The Parallel Supply Function Abstraction for a Virtual Multipr ocessor

Enrico Bini, Marko Bertogna Sanjoy Baruah
Scuola Superiore Sant’Anna The University of North Carolina
Pisa, Italy Chapel Hill, NC, USA
Abstract

A new abstraction — the Parallel Supply Functid?SF) — is proposed for representing the computing capabilities
offered by virtual platforms implemented atop identical multiprocessors. It is shown that this abstraction is strictly more
powerful than previously-proposed ones, from the perspective of more accurately representing the inherent parallelism of
the provided computing capabilities. Sufficient tests are derived for determining whether a given real-time task system,
represented as a collection of sporadic tasks, is guaranteed to always meet all deadlines when scheduled upon a specified
virtual platform using the global EDF scheduling algorithm.

1 Introduction

There has been an increasing trend in embedded real-time systems design and implementationpenardsron-
ments [8], in which multiple independently-developed applications can be implemented upon a single shared platform. The
typical approach towards providing scheduling support in such open environments is through the use of a two-level sched-
uler: the top level scheduler allocates resources to the various co-implemented applications, and each application’s local
scheduler then schedules the jobs comprising the application during the time allocated by the top-level scheduler. Over the
past decade or so, sophisticated frameworks and architectures have been proposed for implementing such open environment
upon preemptive uniprocessor platforms.

Along with this trend towards open environments, there is an increasing move towards implementing embedded real-time
systems upomultiprocessofand multicore) platforms. The use of such parallel architectures yields many benefits — great
increases in computing capabilities at lower cost; greater energy efficiency; etc. However, these multiprocessor platforms
present a programming model that is far more complex than those used in the classical uniprocessor context. In order to make
it easier to build open environments which can offer support for provably correct applications upon multiprocessor platforms,
it is desirable to desigabstractionsthat conceal much of this additional complexity from the application designers and
implementers, instead providing them witherfaceghat are easy to use and to formally reason about. That is, the resources
allocated by the top-level scheduler should be succinctly abstracted out into, and described by means of, an interface; each
local scheduler would, in effect, be designed to execute upon a “virtual platform” that behaves as described in this interface.
(Such an approach has the added benefit of de-linking application implementation from the platform upon which it will
reside, and of allowing for an easier migration of applications among platforms: as hardware is upgraded to a more powerful
platform, it is sufficient to ensure that the virtual processor provided by the global scheduler on the new hardware is compliant
with the interface previously established.) This paper reports on our recent research towards designing such an abstraction
and interface, under the assumptions that (i) the underlying multiprocessor platform is fully preemptive and supports global
scheduling; (ii) the top-level scheduler provides each application with zero or more identical (and hence indistinguishable)
processors at each instant in time; and (iii) each individual application can be modeled as a collection of sporadic tasks (see
Section 2).

In proposing an abstraction, there is typically a tension between the degree of detail that is abstracted away, and the loss
of accuracy that results from such information-hiding. The challenge is to come up with the appropriate abstraction that
hides enough information so that it is relatively easy to build provably correct applications upon the resources provided by
the interface, while minimizing the resulting loss of accuracy. For open systems implemented on uniprocessor platforms,

Dagstuhl Seminar Proceedings 10071
Scheduling
http://drops.dagstuhl.de/opus/volltexte/2010/2542

the parameters in the proposed interfaces that appear tdeavemost effective have been indicators of (i) the long-term
averagecomputing capacityhat is offered; and (i) thé&me granularityat which this computing capacity is made available.
Specific examples of such interface implementations include the various budget-period servers (e.g, [14]), and the virtual
processor abstractions (e.g., [13, 15]) — additional examples are listed in Section 5.

Upon multiprocessors, Shin et al. [16] proposed an extension of the budget-period abstraction to multiprocessor platforms,
by adding a third parameter — tin@aximum degree of paralleliss- to the interface specification. This is a wonderful idea
since it explicitly recognizes the critical role of the degree of parallelism in multiprocessor schedulability: informally and
intuitively speaking, the lesser the degree of parallelism in the provided budget, the better guaranteed use the local scheduler
can make of it. However, we feel that [16] did not go far enough in exposing underlying parallelism — by representing
all parallelism-related information by a single parameter, they, in our opinion, erred too much in favor of simplicity by
abstracting away too much information at a cost of a considerable loss of accuracy. Bini et al. [6] proposed to remedy this
shortcoming by representing the interface built upon an underlyirrocessor platform with (the supply functions of)
distinct virtual processors; by using the knowledge of these virtual processors’ supply functions, it is possible to deduce
additional information bounding the degree of parallelism in the budget supplied via the interface.

Our contributions In this paper, we propose thrarallel Supply FunctiorfPSF) abstraction and associated interface for

use upon multiprocessor platforms. We show (in Section 5) that this is a superior abstraction to the one in [6], in the sense that

even more information can be deduced regarding the degree of parallelism in the budget represaP®&tilkite not being

any more complex to represent or reason with than the abstraction proposed in [6]. We present, and prove the correctness of,
sufficient schedulability tests for determining whether a given application, represented as a collection of sporadic tasks, can

be scheduled upon a specified interface when the local scheduling algorithm used is Earliest Deadline First (EDF).

2 Terminology and notation

In this section we describe the formal models we use to represent both the virtual multiprocessor platforms and the
applications.

2.1 Modelling virtual platforms

Each individual application is scheduled onto a dedicated virtual platfbrwhich may provide computing capacity upon
multiple processors in parallel. Our formalisms do not set any constraints on the techniques used by the virtuallplatform
to provide execution cycles to the applicatibr— the platformII could, for instance, be implemented by many sequential
servers, static partitions of the processors over time, Pfair or other global schedulers, etc. We will take a closer look at virtual
multiprocessor platforms in Section 3.

Figure 1 illustrates a virtual platform that supplies time according to two static partitions: one that provides 2 time units
every 4, and another one that provides 4 every 8. In Section 3 we will use this example partition to illustrate some of the
definitions.

0 2 4 6

Figure 1. Example of a periodic static partition.

2.2 Modeling applications

We model an application as a setsofsporadic tasks = {r;}}_,. Each task; = (C;,T;, D;) is characterized by a
worst-case computation tim@;, a minimum inter-arrival timel; (also referred to as period), and a relative deadlihe
Each taskr releases a sequence of johs,, where each job is characterized by an arrival timg, an absolute deadline
d; 1, @ computation time; . We have that; ,, < C;, r; ,, > r; x—1 + 15, andd, , = 7 + D;. In this paper, we assume a

3C5

2C%

o]

Q
o]

>t
D; T; TH+D; 2T; 2T:+D; 3T;

a|Q

Figure 2. lllustrating FF-DBF(7;,t,0).

constrained deadlinenodel, whereD,; < T; for all . We also selD,,;,, = min; D;. Time is continuous and time variables
are represented by real numbers.

The forced-forward demand bound function Let r; denote a sporadic taskany positive real number, amdany positive
real numbek 1. Theforced forward demand bound functier-DBF(7;, t, o) is defined as follows:

FF-DBF(Ti,t, O') L qlCl + Cz — (DZ — TZ')O' if Dz > > Dl — % (1)
0 otherwise

where
e t e
¢ = \‘—J and 7; =t mod T},
T;

Informally speaking,FF-DBF(7;,¢,0) can be thought of as a bound on the demand,;dbr interval-lengtht, when
executionoutsidethe interval occurs on a speedsrocessor. This function is illustrated for an example task in Figure 2.

The FF-DBF concept is easily extended from individual tasks to applications that are modeled as collections of sporadic
tasks: for any such applicatian

FF-DBF(7,t,0) £ Y FF-DBF(y,t,0)
TeET

It is evident from the definition ofF-DBF (Equation (1)) thatF-DBF(T, s, t) can be computed very efficiently, in polyno-

mial time — see, e.g., [3] for further detalils.

Some additional notation that we will use. L.etlenote an application that is modeled as a collection of sporadic tasks,
andr, any task inr:

densityd;, = C, /Dy,
utilization Uy, & Cy /T,

maximum density £ max §;
T;ET
total utilization7 & Z U,

TiET

Finally, we will use(z), as a short fomax(z, 0).

3 The parallel supply function abstraction

The need of developing the applications independently of the underlying hardware strongly motivates the investigation
of interfaces for multiprocessor platforms. As stated above, however, it is important that the interfaces used retain, as much
as possible, information regarding the degree of parallelism in which execution capacity (the “budget”) is supplied by the
interface. In [16], such information was communicated via itieximum parallelisnparameter. (The example virtual
platform of Figure 1 is thus represented in the Shin et at. model [16] by a budget of 8, a period of 8, and a maximum
parallelism of 2. Hence, this formalism abstracts away the potentially useful information that only 4 of the 8 units of the
budget occurs upon parallel processors, and that some processor is available for 6 units of time out of every 8.) In [6],

more parallelism information could be communicated via aarface called th#lulti Supply Functio(MSF). TheMSF is
described in detail in Section 5, where it is shown that eveMBE interface has some shortcomings with regard to retaining
parallelism information.

To overcome the limitations of tHdSF, we start by generalizing the concept of time partition to the multiprocessor case.
Recall from [15] that this concept was introduced to formally represent the availability of a processor that is not necessarily
continually available; ime partitionrepresents the availability of such a processor by a collection of time-intervals, denoting
the times when the processor is available. Since there are multiple processors in a multiprocessor platform, the extension of
time partitions to multiprocessors must be able to represent the aggregation of the time partitions of all the processors.

Definition 1 A time multi-partition? is a countable multisétof intervals, formally

def

P = {las, bi) bien.

Intuitively, P is the aggregation (the “multi-union”) over all the processors in the platform, of the time partitions of each
processor. Without loss of generality we set the instant when the virtual platform is created equadieéoce we have
a; Z 0, Vi S N.

A time multi-partition represents the instants over time when the virtual platform allocates time to the application. For
example, the multi-partition of Figure 1 is

P = {[4k,2 + 4k), [8k, 4 + 8k) }ren.)

For a given multi-partition, our objective is to define a suitable abstraction that represents the execution capacity supplied
by this multi-partition, while retaining information about the degree of parallelism present in this supply. We start by defining
the characteristic functiof, of any subsel C R

w)"é‘{; o @

and the characteristic function of a multi-partition

W=D Yars) (4)

[ai,bi)GP

The characteristic function of the multi-partiti@hof Figure 1 is depicted in Figure 3.

0 2 4 13 8
Figure 3. Example of characteristic function vp.

For a given multi-partitiorP, it is useful to define the maximum degree of parallelism as follows.

Definition 2 Given a multi-partitior?, we define the maximum degree of parallelism as

M gef t 5
(P) = maxyp(t) ()
For the multi-partition depicted in Figure 1, the maximum degree of parallelism is equal to two.
Definition 1 provides a formal notation for the exact representation of virtual multiprocessors that are not continually
available. However, it is often not desirable in practice to represent such virtual multiprocessor in an exact manner, for

1In set theory, anultisetis a generalization of a set, in which individual elements may occur multiple times. Each such occurrence counts as a separate
element of the multiset.

several reasons. First, too much information is not alwagfulsind can render programming and analysis cumbersome

— indeed, concealing some detail is the very idea behind abstraction and information-hiding. More critically, it is possible
that all the knowledge is simply not available at design and specification time; more typically, the exact availability of the
virtual processors depends on run-time events such as contention with other virtual multiprocessors that are sharing the same
physical platform, and hence only becomes known during run-time. The best we can do during specification and design
time is specify bounds on the supplied computing capacity. Such bounds are conveniently modeled by chasageitistic
functions as follows.

Definition 3 Given a multi-partition?, we define théevel-j supply functionY; »(¢) as the minimum amount of time pro-
vided by the multi-partition in every interval of time of length 0 by at mostj intervals in parallel. That is

to+t
Vip(t) =iy [mingj,p(0) do. (6)
to

We believe that this definition captures properly the amount of resource provided by a multi-partition, by investigating the
number of processors that supply the resource simultaneously.

Below we provide some simple properties of the leyeiupply functionsY; ». Notice that when comparing any two
functionsf, g : R — R, when we writef < g we mearwt f(t) < g(t).

Lemma 1 For any multi-partition”, we have

Yop =0, (7
Vi>0, Yip2>Yp, (8)
Vji=M(P), Yjp=Yjp, 9)
Vizl, Yjp—Yj1p2>Yip —Yip. (10)
Vi > 0¥t >0, Yip(s+t)>Yp(s)+Yn(l) (11)

Proof All the properties follow from Definition 3.
Whenj = 0, the minimum of Eq. (6) is constantly zero, becayse> 0. HenceY; » = 0 for anyP, proving Eq. (7).
For any integek, we havemin{j + 1, k} > min{j, ¥} that proves Eq. (8).
Proof of Eq. (9).
vt >0, j=M(P)=vp(t) = min{j,yp(t)} =vp(D),

Hence, whery > M(P), we have

VE20, Yip(t) = Yierp(t) = min /[GG
- 0,0

Proof of Eq. (10). Equation (10) is equivalent to
Vi>1, 2Y;p>Yjp+Y_1p.
We prove it by showing that
Vk €N, 2min{j,k} > min{j + 1,k} + min{j — 1, k}.

In fact, whenk > j + 1, then

2min{j, k} = 2j

min{j + 1,k} + min{j — 1,k} =j+ 14— 1 =2j;
whenk < j —1,

2min{j, k} = 2k
min{j + 1, k} + min{j — 1, k} = 2k;

finally, whenk = j,
2min{j, k} = 2j
min{j + Lk} +min{j — Lk} =j+j—-1=25—1,

which proves the desired property.
We conclude by proving that; » is superadditiv€ Equation (11)). For any functiofi: R — R, we have

to+s+t to+s to+s+t
min/ flz)da = n%in < (z)dz + / f(:z:)dx)
¢ 0 t

to

0 to o+s
to+s to+t
> min f(x)dx + min f(x)dz
0 t[) 0 t()
from which it follows Eq. (11), wherf (z) = min{j, vp(x)}. a

Definition 3 requires the knowledge of the exact time multi-partiffonorresponding to the virtual multiprocessor plat-
form under discussion. As discussed above (prior to Definition 3), such information is often known only at run-time (and not
at design time) since the actual allocation typically depends on events (such as contention with other VPs) that cannot always
be predicted during design time. In the following, we extend Definition 3 by removing the need for such a knowledge.

Definition 4 Given a virtual multiprocessor platforifi, we defindegal(II) as the set of multi-partition® that can be
allocated byil.

The maximum degree of parallelism, and the leyedupply functions, of a virtual multiprocessor platform are defined
generalizing the analogous concepts for individual multi-partitions.

Definition 5 Given a virtual platforml, we define its maximum degree of parallelism as

m= max_ M(P) (12)
Pelegal(I])

Definition 6 Given a virtual platformll, its level-j supply functionY;(¢) is the minimum amount of time provideith
parallelism at mosj, by the serveil in every time interval of length> 0,

Y;(t) £ min_ Yjp(1). (13)
Pelegal(I])
Notice that the properties of Lemma 1 hold also forYhdevel-j supply functions, because they hold for tiep functions,
for any multi-partitionP.
We are now ready to define the Parallel Supply FunctiR®F) of any virtual platformiI.

Definition 7 We define the Parallel Supply Functid?SF) interface of the virtual platfornil as the se{Y;(¢)}2, of the
level-j supply functions.

The introduction of th&SF allows a more precise characterization of the time supplied by a virtual platform. We illustrate
this on the simple example of Figure 1. In the virtual platfdincorresponding to this figure, the time is allocated statically
to the two servers, hendegal(II) is composed of one single multi-partitidn (the one given by Eq. (2)). For this multi-
partition’P, the corresponding characteristic functipsis depicted in Figure 3. If we compute the levednd level2 supply
functions from Definition 3, we can find the two functio¥ig(t) andY> (¢) reported in Figure 4.

Similarly to what is done for single processor hierarchical scheduling [13, 15, 17], we find it useful to lower bound the
parallel supply function¥j (¢) with a linear functiony; (t—A ;). SinceY; is superadditive (Equation (11)), a result attributed
to Fekete [10] ensures that the following limit exists:
e o Yi(t) Y;(t)

lim —*% =sup —~= (14)

Qj
t—-+oo t t t

Notice also thaty; < j, from Eq. (6). Hence, by defining

A e sup {t — YJ—(t)} (15)
t

@

6

2 4 6 8

Figure 4. The level- j supply functions Y7 (¢) and Y>(t) for the example of Figure 1.

the levels parallel supply function can be conveniently lower bounded by
Yj(t) = ot — Aj)o. (16)

The PSF is anabstractionof the computing capabilities of the virtual platform, rather than its exact representation. One
of the consequences of this fact is that none of the multi-partitions that could be generated by a particular virtuallplatform
may correspond exactly to the characterizatioflddy its Y} (¢) functions. We can nevertheless assert lower bounds on the
durations for which individual processors must be made available over any time interval in any multi-partition that could be
generated byl, as follows.

Let us arbitrarily assign a total ordering to the processors in the physical platform uponivisiétmplemented, so that it
makes sense to talk of th&h processor”; , 1 < j < m. Consider an arbitrary multi-partitioR of II, and some interval of
lengthL; at any instant in this interval at whidh makes fewer tham processors available, we witthameé the processors
in order to choose which of the processor$, . .., P, are available, in the following manner:

e by definition,IT makes> Y7 (L) units of non-parallel execution available over the interval. Let us “assign” exactly
Y1 (L) of this execution to the first processBy, in the sense that we will name the processor(s) on which this execution
has occurred fo¥; (L) time units asP;;

e similarly, IT makes at least>(L) units of execution with parallelism at most two available over the interval. Let us
again assigniYz (L) — Y1 (L)) of this execution to the second procesor

e in a similar vein, we can assign exactly; (L) — Y;_1(L)) units of execution to thg'th processorP;, for eachj,
1<5<m;

e observe that since the;(L)'s denotelower boundson the amount of computing capacity that must be available in
the partition, the actual availability of execution capacityAirmay exceed the amount assigned in the steps above.
Once all these assignments have been done, therefore, the remaining execution can be arbitrarily assigned among the
processors (over time durations when they have not already been assigned execution during the above steps).

As a consequence of the above argument, it follows that

Lemma 2 Let IT be a virtual platform characterized by the supply functid§(¢)}/2,. For any multi-partition in
legal(IT) and any interval of lengtii, there exists a dynamic renaming of the processors over the interval such th&hthe
processor is available for at lea$t’; (L) — Y;_1 (L)) time units over this interval ifP.

2We point out that we are not actually requiring that the virtual platform be implemented to make allocations in a manner that corresponds to our renam-
ing — this is a mere notational convenience. Since we are restricting our attention here to virtual platforms implemented upon identical multiprocessors, we
can always rename processors for the purposes of reasoning about the schedule, without loss of generality.

fori« 2,3,...do

let J; denote a job that
—arrives at some time-instaht< t;_1;
—has a deadline aftéy_q;
— has not completed execution iy 1; and
— has executed for strictly less th@ig_; —t;) §

units over the intervalt;, t;_1).
if there is no such jothen

k—(i—1)
break (out of the for loop)
end if
end for

Figure 5. Proof of Theorem 1: defining the J;’s, the ¢;'s and k.

4 Schedulability analysis

In this section, we derive two sufficient tests for determining whether a given application, modeled as a collection of
sporadic tasks, can be scheduled to meet all deadlines when scheduled upon a virtual plaifng global EDF as the
local scheduling algorithm. The first method borrows the idea of forced forward demand bound function [3] and allows
deriving a schedulability condition with pseudopolynomial complexity. The second test, inspired by Bertogna et al. [5] has
polynomial complexity. It derives an upper bound on the interfering workload generated over the scheduling window of each
task, and checks whether it is sufficient to cause a deadline miss. Since none of them is proved to dominate the other, both
can be used for admission control.

The tests consider an applicatiercomposed of: sporadic tasksy, ..., 7,. The virtual multiprocessor platform, de-
notedll, has its maximum parallelismm, and is characterized by its parallel supply functi®sF) abstraction, denoted

{Y5(6) 7Ly
4.1 rr-pBF based schedulability test

In this section, we present a sufficient schedulability condition based on the coneepbdBF, as defined in Section 2.2.

Theorem 1 Any constrained-deadline sporadic task systesatisfying
VL > Dyin, FF-DBF(T,L,d) < max{Yj(L) — (k — 1)0L} (17)
is guaranteed to be EDF-schedulable uddn

Proof Let us suppose that sporadic task systeimnot EDF-schedulable dr, and let us consider a minimal sequence of
jobs of upon which EDF misses deadlines when implementetiiohet ¢, denote the (first) instant at which a deadline
miss occurs in such an EDF schedule. Letdenote a job that misses its deadline atand lett; denoteJ;’s arrival-time.
(Observe thatt, — t1) > Dmin.)
We define a sequence of jolig time-instantg;, and an index, according to the pseudo-code in Figure 5.
def

Let L denote the length of the intervl, t,): L = (to — tx). For each, 1 < i < k, let W; denote the total amount of
execution that occurs over the interyigl ¢;_1).

Lemma 1.1 FF-DBF(7, L, 3) > 2 | W,

Proof All jobs that execute int, t,) (and hence contribute '@:Ll W;) have their deadlines within the interval., ¢,).
Some of them will also have arrived within this interval, while others may not.

Now it may be verified that the amount of execution that jobswftaskr, contribute ttoZl W, is bounded from above
by the scenario in which a job ef has its deadline coincident with the end of the interval, and prior jobs have arrived exactly
T, time-units apart. Under this scenario, the jobsathat may contribute tQ:fZl W include

e atleasty & | L/T;| jobs ofr, that lie entirely within the intervdky, t,); and
e (perhaps) an additional job that has its deadline at time-instantr;, wherer, £ L mod 7}.
We now consider two separate cases:
1. r, > Dy; i.e., the additional job with deadline gt + r, arrives at or aftet;. In this case, its contribution iS,.

2. ry < Dy; i.e., the additional job with deadline & + 1y arrives prior tof;,. From the exit condition of the for-loop, it
must be the case that this job has completed at @3t — r,) units of execution prior to time-instant; hence, its

remaining execution is at mostax(0, Cy — 6(Dy — ry)).

In either case, it may be seen that the upper bound on the total contributri@ml(:()f:f:1 W; is equal toFF-DBF(7¢, L, §)
(see Equation 1). The lemma follows, by summing over all tagks .]

Lemma 1.2 Some execution occurs at all the time-instantgint,) during which the virtual platfornil makes one or more
processors available.

Proof Consider each intervéd;, ;). By definition of j;, it arrives att; and has not completed executionty ; hence,
EDF will execute it whenever processors are available. This rules out the existence of a time-instéintvey during
which some processor is available, but no job — not ejer- is executing. The lemma follows by summing overaall
1<i<k, o

Lemma 1.3 The total duration of all time-intervals ovéty;, ¢,) during which processors are made available by the virtual
platformII, but are not being used in the EDF schedule, is strictly less than

Proof Foreach, 1 < i <k, letz; denote the total length of the time-intervals oj¢grt; 1) during which jobJ; executes.
Since jobJ;, by its definition, arrives af; and has not completed execution#y , all the processors thét makes available
over this interval must be executing some job whenelés not. Furthermore/; is chosen such that; < &(t;—1 — t;);
hence, the total duration of all the time-intervals o¥gr¢;_,) during which processors are made available by the virtual
platformTI, but are not being used in the EDF schedule, is strictly lessdttan; — ¢;). The lemma follows by summing
overalli, 1 <i < k, and using the fact that = S°F (t; —t;_,). O
Recall from Lemma 2 that thgth processor is allocated in any multi-partitionkdffor at least(Y; (L) — Y,_1(L)) time
units over the intervdky, t,). As a consequence of this fact and Lemma 1.3 jttieprocessor therefore completes at least

max (0, ((¥;(Z) = Y;-1(1)) - 31))

units of execution ovefty, t,), for eachj > 1; while, by Lemma 1.2, the first processor completes at [Ea&t) units of
execution. By Lemma 1.1, we therefore have

FF-DBF(7, L, 0)

> Yi(L)+) max (0, ((V;(L) = Y;_1 (L)) — SL))

= V(L) + Y- (%0~ Yim (L) -
min((Yj (L) — ijl(L)),gL))

= Yn(L)— Zmin((Yj(L) ~Y;_1(L),5L).

9

We have thus shown that in order foto not be EDF-schedule dm, it is necessary that
FF-DBF(r, L,8) > V(L) — min(Yj(L) - YH(L)),SL) (18)
j=2

for someL > D, i,.

The RHS can be further simplified. From Eq. (10) it follows that the val(¢&) — Y;_, (L) are decreasing with. Let
k* be the greatest index in the summation wheredttwe of the RHS is given by L (when the minimum is always given by
Y;(L) —Y;_1(L), we setk* = 1). Then, the RHS becomes

m k*
Yo(L)= D0 (G(L) = Yjma(L) = oL =
j=k*+1 j=2

Since for any other index # k*, B B
Yi(L)— (k—1)0L <Y (L) — (k* — 1)L,
it follows B B
mgx(Yk(L) —(k—1)0L) =Y (L) — (k* — 1)L.

Eqg. (18) can then be rewritten as B _
FF-DBF(T, L,§) > m]?X(Yk(L) — (k—=1)4L) (19)

for somelL > D,,;,. Theorem 1 immediately follows, as the contrapositive of the above statement. O

A schedulability test Theorem 1 suggests the following strategy for checking whether a given sporadic task system is not
EDF-schedulable on a specified virtual platforindetermine whether there is ally> D,,;, satisfying Inequality (19). If
not, thenr is guaranteed to be EDF-schedulabldbn

While D, represents a lower bound on the range of values &ir which Inequality (17) must be tested, we do not
yet have an upper bound. Hence, while we could start Inequality (17)Mwith D,;, and repeatedly increase the value of
L being tested, it is not immediately evident when it would be safe to stop and concludeishiat fact schedulable. To
determine an upper bound férthat allows stopping the check of Inequality (17), we extend a technique previously used in
uniprocessor [4] or multiprocessor [3] EDF schedulability tests.

A linear lower bound of each leveglparallel supply function is given by Eq. (16). Itis evident from the definition of
FF-DBF (Definition 1; also see Figure 2) tha®; + ¢ U;) is an upper bound oRF-DBF(7;,¢,§) for anyt. Then, an upper
bound for the LHS of Inequality (19) is

FF-DBF(,L,0) < LU + » C;. (20)
TiET
For the RHS of Inequality (19), an obvious lower bound is obtained applying Equation (16) for all valudabatfis
mkax{ak(L — Ag)o — (k—1)8L}. (21)

Substituting all these bounds into Inequality (19), we conclude that in ordettéanot be EDF-schedulable, itis necessary
that somel > D,,;, satisfies

Ve, LU+ Y Ci>on(L—Ag) = (k—1)0L
TiET
Ap+>. . C
vk, L< B e G
ap —U—(k—1)¢
WAV C;
L < min A k_+ ZTZET — .
koap—U-—(k—1)0
Hence if Inequality (19) is to be satisfied for any valuelgfit will be satisfied for somd. no larger than the bound in
Equation (22) above. Equivalently, if we have verified that Inequality (19) evaluates to true for all valuap td the bound
in Equation (22), we can safely conclude that task systésrindeed schedulable on the virtual platforhwhen global EDF
is being used as the local scheduling algorithm.

(22)

10

4.2 Demand based schedulability test

The second schedulability condition we present is based on the concept of interfering waiglodefined as the sum of
the execution times of higher priority jobs interferinggn Bertogna et al. proposed the following bound [5]:

— " |'D D
We<Wi=>_ {?’“J Cierin{Ci, Dy — {?’“J Ti} (23)
=1L ¢
#k

The interferencd), denotes instead the total duratior{inDy,) in which 7, is ready to execute but it cannot be scheduled
due to higher priority jobs or unavailable supply.

In [6], @ method is presented to bound the interferelicas a function of the interfering worklodd;, when the virtual
multiprocessor is abstracted through M8F interface. The next theorem adapts this method td®BE model adopted in
this paper.

Theorem 2 Consider a task set that is scheduled on a virtual platforid with maximum degree of parallelism, that is
characterized by theSF {Y;(¢)}7-,. Then, for each task;, the interferencd, is upper bounded by

—
_ m ' (Wk — Zp:é pr)
Ik§ Ik:L() JrZrmn Lz, 0 (24)

£=1 ¢

with {L,}}* , equal to
Lo = Dy, — Y1(Dx)
Ly = 2Yi(Dy,) — Yoo 1(Di) — Yeu1(Dy) (25)
Lo = Ym(Dy) — Yo_1(Dy).

Proof In [6], a similar theorem is proved for the case in which the platform is specified by means of ans@tdif/idual
supply functions{ Z; (D) }7-,, whereZ; (D)) represents the minimum supply granted by fkté virtual processor in any
interval of lengthD,,. The only difference lies in the valugg.,}}” ,, which were defined as

Lo = Dy, — Z1(Dy)
Ly = Zy(Dy) = Ze1(Dy) (26)
L = Zm(Dg).

We need to adapt this result to the case in which the platform is specified with the parallel supply fufictions’ ;.

By Lemma 2, we know that for each platform represented¥jyt)}”" ,, we can dynamically rename the processors over
any interval of lengthDy,, such that the-th processor is available for at leg3t;(Dy) — Y;_1(Dj)) time units over this
interval. This means that the platform can be represented as well by argeinaividual supply functiong Z; (Dy,) } 724,
such that

Zj(Dy) = (Y;(Dr) — Yj-1(Dy))-
The theorem follows replacing,;(Dy) in Equation (26) with the above expression. Note that, by Lemma 1, Baéh
non-negative, for alf. a

The next theorem easily follows, considering that a necessary condition for a deadline miss is that,astemKd be

interfered for more than its sladik;, — Cj..

Theorem 3 A task setr = {r;}7_, is schedulable with EDF on BSF platform modeled byY;}7" ,, if
Vk=1,....,n Ci+I; < Dy, (27)
wherel, is computed from Eq24).

Itis possible to prove that Theorem 3 is superior, in terms of number of schedulable task sets detected, to the corresponding
theorem in [6] based olISF, because of the superiority of tiRSF abstraction over thsISF.

We highlight that the bound oW/, expressed by Equation (23) can be refined using an iterative method described in [5].
However we do not report the details here, due to space limitations.

11

5 Related works

The virtualization of a resource is the process of providing a view that is independent of the physical implementation of
the resource itself. One notable example of virtualization of computing devices is certainly the Java Virtual Machine [11]
that provides an abstraction of the machine through a machine independent instruction set. This allows the portability of code
from processor to processor without the need of re-compiling on the new architecture.

In real-time systems, the interface of a virtual platform describes the amount of computing resource that is provided.
The virtualization of computing resource was extensively applied to uniprocessors in the past. Mercer et al. [14] proposed
a resource reservation mechanism based on a required budget and period to provide an abstraction of a uniprocessor witk
reduced speed. Abeni and Buttazzo [1] proposed the Constant Bandwidth Server (CBS) to isolate an application requiring a
varying amount of computation on a virtual processor with reduced speed.

Mok, Feng, and Chen [15] introduced the concept of “supply function” of a static time partition to measure the minimum
amount of computing resource provided. This paper set the root of later research. Almeida and Pedreiras [2] applied similar
techniques to schedule messages over the FTT-CAN network. Lipari and Bini [13] derived the set of supply functions that
can feasibly schedule a given application. Shin and Lee [17] introduced the periodic resource model (that is a special class
of supply functions) also deriving a utilization bound, later extended by Easwaran et al. [9] to account for a server deadline
possibly different than the period.

Very recently, there has been an increasing interest in proposing interfaces for the computing power available on a mul-
tiprocessor. Leontyev and Anderson [12] proposed to abstract the amount of resource provided by a virtual multiprocessor
using one single parameter: the bandwidthThe authors propose to allocate a bandwidth requirementawfto | w| dedi-
cated processors, plus an amounwof |w | provided by a periodic server globally scheduled onto the remaining processors.

An upper bound of the tardiness of tasks scheduled on such interface was provided.

Shin et al. [16] proposed a multiprocessor periodic resource model to describe the computational power supplied by a
parallel machine. They modeled a virtual multiprocessor by the trifle®, m’), meaning that an overall budgéx is
provided bym’ processors every peridd. The big advantage of this interface is that it is simple and captures the most
significant features of the platform. Nonetheless, the aggregation of all the computing resource by a uniqu®neadser
to a more pessimistic analysis.

Chang et al. [7] proposed to partition the resource available from a multiprocessor by a static periodic scheme. The amount
of resource is then provided to the application through a contract specification.

Bini et al. [6] proposed to abstract any parallel machine by associating a supply function [9, 13,15, 17] to each sequential
server, suggesting the Multi-Supply-FunctidngF) interface.

Definition 8 (Def. 1in [6]) A Multi Supply FunctionNISF) of a setll = {r;}"", of VPs is a set ofn supply functions
{Z;}"2,, one for each VRr;, respectively.

However, when tasks are allowed migrating from one virtual processor to another, this model can be too pessimistic because
all the supply functions are derived assuming the worst-case condition for each virtual processor in isolation. We show this
pessimism by the example of Figure 1, where the virtual platform provides time according to two static partitions: one that
provides 2 time units every 4, and another one that provides 4 every 8. Following the approach suggested by Bini et al. [6]
this platform should be modeled by two supply functiéhsand Z, each one associated to each of the two servers. Figure 6
reports the two supply functions.

Figure 6. Example of two static partitions.

12

Suppose we have to schedule an aperiodic job that has a deBd#n6 from its arrival and a computation time 6f= 4.
If we abstract the platform by the two supply functidis;, Z» }, the job is not schedulable because none of the two supply
functions can provide 4 time units in a 6 units interval. In f&¢{6) = Z2(6) = 2 < 4. However, from Figure 1, it is clear
that in any interval of length 6 there are always 4 time units provided by one processor. Note th&Fthbstraction can
capture this notion. In fact, the definition ®f can take advantage of the time available on both processors (see Figure 4),
so that in any interval of length, there are at leadf; (D) = Y7(6) = 4 time units provided by at most one processor. The
schedulability of the aperiodic job is therefore assured.

6 Conclusions

In order to be able to build open environments — environments that provide support for multiple independently-developed
applications — upon multiprocessor platforms, it is necessary that appropriate abstractions be devised for representing the
computing capabilities gbarts of the underlying multiprocessor platform. If these open environments are to be capable of
hosting safety-critical applications, such abstractions must be strictly enforceable (in the sense that they correspond to strict
guarantees of computing capability), and they must be formal enough and expressive enough that it is possible to formally
establish the correctness (in particular, the timeliness) of real-time applications implemented upon these abstractions.

Over the past few years, a series of such abstractions, of increasing generality and expressiveness, have been propose
The major insight that the community seems to have gathered in performing this work is that the critical information which
needs to be represented in the abstraction is the degree of parallelism in the provided computing capability. Accordingly,
these abstractions have aimed to maximize the amount of such information that is communicated. The Parallel Supply
Function PSF) abstraction proposed in this paper continues this trend. We have shown tR&Rhabstraction is strictly
more powerful than the prior ones — from [6, 16] — that support similar interfaces, in the sense that it preserves more of the
parallelism information. To demonstrate the usability of this abstraction for building provably-correct real-time systems, we
have derived sufficient schedulability tests that are able to determine whether a given sporadic task systems is schedulable by
EDF upon the computing capabilities guaranteed by such an abstraction.

References

[1] Luca Abeni and Giorgio Buttazzo. Integrating multimedia applications in hard real-time systeRmechedings of the
19™ IEEE Real-Time Systems Symposipayes 4-13, Madrid, Spain, December 1998.

[2] Luis Almeida, Paulo Pedreiras, and José Alberto G. Fonseca. The FTT-CAN protocol: Why anBEBEBransaction
on Industrial Electronics49(6):1189-1201, December 2002.

[3] Sanjoy Baruah, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, and Sebastian Stiller. Implementation of a speedup-
optimal global EDF schedulability test. Proceedings of the EuroMicro Conference on Real-Time Systeuaisin,
July 2008. IEEE Computer Society Press.

[4] Sanjoy K. Baruah, Aloysius K. Mok, and Louis E. Rosier. Preemptively scheduling hard-real-time sporadic tasks on
one processor. IRroceedings of the1™" IEEE Real-Time Systems Symposipages 182-190, Lake Buena Vista (FL),
U.S.A., December 1990.

[5] Marko Bertogna, Michele Cirinei, and Giuseppe Lipari. Schedulability analysis of global scheduling algorithms on
multiprocessor platformdEEE Transactions on Parallel and Distributed SysteBG08.

[6] Enrico Bini, Giorgio C. Buttazzo, and Marko Bertogna. The multy supply function abstraction for multiprocessors. In
Proceedings of thé5™ IEEE International Conference on Embedded and Real-Time Computing Systems and Applica-
tions pages 294-302, Beijing, China, August 2009.

[7] Yang Chang, Robert Davis, and Andy Wellings. Schedulability analysis for a real-time multiprocessor system based
on service contracts and resource partitioning. Technical Report YCS 432, University of York, 2008. available at
http://ww. cs.york.ac. uk/ftpdir/reports/ 2008/ YCS/ 432/ YCS- 2008- 432. pdf .

[8] Zhong Deng and Jane win-shih Liu. Scheduling real-time applications in Open environmBrickedings of thes™
IEEE Real-Time Systems Symposipages 308—-319, San Francisco, CA, U.S.A., December 1997.

13

[9] Arvind Easwaran, Madhukar Anand, and Insup Lee. Comjusit analysis framework using EDP resource models.
In Proceedings of thes™" IEEE International Real-Time Systems Sympospages 129-138, Tucson, AZ, USA, 2007.

[10] Michael FeketeUber die verteilung der wurzeln bei gewissen algebraischen gleichungen mit ganzzahligen koeffizien-
ten. Mathematische Zeitschrjfl 7:228-249, 1923.

[11] James Gosling and Henry McGilton. The java language environment: A white paper. Technical report, Sun Microsys-
tems, 1996. available &t t p: / / j ava. sun. conf docs/ whi t e/ | angenv/ .

[12] Hennadiy Leontyev and James H. Anderson. A hierarchical multiprocessor bandwidth reservation scheme with timing
guarantees. liProceedings of thé0™ Euromicro Conference on Real-Time Systepages 191-200, Prague, Czech
Republic, July 2008.

[13] Giuseppe Lipari and Enrico Bini. Resource partitioning among real-time applicationBroteedings of the5"
Euromicro Conference on Real-Time Systgmagies 151-158, Porto, Portugal, July 2003.

[14] Clifford W. Mercer, Stefan Savage, and Hydeyuki Tokuda. Processor capacity reserves: Operating system support for
multimedia applications. IProceedings of IEEE International Conference on Multimedia Computing and Systems
pages 90-99, Boston, MA, U.S.A., May 1994.

[15] Aloysius K. Mok, Xiang Feng, and Deji Chen. Resource partition for real-time syster®soteedings of the" IEEE
Real-Time Technology and Applications Sympospages 75-84, Taipei, Taiwan, May 2001.

[16] Insik Shin, Arvind Easwaran, and Insup Lee. Hierarchical scheduling framework for virtual clustering multiprocessors.
In Proceedings of the0™ Euromicro Conference on Real-Time Systapagjes 181-190, Prague, Czech Republic, July
2008.

[17] Insik Shin and Insup Lee. Periodic resource model for compositional real-time guarant®escerdings of the4™
Real-Time Systems Symposipages 2—13, Cancun, Mexico, December 2003.

14

