonnegative real number. Γq
i (p) represents the rate at which

work is processed for phase q of job Ji when run on p processors running at speed 1. If these
processors are running at speed s, then work is processed at a rate of sΓq

i (p).

A schedule specifies for each time, and for each job, (1) a nonnegative real number specifying
the number of processors assigned to that job, and (2) a nonnegative real speed. The number of

processors assigned at any time can be at most m, the number of processors. Note that, formally,
a schedule does not specify an assignment of copies of jobs to processors.

A nonclairvoyant algorithm only knows when processes have been released and finished in the
past, and which processes have been run on each processor each time in the past. In particular, a
nonclairvoyant algorithm does not know wq

i , nor the current phase q, nor the speedup function Γq
i .

The completion time of a job Ji, denoted Ci, is the first point of time when all the work of
the job Ji has been processed. Note that in the language of scheduling, we are assuming that

preemption is allowed, that is, a job maybe be suspended and later restarted from the point of
suspension. A job is said to be alive at time t, if it has been released, but has not completed, i.e.,

ri ≤ t ≤ Ci. The response/flow time of job Ji is Ci − ri, which is the length of the time interval
during which the job is active. Let nt be the number of active jobs at time t. Another formulation

of total flow time is
∫∞
0 ntdt.

A phase of a job is parallelizable if its speedup function is Γ(p) = p. Increasing the number of

processors allocated to a parallelizable phase by a factor of s increases the rate of processing by
a factor of s. A phase is sequential if its speedup function is Γ(p) = 1, for all p ≥ 0. The rate
that work is processed in a sequential phase is independent of the number of processors, even if it

is zero. A speedup function Γ is nondecreasing if and only if Γ(p1) ≤ Γ(p2) whenever p1 ≤ p2. A
speedup function Γ is sublinear if and only if Γ(p1)/p1 ≥ Γ(p2)/p2 whenever p1 ≤ p2. We assume

all speedup functions Γ in the input instance are nondecreasing and sublinear.
Let A be an algorithm and J an instance. We denote the schedule output by A with speed s

processors on J as As(J). Let Opt(J) be the optimal schedule with unit speed processors on input
J. We let F (S) denote the total response time incurred in schedule S,

3 Analysis of LAPS〈β,s〉

This section will be devoted or proving Theorem 1, that LAPS〈β,s〉 is scalable. We will assume that
the online algorithm has sm unit speed processors while the adversary has m unit speed processors.

Since in the context of preemptive scheduling, a speed s processor is always at least as useful as s
unit speed processors, the analysis for speed augmentation will follow as a direct consequence of

our analysis for machine augmentation.
Following the lead of [8] and [22], the first step in our proof is to prove that there is a worst

case instance that contains only sequential and parallelizable phases.

4

Lemma 2. Let A be a nonclairvoyant scheduler. Let J be an instance of jobs with sublinear-

nondecreasing speedup functions. Then there is a job set J ′ that with only sequential and paralleliz-
able phases such that F (A(J ′)) = F (A(J)) and F (Opt(J ′)) ≤ F (Opt(J)).

Proof. We explain how to modify J to obtain J ′. We perform the following modification for

each time t and each job Ji that A runs during the infinitesimal time [t, t + dt]. Let w be the
infinitesimal amount of work processed by A during this time, and Γ the speedup function for the

phase containing w. Let pa denote the number of processors allocated by A to w at time t. So the
amount of work in w is Γ(pa)dt. Let po denote the number of processors allocated by Opt to w.

It is important to note that Opt may not process w at time t. If p0 ≤ pa, we then modify J by
replacing this w amount of work with a sequential phase with work w′ = dt. If po > pa, we then

modify J by replacing this w amount of work with parallelizable phase with work w′ = padt. Note
that by construction, A will not be able to distinguish between the instances J and J ′ during the
time period [t, t + dt]. Hence, since A is nonclairvoyant A(J ′) = A(J). We are now left to argue

that F (Opt(J ′)) ≤ F (Opt(J)). We will accomplish this by giving a schedule X for J ′ that has
total response time at most F (Opt(J)).

First consider the case that po ≤ pa. Because the speedup function Γ of the phase containing
the work w is non-decreasing, it took Opt(J) more than time dt to finish the work w. The schedule

X will start working on the work w′ with po processors when Opt(J) started working on the work
w, and then after X completes w′, X can let these p0 processors idle until Opt(J) completes w.

Now consider that case that po ≥ pa. Again the schedule X will start working on w′ when
Opt(J) started working on w. We now want to argue that X can complete w′ with po processors

in less time than it took Opt(J) to complete w with po processors. It took time padt
po

time for X to

complete w′ since the padt work in w′ is parallelizable. It took Opt(J) time Γ(pa)dt
Γ(po)

to complete the

Γ(pa)dt work in w. The fact X completes w′ before Opt(J) completes w follows since pa

po
≤ Γ(pa)

Γ(po)
since po ≥ pa and Γ is sublinear.

By Lemma 2, it is sufficient to consider instances that contain only sequential and parallelizable

phases. So for the rest of the proof we fix such an instance. Our goal is to bound the number Nt

of jobs alive under Opt at time t in terms of what is happening under LAPS〈β,s〉 at this same time.

This requires the introduction of a fair amount of notation. Let nt denote number of jobs alive
under LAPS〈β,s〉 at time t. Let mt denote the number of these that are within a parallelizable phase

at this time and let ℓt denote the same except for sequential phases. Let Nt, Mt, and Lt denote
the same numbers except under Opt. Let N̂t denote the number jobs at time t that LAPS〈β,s〉

has not completed, but for which LAPS〈β,s〉 is ahead of Opt. Let ℓ̂t denote the number jobs that
LAPS〈β,s〉 has not completed at time t, and either LAPS〈β,s〉 is ahead of Opt on this job at this
time, or LAPS〈β,s〉 is executing a sequential phase on this job at this time.

We note some relationships between these job counts Clearly N̂t ≤ Nt since Opt has not
completed these N̂t jobs.

∫∞
0 Ltdt =

∫∞
0 ℓtdt since each integral is simply the sum of the work of

all sequential phases of all jobs. Finally note that ℓ̂t ≤ N̂t + ℓt since each of the ℓ̂t jobs is either
in a sequential phase, or is included in the count N̂t. Thus we can conclude that the total cost to

Opt is bounded as follows:

F (Opt(J)) =

∫ ∞

0
Ntdt =

1

2

∫ ∞

0
(Nt + (Mt + Lt)) dt ≥

1

2

∫ ∞

0

(
N̂t + 0 + ℓt

)
dt ≥

∫ ∞

0

ℓ̂t

2
dt

To prove c-competitiveness using an amortized local competitiveness argument [8, 18, 19], we

need to define a potential function Φt such that the following conditions hold:

5

Boundary: Φ is initially and finally 0, that is, Φ0 = Φ∞ = 0.

Arrival: Φt does not increase when a new job arrives.

Completion: Φt does not increase when either the online algorithm or the adversary complete a

job.

Running: For all times t when no job arrives or is completed,

nt +
dΦt

dt
≤

cℓ̂t

2
(1)

By integrating the running condition over time, and using the boundary, arrival, and completion
conditions, one can conclude that

F (LAPS〈β,s〉) =

∫ ∞

0

ntdt ≤

∫ ∞

0

ntdt+[Φ∞−Φ0] =

∫ ∞

0

(
nt +

dΦt

dt

)
dt ≤

∫ ∞

0

(
cℓ̂t

2

)
dt ≤ c·F (Opt)

We define the potential function Φt as follows. Let Ji denote the ith of the nt jobs currently
alive under LAPS〈β,s〉 at time t, sorted by their arrival times ri (breaking ties arbitrarily but

consistently). So J1 is the earliest arriving job, and Jnt
is the latest arriving job, among the jobs

alive for LAPS〈β,s〉 at time t. Let xi denote the amount of parallelizable work of Ji has been
completed by Opt before time t, but that was not completed by LAPS〈β,s〉 before time t. Let

γ = 2
ǫm . The potential function is then:

Φt = γ

nt∑

i=1

i ·max(xi, 0) (2)

The boundary conditions for Φt are trivially satisfied. If a new job Jj arrives, then the value
of the potential function does not increase because LAPS〈β,s〉 will not be behind on that job (i.e.

xj = 0). If LAPS〈β,s〉 completes job Jj , then j max(xj, 0) = 0 since xj = 0, and removing job Jj

from the summation will not increase the coefficient i of any other job. Opt completing a job Jj

has no effect on the potential function at all.

To establish inequality (1), consider an infinitesimal period of time [t, t+dt] during which no
jobs arrive or are completed by either Equi or Opt. Consider how much Φt can increase due Opt’s

processing during this period. Without loss of generality, Opt processes only parallelizable work.
Opt processes this parallelizable work at rate at most m. This increases the sum of the xi’s for

these jobs by a total of at most m dt. Opt can increase Φt the most by working only on the most
recently arrived job because its coefficient is maximal. Since the most recently arrived job has

coefficient nt in Φt, the rate of increase in Φt due to Opt’s processing is at most γmnt.
We now need to bound how much Φt must decrease due to LAPS〈β,s〉’s processing during the

same infinitesimal period of time [t, t+dt]. The algorithm LAPS〈β,s〉 works on the ft = ⌈βnt⌉ jobs
with the latest arrival times. Ideally, for these jobs, the term max(xi, 0) in the potential function
decreases at a rate of sm

ft
. However, there are two possible reasons that this desired decrease will

not occur. The first possible reason is that LAPS〈β,s〉 has processed one of these jobs more than
Opt has at this time. For such jobs, xi ≤ 0 and hence max(xi, 0) is already 0. The second possible

reason is that the job is in a sequential phase under LAPS〈β,s〉 at this time. Because xi measures
only the work in parallelizable phases, any processing that LAPS〈β,s〉 does on a sequential phase

does not decrease max(xi, 0). Recall that we defined ℓ̂t to be the number jobs that have at least

6

one of these properties. In the worst case, these ℓ̂t jobs are those that arrive the most recently.

Let us for the moment assume that ℓ̂t ≤ ft. In this case, LAPS〈β,s〉 effectively decreases the term

max(xi, 0) only for the jobs with coefficients in the range [nt−ft+1, nt− ℓ̂t]. The value of max(xi, 0)

decreases for these jobs at a rate of sm
ft

. Hence, the decrease in Φt due to LAPS〈β,s〉’s processing is
at least

γ

nt−bℓt∑

i=nt−ft+1

i ·
dxi

dt

= γ

nt−bℓt∑

i=nt−ft+1

i ·

(
−

sm

ft

)

=
−smγ

2ft

(
(nt − ℓ̂t)(nt − ℓ̂t + 1)− (nt − ft)(nt − ft + 1)

)

=
smγ

2ft

(
2ntℓ̂t − ℓ̂2

t + ℓ̂t − 2ntft + f2
t − ft

)

≤
smγ

2ft

(
2ntℓ̂t − 2ntft + f2

t − ft

)

≤
smγntℓ̂t

ft
− smγnt +

smγft

2
−

smγ

2

=
smγntℓ̂t

⌈βnt⌉
− smγnt +

smγ⌈βnt⌉

2
−

smγ

2

≤
smγntℓ̂t

βnt
− smγnt +

smγ(βnt + 1)

2
−

smγ

2

=
smγℓ̂t

β
− smγnt +

smγβnt

2

Substituting back our bounds on the decrease in Φt due to LAPS〈β,s〉’s processing, and the increase

in Φt due to Opt’s processing, back into (1), we get:

nt +
dΦt

dt
≤ nt +

(
(γmnt) +

(
smγℓ̂t

β
− smγnt +

smγβnt

2

))

=

(
1 + γm− smγ +

smγβ

2

)
nt +

smγℓ̂t

β

≤
smγℓ̂t

β

=
2sℓ̂t

βǫ

=
c · ℓ̂t

2

The last inequality follows since by substituting in γ = 2
ǫm and s = 1+β+ǫ

1 + γ − sγ +
sγβ

2
= 1 +

2

ǫ
− 2

1+β+ǫ

ǫ
+

(1+β+ǫ)β

ǫ

which one can verify is not positive by multiplying through by ǫ, and collecting like terms.

7

Now consider that case in which ℓ̂t ≥ ft. In this case all of the ft = ⌈βnt⌉ jobs being processed

LAPS〈β,s〉 might be in sequential phases or have max(xi, 0) = 0 and hence LAPS〈β,s〉’s processing
might not decrease Φt. Evaluating inequality (1), we find that

nt +
dΦt

dt
≤ nt + γmnt

=

(
1 +

2

ǫ

)
nt

≤
2(1+β+ǫ)

ǫβ
⌈βnt⌉

=
2s

βǫ
· ft

≤
c · ℓ̂t

2

4 Conclusion

The algorithm LAPS algorithm, that we introduced in this paper, has found application in several
subsequent papers. In was used in [4] as the job selection algorithm in a O(1)-competitive speed

scaling algorithm on a single processor with the objective of minimizing a linear combination of
response time and energy. LAPS was used instead of the more obvious choice of SETF because the

analysis of speed scaling algorithms generally require amortized local competitiveness arguments,
and it is not clear what potential function one should use with SETF. The potential function
used in [4] is a modification of the potential function that we used here. A modification of LAPS

was used in [5] as the job selection algorithm in a O(logm)-competitive speed scaling algorithm
on a multiprocessor processor with the objective of minimizing a linear combination of response

time and energy. Finally [1] showed that the broadcast version of LAPS is scalable for broadcast
scheduling, answering a decade old open question of whether such an algorithm exists. A scalable

algorithm for broadcasting scheduling of unit work pages was given in [12].
Contemporaneously and subsequent to this research, other scalable algorithms, where the al-

gorithm knows the speed 1 + ǫ a priori, were discovered for broadcast scheduling [1, 6, 7, 12]. So
it seems like allowing algorithms to depend on the speed is useful in finding scalable algorithms.

It would be interesting to either find a scalable algorithm for these problems that didn’t need to
know the speed 1 + ǫ a priori, or to prove that no such algorithm exists.

Acknowledgments: We thank Nicolas Schabanel and Julien Robert for helpful discussions.

References

[1] Nikhil Bansal, RaviShankar Krishnaswamy, and Vishwanath Nagarajan. Better scalable algo-
rithms for broadcast scheduling. 2009.

[2] Luca Becchetti and Stefano Leonardi. Nonclairvoyant scheduling to minimize the total flow

time on single and parallel machines. J. ACM, 51(4):517–539, 2004.

[3] Piotr Berman and Chris Coulston. Speed is more powerful than clairvoyance. Nordic Journal

of Computing, 6(2):181–193, 1999.

8

[4] Ho-Leung Chan, Jeff Edmonds, Tak Wah Lam, Lap-Kei Lee, Alberto Marchetti-Spaccamela,

and Kirk Pruhs. Nonclairvoyant speed scaling for flow and energy. In Symposium on Theoretical
Aspects of Computer Science, pages 255–264, 2009.

[5] Ho-Leung Chan, Jeff Edmonds, and Kirk Pruhs. Speed scaling of processes with arbitrary

speedup curves on a multiprocessor. In Symposium on Parallel Algorithms and Architectures,
pages 1–10, 2009.

[6] Chandra Chekuri, Sungjin Im, and Benjamin Moseley. Minimizing maximum response time

and delay factor in broadcast scheduling. In European Symposium on Algorithms, 2009.

[7] Chandra Chekuri and Benjamin Moseley. Online scheduling to minimize the maximum delay

factor. In ACM-SIAM Symposium on Discrete Algorithms, pages 1116–1125, 2009.

[8] Jeff Edmonds. Scheduling in the dark. Theoretial Computer Science, 235:109–141, 2000.

[9] Jeff Edmonds. On the competitiveness of aimd-tcp within a general network. In LATIN, pages
567–576, 2004.

[10] Jeff Edmonds, Suprakash Datta, and Patrick Dymond. Tcp is competitive against a limited

adversary. In ACM Symposium on Parallel Algorithms and Architectures, pages 174–183, 2003.

[11] Jeff Edmonds and Kirk Pruhs. Multicast pull scheduling: When fairness is fine. Algorithmica,
36(3):315–330, 2003.

[12] Sungjin Im and Benjamin Moseley. An online scalable algorithm for average flowtime in
broadcast scheduling. 2010. to appear in ACM-SIAM Symposium on Discrete Algorithms.

[13] Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoyance. J. ACM,

47(4):617–643, 2000.

[14] Bala Kalyanasundaram and Kirk Pruhs. Minimizing flow time nonclairvoyantly. J. ACM,
50(4):551–567, 2003.

[15] Rick Merritt. Cpu designers debate multi-core future. EE Times, June 2008.

[16] Rajeev Motwani, Steven Phillips, and Eric Torng. Non-clairvoyant scheduling. Theoretical
Computer Science, 130:17–47, 1994.

[17] Cynthia Phillips, Cliff Stein, Eric Torng, and Joel Wein. Optimal time-critical scheduling via

resource augmentation. Algorithmica, pages 163–200, 2002.

[18] Kirk Pruhs. Competitive online scheduling for server systems. SIGMETRICS Performance
Evaluation Review, 34(4):52–58, 2007.

[19] Kirk Pruhs, Jiri Sgall, and Eric Torng. Online scheduling. In Handbook on Scheduling. CRC

Press, 2004.

[20] Julien Robert and Nicolas Schabanel. Non-clairvoyant batch sets scheduling: Fairness is fair
enough. In European Symposium on Algorithms, pages 741–753, 2007.

[21] Julien Robert and Nicolas Schabanel. Pull-based data broadcast with dependencies: be fair
to users, not to items. In ACM-SIAM Symposium on Discrete Algorithms, 2007.

[22] Julien Robert and Nicolas Schabanel. Non-clairvoyant scheduling with precedence constraints.

In Symposium on Discrete Algorithms, pages 491–500, 2008.

9

