
Dagstuhl Scheduling 2010

Open Problems

April 27, 2010

Contents

Jim Anderson . 2
Björn Andersson: For which uniprocessor scheduling problems are non-preemptive

not-inserting-idle-time EDF optimal? . 2
Yossi Azar: Online preemptive routing in general graphs 3
Nikhil Bansal: Coping with non-preemption . 3
Enrico Bini: Optimal design of an EDF task set 4
Marek Chrobak: IRS audit scheduling . 5
José Correa: Weighted completion time and selfish scheduling 6
Liliana Cucu-Grosjean . 6
Rob Davis . 7
Arvind Easwaran: Hardness of compositional schedulability analysis 8
Jeff Edmonds . 9
Shelby Funk . 9
Sathish Gopalakrishnan: A sharp threshold for rate monotonic schedulability

of real-time tasks . 11
Han Hoogeveen . 12
Claire Mathieu . 12
Nicole Megow . 13
Seffi Naor: Maximizing throughput in real-time scheduling 14
Kirk Pruhs . 15
Maurice Queyranne: Parallel machines scheduling to preemptively minimize

the weighted sum of mean busy dates . 15
Adi Rosén . 17
Nicolas Schabanel: Non-clairvoyant scheduling with precedence constraints:

Towards a measure of the worst case degree of parallelism within a precedence
constraints DAG structure . 17

Jǐŕı Sgall: Maximizing the throughput of parallel jobs on two machines 20
René Sitters: 2-approximation for 1|rj , prec|

∑
wjCj 21

Sebastian Stiller: Increasing speed scheduling 21
Marc Uetz: Deliberate idleness problem . 22
Tjark Vredeveld: Complexity of local search 23
Gerhard J. Woeginger: The airplane refueling problem 24

Dagstuhl Seminar Proceedings 10071
Scheduling
http://drops.dagstuhl.de/opus/volltexte/2010/2536

Open Problem
Proposed by Jim Anderson

Problem Statement: We wish to schedule a system of n sporadic tasks with implicit
deadlines on m processors. Execution costs for each job of a task are independent and
identically distributed according to some probability distribution, with known mean and
variance. Tasks may be over-utilized (in the worst case), provided that they are under-
utilized in the average case, and total average utilization does not exceed m. Mills and
Anderson (RTAS 2010) show that GEDF can schedule such a task system in a way that the
mean and quantiles of the tardiness distribution are bounded from above by a constant, if
worst-case execution times are also known; the result extends to a general class of scheduling
algorithms. The open problem is to relax the assumption that the execution costs for each
job of a task are independent from one another.

Notes:

• The independence assumption is used in the analysis of the processor sharing sched-
ule, where each processor share is analyzed as an independent G/G/1 queue. The
upper bound on waiting time in a G/G/1 queue relies on the fact that Uj , the dif-
ference between the service time of the jth customer and the jth inter-arrival time,
are iid.

• We would like to accommodate tasks that may execute in several states, each of
which has its own execution-time distribution; for example, the task might change
state between jobs deterministically or according to a Markov chain. In this case, it
is clear that execution times of successive jobs will not be independent.

• Since execution-time distributions are non-negative, would it help to assume that
they can be approximated by a phase-type distribution?

For which uniprocessor scheduling problems are non-
preemptive not-inserting-idle-time EDF optimal?
Proposed by Björn Andersson

Problem Statement: Consider n constrained-deadline sporadic tasks to be scheduled by
online non-preemptive EDF without inserted-idle time. We say that an algorithm is an
online algorithm if the algorithm knows the task parameters (T,D,C) of each task but it
does not know the release times of each job before the job has been released. We say that
an algorithm is an offline algorithm if the algorithm knows the task parameters (T,D,C) of
each task and it also knows the release times of each job before the job has been released.
We say that a task set is schedulable by an online algorithm A if deadlines of all jobs
released by the task set meets deadlines when scheduled by algorithm A; and this should
hold for every possible release that is possible according to the sporadic model.

It is well-known that there is an off-line feasible task sets which is not schedulable by
non-preemptive EDF without inserted-idle time. We are interested however in the following
two questions:

2

• If a task set is online feasible does it imply that the task set is schedulable by non-
preemptive EDF without inserted-idle time;

• If a task set is offline feasible and the task set has implicit-deadlines (that is, Di =
Ti) does it imply that the task set is schedulable by non-preemptive EDF without
inserted-idle time.

Online preemptive routing in general graphs
Proposed by Yossi Azar

Problem Statement: We are given a graph with large capacities (at least logm where
m is the graph size) and a sequence of requests (paths from si to ti). The problem is
to accept or reject each path as to maximize the number of accepted paths (throughput)
while maintaining the capacity constraints. Find a constant competitive algorithm or non-
constant lower bound. The best known algorithm (achieved by non-preemptive algorithm)
is O(logm) competitive so even to get below O(logm) is open.

Related Results and Comments:

• Offline (preemption is meaningless): Constant approximation or even 1 + ε assum-
ing the capacities are at least logm/ε2 can be found by solving the factional prob-
lem (multi-commodity flow) and rounding (Raghavan and Thompson Combinatorica
1988).

• On-line - no preemption. A tight O(logm) competitive algorithm is achieved in
Awerbuch, Azar and Plotkin (Focs 1993). The lower bound (as well as upper bound
for special graphs with low capcities) is achieved by Awerbuch, Bartal, Fiat, and
Rosen (Soda 1994), Lipton and Tomkins (Soda 1994), Awerbuch, Gawlick, Leighton,
and Rabani (Focs 1994) Garay, Gopal, Kutten, Mansour, and Yung (ICTCS 1993).

• Special graphs - with preemption. Constant competitive algorithm is achieved for the
line in Adler and Azar (SODA 99) and for trees in Azar, Feige, and Glasner (Swat
2008).

• Small capacities. For capacities which are 1 (i.e. disjoint path problem) Ω(nε) lower
bound on the competitive ratio was shown in Bartal, Fiat, and Leonardi (Stoc 1996).
Even for the offline version (polynomial time algorithm) it is hard to get small ap-
proximation Andrews, Chuzhoy, Khanna, and Zhang (Focs 2005).

• Comments: for large capacities randomization does not seem to help for online algo-
rithms (where it may help for small capacities).

3

Coping with non-preemption
Proposed by Nikhil Bansal

Problem Statement: We are given n jobs with arbitrary release times and arbitrary
sizes. There is a single machine and we wish is to find a non-preemptive schedule with
minimum total flow time. Here, flow time of a job is the difference between its completion
time and its release time.

The problem is known to be hard to approximate within a factor of n1/2−ε for any ε > 0
[2]. The result is based on a reduction from 3-Partition and is carefully based on exploiting
that numbers just “fit right”. Thus it is natural to expect that much better guarantees
may be possible with (1 + ε)-speed. [3] gave an O(log n)-machine, (1 + ε)-approximation
polynomial time algorithm. However this result is somewhat unsatisfying for two reasons:
the resource augmentation is not constant, and the algorithm is quite naive as it merely
uses one machine for all jobs of about the same size.

One reason why it is hard to obtain better bounds is that any natural time indexed
LP (that we can think of) is quite weak: It does not distinguish between preemptive and
non-preemptive schedules, which can have huge gaps, see [3] for an example. Recently, [1]
considered a somewhat stronger LP that captured (a limited) effect of non-preemption and
used it to obtain a 12-speed, O(1)-approximation. However, they also show that if only
2− ε speedup is allowed, then the LP has an integrality gap of nc for some constant c. In
particular the LP is useless with only (1 + ε)-speed.

Open Question: Is there an algorithm with “reasonable” approximation guarantee with
only (1 + ε) speedup.

I conjecture that this is true, and believe that designing such an algorithm should give
useful insights into coping with non-preemption.

References:

[1] N. Bansal, H.L. Chan, R. Khandekar, K. Pruhs, B. Schieber and C. Stein. Non-
Preemptive min-sum scheduling with resource augmentation. FOCS 2007.
[2] H. Kellerer, T. Tautenhahn, and G. J. Woeginger. Approximability and nonapproxima-
bility results for minimizing total flow time on a single machine. STOC 1996.
[3] C. A. Phillips, C. Stein, E. Torng, and J. Wein. Optimal time-critical scheduling via
resource augmentation. Algorithmica, 32, 2001.

Optimal design of an EDF task set
Proposed by Enrico Bini

Schedulability analysis requires to check whether a real-time task set will miss or not any
deadline. When designing a system, however, the designer has often to face the problem
of choosing these values. This leads to the problem of optimal design of an EDF task set.
This problem is extremely common in control systems.

4

Let the task τi be modeled by a computation time Ci, a period Ti, and a deadline Di.
We formulate the problem as follows.

given n,Ci

find Ti, Di

minimize max
i
Fi(Ti, Di) (1)

subject to task set {τi} is EDF schedulable. (2)

The function Fi of Eq. (1) is the cost of task τi. We assume it is differentiable and
∂Fi
∂Ti
≥ 0, ∂Fi

∂Di
≥ 0, since it is often the case that by reducing the periods/deadlines we also

improve the quality of the system. The overall system cost (1) can be sometime modeled
also as ∑

i

Fi(Ti, Di).

The constraint of EDF schedulability (2) can be expressed in one of the following
equivalent ways

∀t ≥ 0
m∑
i=1

max
{

0,
⌊
t+ Ti −Di

Ti

⌋}
Ci ≤ t,

or
∀k ∈ Nn \ {0} ∃i : ki ≥ 1

∑
j 6=i

Cjkj − (Ti − Ci)ki ≤ Di − Ti.

In the case of constrained deadlines (for all i, Di ≤ Ti), the EDF schedulability condition
can be simplified, and it becomes one of the following two equivalent relations.

∀t ≥ 0
m∑
i=1

⌊
t+ Ti −Di

Ti

⌋
Ci ≤ t

or

N \ {0} ⊆
m⋃
i=1

domKi

with
domKi = {k ∈ Zm :

∑
j 6=i

Cjkj − (Ti − Ci)ki ≤ Di − Ti}.

IRS audit scheduling
Proposed by Marek Chrobak

An IRS auditor needs to schedule interviews with n taxpayers. Each interview can be
scheduled in a unit time interval [a, a + 1), for some integer a. Each taxpayer j has an
interval [rj , dj) when he/she is available, for some integers rj , dj . If taxpayers i, j are
married, they can be scheduled at the same time slot, if their availability intervals overlap.
If i, j are not married, they must be scheduled at different time slots. Is there a polynomial-
time algorithm to determine if all taxpayers can be scheduled?

Suppose that all availability intervals have length K (that is, dj − rj = K for al j).
Can this special case be solved in polynomial time?

Related Results and Comments:

5

• Motivation: It’s a cute puzzle. Also, the problem arises in the design of approxi-
mation algorithms for broadcast scheduling. A positive answer (even for the special
case above) would give a randomized 1.75-approximation algorithm for broadcast
scheduling.

• Related Results: If |rj − ri| = D for all married couples i, j, then the problem
can be solved in polynomial time, by expressing it as a integer linear program and
observing that the matrix of this LP is totally unimodular [unpublished].

Weighted completion time and selfish scheduling
Proposed by José Correa

We are given n jobs which can be processed in any of the m available machines. If job
j is processed on machine i it takes pij time units to complete. Also each job j has a
weight wj . In our context, jobs are players who seek to minimize their own completion
time. To this end, job j selects as strategy a probability distribution over the machines
(πji)

m
i=1, meaning that it will choose machine i with probability πji . On the other hand,

each machine i will process the jobs that end up being assigned to it according to Smith
rule (i.e., in nonincreasing order of wj/pij).

A Nash equilibrium is a situation in which the expected completion time Cj of every
job j under its current strategy is minimum given the strategies of all other jobs, and its
social cost is E[

∑
wjCj]. An optimal solution is a centralized schedule minimizing

∑
wjCj

(which is NP-hard to compute but can be approximated within a factor of 3/2 + ε by a
randomized rounding approach of Schulz and Skutella).

Question: Does there exist a constant α such that the social cost of any Nash equilibrium
is at most α times the optimal cost? In other words, is the price of anarchy of this scheduling
game constant?

Note 1: The game may not have pure strategy Nash equilibria.

Note 2: If pij ∈ {pj · si,+∞} the answer is positive and the price of anarchy is exactly 4
(Correa and Queyranne 2009).

Open Problem
Proposed by Liliana Cucu-Grosjean

Problem Statement: Periodic tasks with release times, deadlines and (probabilistic)
variable execution times. The problem is to determine if there is an optimal fixed-priority
algorithm that can schedule these tasks with arbitrary preemption on one processor. To
the best of my knowledge this open problem arises from the paper:
D. Maxim and L. Cucu-Grosjean, Towards optimal priority assignment for probabilistic

6

real-time systems with variable execution times, Proceedings of the 3rd Junior Researcher
Workshop on Real-Time Computing (JRWRTC 2009)

Related Results and Comments:

• Optimality for fixed-priority algorithms: such algorithm is optimal in the sense that
if there is (at least) a priority assignment that satisfies the constraints then the
algorithm will find it. No (general) optimal algorithm is known for this problem.

• The satisfaction of the constraints is verified using results provided in J.L Diaz, D.F.
Garcia, K. Kim, C.G. Lee, L.L. Bello, J.M. Lopez and O. Mirabella, Stochastic
Analysis of Periodic Real-Time Systems, Proceedins of 23rd of the IEEE Real-Time
Systems Symposium (RTSS 2002)

Open Problem
Proposed by Rob Davis

Problem: What is the pattern of job arrivals that leads to the longest response time (from
arrival to completion) of any job of task τk?

This problem can be posed for a number of different task models. These are:

(i) Concrete periodic tasks with a synchronous arrival sequence: By periodic, we mean
that the next job of task τk arrives exactly Tk time units after the arrival of the
previous job of that task, by concrete, we mean that there is a fixed relationship
between the arrival times of the first jobs of each task, in this case a synchronous
arrival sequence, where the first job of each task arrives at time 0.

(ii) Non-concrete periodic tasks, where we do not know the relationship between the
arrival times of the first job of each task.

(iii) Sporadic tasks, where the next job of a task τk may arrive at any time Tk or greater
since the arrival of the previous job of that task.

The problem can also be posed for different constraints on task deadlines, for example:
(a) implicit deadlines Dk = Tk,
(b) constrained deadlines Dk ≤ Tk, and
(c) arbitrary deadlines.

What we know: For the equivalent single processor problem (for tasksets complying
with models (i), (ii), and (iii)) the interval during which the processor is busy executing
jobs of priority k or higher, starting with synchronous arrival of jobs of all tasks, defines
(for implicit or constrained deadline tasks) or includes (for arbitrary deadline tasks) the
longest response time for any job of task k. However, this is known not to be the case for
the multiprocessor problem.

In the multiprocessor case for concrete periodic tasks with a synchronous arrival se-
quence, we could simulate the schedule to the Least Common Multiple of task periods and
thus find the longest response time of any job of task τk. Note, as global fixed priority

7

pre-emptive scheduling is predictable [1] reducing job execution times to less than the max-
imum allowed cannot result in increased response times. Hence we only need simulate the
schedule for jobs assuming the maximum possible execution times.

In the multiprocessor case (non-concrete periodic tasks / sporadic tasks) we can show
that the worst-case occurs when task τk arrives at some time t when all m processors have
just become busy with higher priority tasks (i.e. at time t − 1 at most m − 1 processors
were busy with higher priority tasks, and at time t, all m processors are busy with higher
priority tasks - assuming integer time). I have a simple proof of this, inspired by the work
of Guan [2].

Related problems: Optimal priority assignment: How to find a priority assignment
that results in a schedulable taskset (all worst-case response times less than or equal to
deadlines) whenever such an ordering exists.
[1] Ha, R., and Liu, J.W-S., 1994. Validating timing constraints in multiprocessor and
distributed real-time systems. In proceedings of the International conference on Distributed
Computing Systems, pp. 162-171, 1994.
[2] Guan, N., Stigge, M., Yi, W., and Yu, G., 2009. New Response Time Bounds for Fixed
Priority Multiprocessor Scheduling. In proceedings of the Real-Time Systems Symposium,
2009.

Hardness of compositional schedulability analysis
Proposed by Arvind Easwaran

Problem Statement: Jobs with release time, deadlines and known computation time
arrive over time (set J). Suppose these jobs are prioritized using the Earliest Deadline
First (EDF) strategy and scheduled on a single machine. Define DJ (t) to be a function
that gives the total computational requirement of J in the interval (0, t] and under EDF.
The problem is to determine if, for any given ε, there exists another set of jobs (J ′) such
that:

• Computational restriction: DJ ′(t) is a 1 + ε-approximation of DJ (t), and

• Size restriction: |J ′| = O
(

1
ε log |J |

)
.

To the best of my knowledge this open problem arises from the following paper: [EALS]
Arvind Easwaran, Madhukar Anand, Insup Lee, and Oleg Sokolsky, “On the Complexity
of Generating Optimal Interfaces for Hierarchical Systems”, Workshop on Compositional
Theory and Technology for Real-Time Embedded Systems (co-located with RTSS 2008).

Related Results and Comments:

EALS showed that for ε = 0, it is feasible to generate a polynomial-sized (not poly-log)
set of jobs J ′. This is indeed a trivial result for the chosen scheduling strategy.

EALS also demonstrated the hardness of a related problem through an example. Consid-
ering yet another popular scheduling strategy, it was shown that for ε = 0, it is not
possible to generate even a polynomial-sized job set. To the best of my knowledge,
it is still an open problem to classify this hardness result.

8

Comments: We, as a community, have so far focused on O(1)-sized approximations, with-
out considering any computational restrictions (i.e., ε = ∞). Addressing the afore-
mentioned problem is expected to open a pandora’s box in the area of compositional
schedulability analysis, leading to some very efficient solutions for long standing open
problems.

Open Problem
Proposed by Jeff Edmonds

Problem Statement: The goal is to prove a surprising lower bound for resource aug-
mented nonclairvoyant algorithms for scheduling jobs with sublinear nondecreasing speed-
up curves on multiple processors with the objective of average response time. Edmonds and
Pruhs in SODA09 prove that for every ε > 0, there is an algorithm Algε that is (1+ε)-speed
O(1

ε2)-competitive. A problem, however, is that this algorithm Algε depends on ε. The
goal is to prove that every fixed deterministic nonclairvoyant algorithm has a suboptimal
speed threshold, namely for every (graceful) algorithm Alg, there is a threshold 1+βAlg

that is βAlg > 0 away from being optimal such that the algorithm is Ω(1
εβAlg

) competitive
with speed (1+βAlg)+ε and is ω(1) competitive with speed 1+βAlg. I have worked very hard
on it and have felt that I was close. The proof technique is to use Brouwer’s fixed point
theorem to break the cycle of needing to know which input will be given before one can
know what the algorithm will do and needing to know what the algorithm will do before
one can know which input to give. Every thing I have can be found at
http://www.cse.yorku.ca/ jeff/research/schedule/lowerbound.pdf and
http://www.cse.yorku.ca/ jeff/research/kirk/laps/laps.ppt

Open Problem
Proposed by Shelby Funk

Problem Statement: Set of independent periodic sporadic tasks τ = {T1, T2, . . . , Tn}
and a uniform multiprocessor π = [s1, s2, . . . , sm]. Each Ti = (pi, ei, Di), where pi is the
period, ei is the worst case execution time (WCET), and Di is the deadline. If Ti generates
a job at time a, then

• the job must be allowed to complete ei units of work by time a+Di,

• if Ti has multiple jobs with outstanding work, these jobs are executed in FIFO order,

• Ti cannot generate another job before time a+ pi (if Ti is periodic, next job arrives
exactly at time a+ pi), and

• Ti can only be executing on one processor at any point in time.

9

We want a set of rules such that any algorithm satisfying these rules can schedule any such
system whenever it is possible to do so. Also, use these rules to generate new algorithms.
Ideally, the algorithm will satisfy the following properties: (i) running time is at most
O(n), (ii) algorithm runs as infrequently as possible, (iii) preemptions and migrations are
kept to a minimum.

Related Results and Comments: A task set is feasible if and only if

k∑
i=1

ui ≤
k∑
i=1

si for all k ≤ m

U(τ) ≤
n∑
i=1

si,

where U(τ) is the total utilization of τ (Funk, Goossens and Baruah, “On-line Scheduling
On Uniform Multiprocessors”, Proceedings of the IEEE Real-Time Systems Symposium,
2001).

Optimal algorithms already exist on identical multiprocessors such as Pfair (Baruah,
Cohen, Plaxton and Varvel, “Proportionate progress: A Notion of Fairness in Resource
Allocation”, Algorithmica, 1996), LLREF (Cho, Ravindran and Jensen “An Optimal Real-
Time Scheduling Algorithm for Multiprocessors”, Proceedings of RTSS 2006), and BF
(Zhu, Mosse and Melhem, “Multiple-Resource Periodic Scheduling Problem: how much
fairness is necessary?”). These all guarantee that each task Ti has executed for ui · t at
certain points in time.

Rules for tasks executing on identical multiprocessors (i.e., si = 1 for all i). We
divide the time into consecutive intervals, where we start a new interval whenever a task
has a deadline. For periodic tasks with deadlines equal to periods, at the beginning of each
interval [t0, tf) assign each task Ti to execute for ui · (tf − t0) time units and schedule the
tasks as follows

• Always run any jobs that have zero laxity.

• Never run any jobs that have zero remaining execution time.

• Do not allow more than (m− U(τ))× (tf − t0) discretionary idle time.

Idle time is discretionary if processors idle while tasks are waiting to execute. We can show
that if task idle for the specified amount of time then there will be at least m uncompleted
jobs for the remainder of time.

Sporadic tasks may generate jobs to arrive within an interval at time t ∈ [t0, tf). In
this case, we add the following two rules

• If t+ pi ≥ tf , assign the newly arrived job to execute for ui · (tf − t).

• If t+pi < tf , assign the newly arrived job to execute for ei, split the time slice into 2
pieces so that Ti’s deadline coincides with the end of the first piece and divide other
task’s remaining execution time in proportion to the lengths of the two pieces.

When Di 6= pi, we use task density, δi = ei/min{Di, pi}, instead of utilization to
determine run times. We also use the density to determine feasibility, but this test is
sufficient only when density is used. There is no optimal online multiprocessor scheduling
algorithm when deadlines are less than periods (Fisher, Goossens and Baruah, “Optimal

10

Online Multiprocessor Scheduling of Sporadic Real-Time Tasks is Impossible”, Real-Time
Systems, to appear. 2010). Currently, we set boundaries at times ai,k + min{Di, pi},
where ai,k is the time when Ti releases its kth job. Thus, when Di > pi, we have artificial
boundaries (i.e., boundaries that do not coincide with any deadlines). This effectively
forces all tasks to have Di ≤ pi.

A simple algorithm: In each time interval, we can use McNaughton’s wrap-around
algorithm (McNaughton, “Scheduling with deadlines and loss functions”, Machine Science,
1959) to determine a schedule for the entire the interval. This algorithm runs in O(n) time
at the beginning of each interval. For uniform multiprocessors, we can develop a schedule
using the level algorithm (Horvath, Lam and Sethi, “A Level Algorithm for Preemptive
Scheduling”, Journal of the ACM, 1977).

The results presented above have been submitted to the EuroMicro Conference on
Real-Time Systems. It is joint work with Greg Levin, Caitlin Sadowski, Ian Pye and Scott
Brandt at the University of California at Santa Cruz.

Questions:

1. Given that the algorithm runs at the beginning of each interval, we clearly benefit
from reducing the number of intervals. How much can we reduce the number of
intervals? It seems clear we can allow some jobs to have deadlines within an interval.
Any such job must be allowed to execute immediately and non-preemptively. The
question is how many such jobs can we allow at any point in time?

2. Can we reduce preemptions and migrations in the uniform multiprocessor case? The
level algorithm shares processors between jobs, which can cause numerous preemp-
tions and migrations. Is there an algorithm that can reduce this overhead?

3. Can we schedule tasks with Di > pi more efficiently? Removing artificial boundaries
could also reduce the total number of intervals. In particular, if a task Ti with Di > pi
releases a job at time a, and some other task has at some time t ∈ [a + pi, a + Di),
then the Ti will have completed its work by time t. This would mean we would not
have to set a boundary at time a+Di. It’s conceivable that we would rarely need to
set boundaries for tasks with deadlines significantly larger than periods.

A sharp threshold for rate monotonic schedulability
of real-time tasks
Proposed by Sathish Gopalakrishnan

Setting: For a set of n known task periods T1, T2, . . . , Tn, let Au represent the set of all
implicit-deadline task sets of utilization u that are schedulable using the rate monotonic
scheduling policy. In other words, every task set τ ∈ Au is schedulable using RM and can
be represented by a vector of utilizations {ui} such that 0 ≤ ui ≤ u and

∑n
i=1 ui = u. For

large n and any given set of task periods, there exists a u∗ such that, for any ε, 0 < ε < 1,

µ(Au) =
{

0 if u > (1 + ε)u∗

1 if u < (1− ε)u∗ ,

11

where µ(Au) is the uniform probability measure of the set Au on the n-dimensional simplex∑n
i=1 ui = u, ui ≥ 0 (i.e., the Lebesgue measure of Au suitably normalized). This result

can be obtained by an application of sharp threshold results for random graphs due to
Friedgut and Kalai, and Bourgain.

Open problem: As n→∞, for a given set of task periods T1, . . . , Tn, what is the sharp
threshold u∗?

Open Problem
Proposed by Han Hoogeveen

Problem Statement: We are looking at a single machine scheduling problem with release
dates and equal processing times: the objective function is assumed to be regular. Then
you know that there is an optimal schedule in which each job either starts at its release
date, or starts at the completion time of some other job. This implies that there are at
most O(n2) execution intervals for all jobs. Verma and Dessouky have presented an ILP
formulation for a similar problem with binary variables that indicate whether a job gets
assigned to an execution interval. They have shown that, if a double-nested solution is
either suboptimal, or can be rewritten to a non-double-nested solution, then there exists
an integral solution with equal cost to the value of the LP-relaxation. Here double-nested
means that there are two jobs j and k that are partially assigned to four intervals com-
pleting at times t1, t2, t3, and t4, with t1 < t2 < t3 < t4, such that one of the jobs is
assigned to t1 and t3 and the other one to t2 and t4. For our problem, we can show that
the result by Verma and Dessouky can be applied. Hence, we solve the LP-relaxation. If
the double-nested solution is sub-optimal, then the solution to the LP will be integral. If
the solution to the LP-relaxation is fractional, then we know that there exists an integral
solution with equal value, but we still have to find it. The open question is whether there
exists an easy algorithm to find it. An early version of the paper can be found at
http://www.cs.uu.nl/research/techreps/UU-CS-2005-054.html

The final version has been accepted by Journal of Scheduling.

Open Problem
Proposed by Claire Mathieu

Along with Moses Charikar and Howard Karloff, I worked unsuccessfully on the follow-
ing conjecture. Consider the problem PM |pj = 1, prec|Cmax of scheduling unit-time
single-processor jobs on M identical processors to minimize the makespan, when there
are precedence constraints (so that the input is simply a DAG describing the precedence
constraints.)

Conjecture 1 Consider PM |pj = 1, prec|Cmax. Fix M and ε. Then there exists k =
k(M, ε) such that the linear program below (whose size is polynomial in nk) has integrality
gap less than 1 + ε.

12

Here is the linear program for checking feasibility of T . There is one variable xp for
each partial assignment of ` ≤ k slots to jobs:

{(j1, t1,m1), (j2, t2,m2), . . . , (j`, t`,m`)}

where ti ≤ T is a timestep, mi ≤M is a machine, and ji is either a job or “idle”.
Feasibility constraints: if p is not feasible then xp = 0. (This can happen either because
the same job is assigned to two different slots, or because the same slot is assigned two
different jobs, or because job j is scheduled before or at the same time as job j′ even though
j′ must precede j according to the input precedence constraints.)

By convention we define a special variable x∅ = 1.
Covering constraints: Given a partial assignment p of ` < k slots, for every job j, the
extension of p schedules j somewhere:∑

(t,m)

xp∪{(j,t,m)} = xp.

Packing constraints: Given a partial assignment p of ` < k slots, for every slot (t,m),
the extension of p schedules exactly one job (including the “idle” possibility) in the slot:∑

j

xp∪{(j,t,m)} = xp.

And of course, every xp must be in [0, 1].

Remark: It can be verified that this is an encoded form of the Sherali-Adams lifting of
the usual LP relaxation of the problem. Moreover, the LP can be enriched if desired by
adding positive semi-definite constraints; in particular, the matrix that has one row for
every partial assignment p of ≤ k/2 slots, one column for every partial assignment q of
≤ k/2 slots, and (p, q) entry equal to xp∪q, must be positive semi-definite.

Open Problem
Proposed by Nicole Megow

Problem Statement: Jobs arrive online over time at their release dates. At a job’s
arrival, its deadline and processing time are revealed. We are interested in online algorithms
that schedule these jobs on m parallel identical machines with arbitrary preemption and
migration. Does there exist an online algorithm for m speed-s machines, with s < 2−1/m,
that finds a feasible solution for any instance for which there exists a feasible schedule on m
speed-1 machines. This is an open question that arises from
[PSTW] Cynthia A. Phillips, Clifford Stein, Eric Torng, Joel Wein: Optimal Time-Critical
Scheduling via Resource Augmentation. Algorithmica 32(2): 163-200, 2002.

Related Results and Comments:

• Speed s = 1: EDF and LLF are well-known to guarantee a feasible schedule on
one machine, if such a feasible schedule exists. On two or more machines, no online
algorithm can guarantee a feasible schedule, if such a schedule exists. (See references
in [PSTW].)

13

• Lower bound: [PSTW] show that there is no s-speed online algorithm with s < 6/5.

• Upper bounds: [PSTW] show that LLF and EDF are 2−1/m-speed algorithms. This
result is tight for EDF; for LLF we do not know. With S. Anand (IIT Delhi) we can
show that LLF needs speed

s ≥ 1 +
√

1 + 4x2
2x

, with x =
m

m− 1
.

This value is (1 +
√

17)/4 ≈ 1.28 for m = 2 and goes up to the Golden ratio Φ =
(1 +

√
5)/2 ≈ 1.618 for m→∞.

Maximizing throughput in real-time scheduling
Proposed by Seffi Naor

Consider the following real-time scheduling problem in which the goal is to maximize the
throughput. The input to the problem consists of n jobs, where each of the jobs is associated
with a release time, a deadline, a weight, and a processing time. The goal is to find a non-
preemptive schedule that maximizes the weight of the jobs meeting their deadline. Garey
and Johnson have shown that deciding whether a given set of jobs can all be scheduled is
already NP-hard in the strong sense.

Let us focus on the discrete version of the problem. In this version the possible instances
of a job are given explicitly as a set of time intervals. The goal then is to pick a set of
maximum weight non-intersecting time intervals such that at most one interval from each
set of job instances is picked. Spieksma (On the approximability of an interval scheduling
problem, Journal of Scheduling, Vol. 2, pp. 215-227, 1999) considered the unweighted
version of the interval scheduling problem and proved that it is MAX-SNP hard.

There is a natural linear programming formulation for this problem. Each time in-
terval of a job is associated with a variable and there are two types of constraints: the
time constraints require that at any time at most one interval is scheduled, and the job
constraints require that at most one interval from each job is chosen. It is easy to show
that the integrality gap of this linear program is at least 2. Bar-Noy et al. (A. Bar-Noy
et al., Approximating the throughput of multiple machines in real-time scheduling, SIAM
Journal on Computing, Vol. 31, pp. 331–352, and A. Bar-Noy et al., A unified approach to
approximating resource allocation and scheduling, Journal of the ACM, Vol. 48, pp. 1069-
1090) gave a 2-approximation algorithm for the problem based on this linear programming
formulation.

The open question is whether this approximation factor can be improved. A step in this
direction was taken by Chuzhoy et al. (J. Chuzhoy et al., Approximation algorithms for the
job interval selection problem and related scheduling problems, Mathematics of Operations
Research, Vol. 31, pp. 730-738) who gave an approximation algorithm achieving a factor
of e/(e− 1) + ε, for all ε > 0, for the case where all jobs have the same weight. However,
the question still remains open for weighted instances. It would be very challenging to add
more constraints to the above linear programming formulation to decrease the integrality
gap.

14

Open Problem
Proposed by Kirk Pruhs

Problem Statement : Jobs with release dates, deadlines and known sizes arrive over
time. The problem is to determine if there is an online algorithm that can schedule these
jobs, with arbitrary preemption and migration, on O(m) machines, if there is a feasible
schedule on m machines. To the best of my knowledge this open problem arises from
the paper: Cynthia A. Phillips, Clifford Stein, Eric Torng, Joel Wein (PSTW): Optimal
Time-Critical Scheduling via Resource Augmentation. STOC 1997.

Related Results and Comments:

• No Augmentation: EDF and LLF will guarantee a feasible schedule on one machine,
if such a feasible schedule exists. There is no online algorithm that will guarantee a
feasible schedule on two machines (or more machines), if such a schedule exists. So
you need some sort of augmentation for more than one machine.

• Speed Augmentation: PSTW shows that LLF and EDF are 2-speed algorithms for
this problem, that is, they guarantee an optimal schedule on m machines if there
is a feasible schedule on m unit speed machines. In the SODA 2006 paper “Extra
unit-speed machines are almost as powerful as speedy machines for competitive flow
time scheduling” H. L. Chan, T. W. Lam, and K. S. Liu showed that there is a
(1 + ε)-speed O(1/ε2)-machine algorithm.

• Machine Augmentation: PSTW showed that there is no (1 + ε)-machine algorithm
when ε < 1/4. PSTW also showed that none of the standard algorithms, e.g. LLF
and EDF, are O(f(m))-machine algorithms for any function f .

• Comments: To my knowledge, not even an O(f(m)) machine algorithm is known
for any function f ; although it is not clear how interesting this would be if f is
ω(logm). The core issue seems to be that machine augmentation doesn’t excuse the
online algorithm from having to understanding the nesting structure of the jobs in
the optimal schedule (as does speed augmentation).

Parallel machines scheduling to preemptively min-
imize the weighted sum of mean busy dates
Proposed by Maurice Queyranne

Problem Statement: What is the complexity of the scheduling problem P |pmtn|
∑

j wjMj

of preemptively minimizing a weighted sum of mean busy dates on identical parallel ma-
chines?
Instance input data are:

• a set N = {1, . . . , n} of n jobs, all available at date 0 and with given processing times
pj > 0 and weights wj > 0 (j ∈ N);

15

• m identical parallel machines.

Recall some definitions: for a given schedule and every job j ∈ N :

• At any date t ∈ R (t ≥ 0), the (actual processing) speed σj(t) of job j at date t is
σj(t) = 1 if j is being processed at date t, and 0 otherwise. If the schedule is feasible
then

– it entirely processes job j:
∫ +∞
t=0 σj(t) dt = pj ; and

– every machine can process at most one job at every date t ≥ 0:
∑

j∈N σj(t) ≤ m.

• The mean busy date Mj of job j is the average date at which j is being processed in
the schedule, i.e., Mj =

∫ +∞
t=0 t σj(t) dt.

Related Results and Comments:

1. Mean busy dates were introduced by Michel Goemans (SODA 1997) and are com-
monly used to define relaxations of certain (usually nonpreemptive) scheduling prob-
lems, and derive structural and/or analyze approximation results (e.g., Goemans et
al., SIAM J. Disc. Math. 2002; Chou et al., Math. Prog. 2006). They are also of
independent interest in scheduling problems where jobs accrue costs (or revenue),
continuously over time, while they are being processed.

2. An optimal schedule for our problem P |pmtn|
∑

j wjMj may use “strategic” preemp-
tions, which occur at dates that may vary (continuously) not only as the “physical”
data (processing times, number of machines) vary , but also as the “economic” data
(the weights) vary.
Example: m = 2 machines; n = 3 unit jobs (all pj = 1) with weights w1 = 11, w2 = 10
and w3 = 9. The unique (up to swapping the two machines) optimum schedule is
to process job 1 between dates 0 and 1 on the first machine; job 2 between 0 and
0.55 on the second machine, and between 1 and 1.45 on the first machine; and job
3 between 0.55 and 1.55 on the second machine; for an optimum objective value of
21.975. The optimum preemption date (currently, 0.55) of job 2 varies continuously
as the weights wj vary by small nonzero amounts around their initial values (11, 10,
9).

3. The same problem, but with a fixed numberm of machines, i.e., problem Pm|pmtn|
∑

j wjMj ,
can be solved in polynomial time (for rational data), but with running time grow-
ing exponentially with m. This follows from the fact (Queyranne, manuscript notes,
July 20, 2010) that this problem (and more general versions with unrelated machines
and time-dependent processing times pij(t) given as piecewise constant functions;
note that this allows modeling release dates, deadlines, planned job and/or machine
unavailability periods, etc.) can be formulated and solved as a convex quadratic
programming problem (with decision variables associated with subsets of at most m
jobs forming “feasible patterns” of jobs).

References

[1] Chou, C.-F., Queyranne, M., and Simchi-Levi D.: The asymptotic performance ratio of
an on-line algorithm for uniform parallel scheduling with release dates. Mathematical
Programming 106, 137–157 (2006).

16

[2] Goemans, M. X.: Improved Approximation Algorithms for Scheduling with Release
Dates. Proceedings of the 8th ACM-SIAM Symposium on Discrete Algorithms, 591-
598 (1997).

[3] Goemans, M. X., Queyranne, M., Schulz, A. S., Skutella, M., and Wang,Y.: Single
Machine Scheduling with Release Dates. SIAM J. Discrete Mathematics 15, 165-192
(2002).

[4] Queyranne, M.: Manuscript notes. July 20, 2010.

Open Problem
Proposed by Adi Rosén

We consider directed linear communication networks. The linear network consists of n
nodes {1, . . . , n}, and n − 1 directed edges, (i, i + 1), for 1 ≤ i ≤ n − 1. The system is
synchronous, and in each time step each edge can transmit one message. Each node can
store at any time an infinite number of messages. We are given a set M, |M| = M of
messages. Each message m = (sm, tm, rm, dm) ∈ M consists of a source node sm, a target
node tm, a release time rm, and a deadline dm. For a message m, we define the slack of
m, σm, to be σm = (dm − rm)− (tm − sm) (this is the number of steps the message can be
idle and still make it to its destination by its deadline.). We define Σ = maxm∈M σm.

We want to find a schedule for the messages that maximizes the number of messages
that arrive to their respective destinations by their respective deadlines.

The open problem is whether there exists a polynomial-time algorithm with constant
approximation ratio.

The problem is NP-hard [2]. A polynomial-time algorithm with approximation ratio
O(min{log∗ n, log∗Σ, log∗M}) is known [3].

References

[1] Micah Adler, Sanjeev Khanna, Rajmohan Rajaraman, and Adi Rosén. Time-
constrained scheduling of weighted packets on trees and meshes. Algorithmica,
36(2):123–152, 2003.

[2] Micah Adler, Arnold L. Rosenberg, Ramesh K. Sitaraman, and Walter Unger. Schedul-
ing time-constrained communication in linear networks. Theory of Computing Systems,
35(6):599–623, 2002.

[3] H. Räcke, A. Rosén, Approximation Algorithms for Time-Constrained Scheduling on
Line Networks. In Proc. of the 21st ACM Symposium on Parallel Algorithms and
Architectures (SPAA), pp. 337–346, August 2009.

17

Non-clairvoyant scheduling with precedence con-
straints: Towards a measure of the worst case
degree of parallelism within a precedence constraints
DAG structure
Proposed by Nicolas Schabanel

This looks technical, but it isn’t as much as it looks ;-).

The model. We consider the non-clairvoyant preemptive setting by Edmonds [1] aug-
mented with precedence constraints as defined in [5]: each job Ji consists in an unknown
DAG of unknown subjobs Jij . Each subjob Jij consists in an unknown sequence of un-
known phases Jkij . Each phase consists in certain amount of work wkij and a speed-up
function Γkij (sublinear and non-decreasing). The amount of work accomplished during dt
by subjob Jij during phase k when given ρij ∈ R+ processors is: dwkij = Γkij(ρij) dt. We say
that a subjob in phase k progresses at rate Γkij(ρij) when given ρij processors. A subjob is
released as soon as all of its predecessors are completed, or when its corresponding job is
released, if it has no predecessors. A subjob completes when all of its phases are completed.
A job is completed when all of its subjobs are completed.

Non-clairvoyant algorithms. We consider non-clairvoyant algorithms, that is to say
algorithms that are unaware of the DAG structure within each job, nor of the phases etc.
Non-clairvoyant algorithms cannot forecast the structure of the DAG and only discover the
subjobs at the time of their release. The only available informations to the algorithm are
the release dates of each jobs and subjobs and to which job belongs each currently active
subjobs.

Previous results. When the DAG consists in a unique chain of subjobs, Edmonds and
Pruhs have shown in [2] that the algorithm LAPSβ that shares equally the processors
between the fraction β of the most recent active jobs, is 1 + β + ε-speed 4(1 + β + ε)/βε-
competitive. The first step of the proof in [1, 2] consists in showing that one can only
consider two types of phases: SEQ, for which Γ(ρ) = 1 for all ρ ≥ 0 and on which any
processor given is wasted; and PAR, for which Γ(ρ) = ρ for all ρ ≥ 0, on which any
processor given is used at 100%. Any non-clairvoyant algorithm which is competitive for
SEQ/PAR jobs, is competitive for arbitrary sublinear non-decreasing speed-up functions.
We have shown in [5] that this reduction to SEQ/PAR subjobs by [1] still applies in the
setting with precedence constraints.

Scattering coefficient. This coefficient is the key in [5] to obtain our upper bound on
the competitive ratio of non-clairvoyant schedulers in presence of precedence constraints,
because it allows to get rid of the precedence constraint without modifying the supported
load.

We consider A ◦ B algorithms where algorithm A allots some processors ρi to each
alive job Ji and algorithm B splits among the alive subjobs Jij of each given job Ji the ρi
processors it received from A. New difficulties arise from precedence constraints because the
way that the algorithm unfolds the DAG, has a huge impact on the number of processors
wasted on SEQ phases (see [5, 4]). We bound from above the extend of this waste as
follows. Given a DAG structure D, the scattering coefficient α(B,D) for algorithm B on

18

DAG D, is the maximum of the following ratio overall possible job Ji with DAG structure
D and all allocation of processors ρi:

α(B,D) = max
all functions ρi,

all jobs Ji with DAG D

∫∞
0

(
% procesors wasted by B on SEQ phases of subjobs of Ji

)
dt

SEQ(Ji)

where SEQ(Ji) denotes the maximum amount of SEQ work along a chain of subjobs of Ji.
Surprisingly, because it is a worst case coefficient, this scattering coefficient can be easily
computed for various precedence constraints structures [5] such as: independent chains,
in-trees, out-trees, serial-parallel DAG,... (for instance by using dynamic programming).

Now, since, by definition of α(B,D), the sequential work in any DAG cannot be
stretched by a factor more than α(B,D) in any DAG D, and since the progress in parallel
work is not impacted by the precedence constraints, the competitive ratio of algorithm A◦B
on D at speed s is at most α times the competitive ratio of A at speed s on jobs consisting
in a unique chain of subjobs (as in [1, 2]). It follows that LAPSβ◦EQUI is (1+β+ ε)-speed
(k + 1)(1 + β + ε)/βε-competitive where k is the size of the largest number of independent
jobs in a DAG of the instance, because EQUI is a (k+1)/2-scatterer, which is optimal (see
[5]). A surprising consequence is that precedence constraints do not decrease the maximum
supported load by non-clairvoyant algorithms!

Open questions. The scattering coefficient thus yields upper bounds on the competitive
ratio of non-clairvoyant scheduler with precedence constraints. A natural question is thus:
is it the right parameter to measure the degree of parallelism in a precedence constraints
structure? In other words, can the scattering coefficient yield lower bounds on the best
achievable competitive ratio by a given algorithm on a given DAG? Is there a way to define
this coefficient independently of the algorithm B used? We need to be able to construct
worst case instances for a given DAG structure from the worst value of the scattering coeffi-
cient. We do not know how to do that yet, nor if it is possible in general. If true, this would
yield an interesting measure of the worst degree of parallelism achievable in a precedence
constraints structure and thus may help designing dependancies between softwares so as
to minimize the risk of wasting performances due to bad precedence constraints between
them.

A preliminary result we have in that direction, is that for trees D, one can construct
worst case instances on a DAG structure D′ close to D with competitive ratio Ω(α(D)).
D′ is simply an “hairy” version of D where each leaf is prolongated by q leaves [5, 3].

References

[1] Jeff Edmonds. Scheduling in the dark. In Proc. of ACM Symp. on Theory of Computing
(STOC), pages 179–188, 1999.

[2] Jeff Edmonds and Kirk Pruhs. Scalably scheduling processes with arbitrary speedup curves. In
Proc. of ACM/SIAM Symp. On Discrete Algorithms (SODA), pages 685–692, 2009.

[3] Julien Robert. Ordonnancement non-clairvoyant avec contraintes de dépendances. PhD thesis,
École normale supérieure de Lyon, Dec. 2009.

[4] Julien Robert and Nicolas Schabanel. Non-clairvoyant batch set scheduling: Fairness is fair
enough. In Proc. of European Symp. on Algorithms (ESA), volume LNCS 4698, pages 742–753,
Oct. 2007.

[5] Julien Robert and Nicolas Schabanel. Non-clairvoyant scheduling with precedence constraints.
In Proc. of ACM/SIAM Symp. On Discrete Algorithms (SODA), pages 491–500, Jan. 2008.

19

Maximizing the throughput of parallel jobs on two
machines
Proposed by Jǐŕı Sgall

P2|rj , pj = 1, sizej |
∑
Uj , i.e., maximizing he throughput of parallel jobs on two machines.

Setting: We are given two machines and a set of unit processing time jobs with release
times and deadlines. Each job can be either parallel, then it needs to be run on both
machine in the same single timeslot, or sequential, then it needs to be run on one arbitrary
machine for a single timeslot. The objective is to maximize the number of jobs that can
be scheduled in their respective time windows.
Open problem: Can this be solved in polynomial time? What about an approximation?

Related results and notes:

Feasibility: Checking if all the jobs can be scheduled (and finding the schedule) can be
done in polynomial time. See the following papers. In the first one, the dynamic
programming proof is correct, the other has a correctable gap. The other paper has
a shorter proof using total unimodularity.
Ph. Baptiste, B. Schieber. A Note on Scheduling Tall/Small Multiprocessor Tasks
with Unit Processing Time to Minimize Maximum Tardiness. Journal of Scheduling
6(4): 395-404, 2003.
C. Dürr and M. Hurand. Finding total unimodularity in optimization problems solved
by linear programs. In Proc. 13th European Symp. on Algorithms (ESA), LNCS
4168, pages 53-64. Springer, 2006.

Special cases: It is possible to solve various special cases, e.g. if the jobs are nested or
the parallel jobs have agreeable deadlines and release times. See:
O. Zaj́ıček. A note on scheduling parallel unit jobs on hypercubes. Int. J. on Found.
Comput. Sci., 20(2):341-349, 2009.
Tamás Kis. Scheduling multiprocessor UET tasks of two sizes. Theor. Comput. Sci.
410(47-49):4864-4873, 2009.

Approximation: We have a 1.5-competitive algorithm. See:
O. Zaj́ıček, J. Sgall, T. Ebenlendr: Online scheduling of parallel jobs on hypercubes:
Maximizing the throughput To appear in Proc. of the Parallel Processing and Applied
Mathematics (PPAM’09), Lecture Notes in Comput. Sci., Springer, 2010.
http://iti.mff.cuni.cz/series/files/2009/iti481.pdf

No better approximation seems to be known, even offline.

Other notes: For sequential jobs only the problem is an easy matching problem. If we
know which pairs of sequential jobs are scheduled in the same timeslot, it is easy as
well. We may assume that both the optimum and any algorithm schedules all the
sequential jobs.

20

2-approximation for 1|rj, prec|
∑

wjCj

Proposed by René Sitters

Problem Statement: Is there a polynomial time 2-approximation for minimizing total
weighted completion time on the single machine with release dates and arbitrary precedence
constraints (1|rj , prec|

∑
wjCj)?

Related Results

• An e-approximation is given by Schulz and Skutella (Paper: Random based schedul-
ing, 1997).

• For the case that all release dates are zero several 2-approximation algorithms are
known. It is generally believed that this is best possible in polynomial time.

Conjecture: Rounding an optimal solution of the following LP gives a 2-approximation.
Define a variable xjt for each job j and time t.

min
∑

j wj(Mj + pj/2)

s.t. Mj =
∑

t xjt(t+ pj/2)∑
j

∑
t′:t−pj+1≤t′≤t xjt′ ≤ 1, for all t (packing constr.)∑

t′≤t−pj
xjt′ ≥

∑
t′≤t xkt for all t and j ≺ k (prec. constr.)

xjt ≥ 0 for all j, t

First part of the conjecture is that for a given optimal LP-solution there always is solution
such each job completes within time 2MLP

j + pj . (This is not true for the LP using
variables yjt, where yjt is the fraction of j processed between t and t+ 1). Second part of
the conjecture is that we can find it in polynomial time.

Remarks: - The LP-is only of polynomial size of input numbers are polynomially bounded.
Hence, in general this should give a 2 + ε-approximation.

Increasing speed scheduling
Proposed by Sebastian Stiller

Given an n tuple of pairs of natural numbers (d,w)1≤i≤n and a weakly monotonically
increasing, integrable function s : R+ → R+. The Increasing Speed Scheduling (ISS)
problem asks for a permutation σ, such that

∑
wiCi is minimal with

Ci := min

t ∈ R+ :
∫ t

0
s(x)dx ≥

∑
σ(j)≤σ(i)

dj

 .

We conceive of this as n jobs with demand and weight to be scheduled on a single
machine with increasing speed.

We are interested in the complexity of the problem, in particular for s being piecewise
constant, even with a constant number of non-differentiable points. Among other positive

21

results, a (straight forward) dynamic program is known for the latter case. Still, even for s
taking exactly two distinct values we conjecture weak NP-hardness.

For details, background, and some of our current results on the matter please confer
http://www.math.tu-berlin.de/coga/publications/techreports/2010/Report-007-2010.xhtml.

Deliberate idleness problem
Proposed by Marc Uetz

The deliberate idleness problem is a problem in stochastic machine scheduling. In stochastic
machine scheduling, we are concerned with the question how to optimally schedule n jobs
with stochastic processing requirements on m machines. More specifically, the processing
times follows distributions pj ∼ Xj , j = 1 . . . , n. The jobs are nonpreemptive, all available
at time 0, and have to be scheduled on m parallel, identical machines. Each machine can
only do one job at a time, and a job can go on any of the m machines. Moreover, each
job has a weight wj , and we want to find a scheduling policy that minimizes the expected
value of the weighted sum of completion times, E[

∑
j wjCj]. An instance consists of the

input of jobs (wj , Xj), j = 1, . . . , n, and the encoding of the number of machines m.
Noticeable about stochastic scheduling is that the solution is not a schedule, but a

scheduling policy which essentially tells us, at any point in time t (typically when a machine
falls idle, but possibly also at other points in time), which job(s) to schedule next. This
decision may depend on the input of the problem, and the state of the system at time t.
The latter is given by time t, the set of jobs already completed, the set of jobs currently
running together with their conditional distribution of remaining processing time, and the
set of jobs not yet started.

The question is this. Assume m ≥ 3 machines, and assume that all jobs follow an
exponential distribution, pj ∼ exp(λj), that is, the processing times are memoryless. Does
there always exist an optimal policy that avoids deliberate idleness? (That is, as long as
there are unprocessed jobs, it would never leave a machine idle.)

Some background information.

• For arbitrary distributions pj ∼ Xj there are simple examples showing that deliberate
idleness can be necessary, even on m = 2 machines. See
M. Uetz, When Greediness Fails: Examples from Stochastic Scheduling, Operations
Research Letters 31, 2003, pp. 413-419.

• For m = 2 machines and pj ∼ exp(λj) an optimal policy always exists that avoids
deliberate idleness. This is not totally trivial, but not too difficult either, using an
inductive argument.

• The WSEPT rule (greedily schedule jobs in order of ratios wj/Epj) has a performance
guarantee of 2 − 1/m, for any distributions with coefficient of variation at most 1.
Thus, in particular for exponential distributions. See
R.H. Möhring, A.S. Schulz, M. Uetz, Approximation in stochastic scheduling: the
power of LP-based priority policies, Journal of the ACM 46 (1999), 924-942.

• For all wj = 1 the problem is solved optimally by the SEPT rule, greedily schedule
jobs with shortest expected processing time first.

22

Complexity of local search
Proposed by Tjark Vredeveld

Problem Statement: We consider the problem of finding a local optimum for the fol-
lowing problem. Given are n jobs, with processing times p1, . . . , pn, each of which needs to
be scheduled on one of m identical parallel machines. The goal is to schedule the jobs in
such a way that the makespan is minimized.

The class PLS (polynomial-time local search) [6] contains the (local search) problems
whose neighborhood can be search in polynomial time. Several important local search
problems are complete for PLS under an appropriately defined reduction, see e.g. [8].

The simplest form of an local search algorithm is iterative improvement : starting from a
feasible solution, move from one solution to an neighboring solution that is better. Iterative
improvement stops in the first local optimum that its encounters.

Consider the k-Opt neighborhood, i.e., we are allowed to relocate k jobs. For which k
can we prove that we can find a local optimum by iterative improvement in a polynomial
number of steps and for which k can we show that it is PLS-complete?

Another question is whether the Push neighborhood, defined in [7], is PLS-complete.

Related Results and Comments:

• Recently, Dumrauf, Monien, and Tiemann [4] showed that the scheduling problem is
PLS-complete for a neighborhood in which 33 jobs are allowed to be relocated.

• On the other hand, Brucker, Hurink, and Werner [1, 2] showed that if the neigh-
borhood consists of all schedules that can be obtained by relocating only one job
(jump neighborhood), then a local optimum can be found in O(n2) steps by iterative
improvement, if always a job is jumped to a machine with minimum load.

• The Push neighborhood is a variable depth search neighborhood. To define it un-
ambigously, one also needs to define a machine selection rule, for a job that needs
to be relocated. See [7] for more details. Therefore, the complexity of the push
neighborhood also depends on this rule.

• Performance guarantees for the quality of local optima for this scheduling problem
are studied in [5, 7, 3].

References

[1] P. Brucker, J. Hurink, and F. Werner. Improving local search heuristics for some
scheduling problems I. Discrete Applied Mathematics, 65:97–122, 1996.

[2] P. Brucker, J. Hurink, and F. Werner. Improving local search heuristics for some
scheduling problems II. Discrete Applied Mathematics, 72:47–69, 1997.

[3] T. Brueggemann, J. L. Hurink, T. Vredeveld, and G. J. Woeginger. Very large-scale
neighborhoods with performance guarantees for minimizing makespan on parallel ma-
chines. In C. Kaklamanis and M. Skutella, editors, Approximation and Online Algo-
rithms (WAOA 2007), volume 2909 of Lecture Notes in Computer Science, pages 41–55.
Springer, Berlin, 2008.

23

[4] D. Dumrauf, B. Monien, and K. Tiemann. Multiprocessor scheduling is PLS-complete.
In Proceedings of the 42nd Hawaii International Conference on System Sciences, pages
1–10, 2009.

[5] G. Finn and E. Horowitz. A linear time approximation algorithm for multiprocessor
scheduling. BIT, 19:312–320, 1979.

[6] D.S. Johnson, C.H. Papadimitriou, and M. Yannakakis. How easy is local search?
Journal of Computer and System Sciences, 37:79–100, 1988.

[7] P. Schuurman and T. Vredeveld. Performance guarantees of local search for multipro-
cessor scheduling. Informs Journal on Computing, 19:52–63, 2007.

[8] M. Yannakakis. Computational complexity. In E.H.L. Aarts and J.K. Lenstra, editors,
Local Search in Combinatorial Optimization, chapter 2, pages 19–55. Wiley, Chichester,
1997.

The airplane refueling problem
Proposed by Gerhard J. Woeginger

Problem Statement: Suppose you have to deliver a bomb in some distant point of the
globe, the distance being much greater than the range of the airplanes you are going to
use. Thus you have to use the technique of refueling in the air. Starting with several planes
which refuel one another, and gradually drop out of the flight until the last plane reaches
the target, how would you plan the refueling program?

Here is a mathematical formulation of this problem. There are n airplanes A1, . . . , An
with tank volumes vj and gas consumption rates cj (1 ≤ j ≤ n). The goal is to find a
drop out permutation π(1), . . . , π(n) for the planes that maximizes the distance traveled
by the last plane. Since the tank volume vj of airplane Aπ(j) is consumed by airplanes
Aπ(j), . . . , Aπ(n) the traveled distance of the last plane is given by

n∑
j=1

vπ(j) /

n∑
k=j

cπ(k)

 .

The cases where all planes have identical tank volumes and where all planes have identical
consumption rates can be solved by sorting. The computational complexity of the general
case is open.

Related Results and Comments: This problem is motivated by a problem in the
aeronautica chapter of the book “Puzzle-Math” (Macmillan, London, 1958) by George
Gamow and Marvin Stern.

24

