
Every Deterministic Nonclairvoyant Scheduler

has a Suboptimal Load Threshold

Jeff Edmonds∗

Abstract

We prove a surprising lower bound for resource augmented nonclairvoyant algorithms for
scheduling jobs with sublinear nondecreasing speed-up curves on multiple processors with the ob-
jective of average response time. Edmonds in STOC99 shows that the algorithm Equi-partition
is a (2+ǫ)-speed Θ(1

ǫ
)-competitive algorithm. We define its speed threshold to be 2 because it is

constant competitive when given speed 2+ǫ but not when given speed 2. (Its load threshold is
the inverse of its speed threshold.) The optimal speed threshold is 1 because then the algorithm
is constant competitive no matter how little extra resources it is given. Edmonds and Pruhs in
SODA09 imply that they have found such an algorithm. (They use the term scalable.) We, how-
ever, rebut that their algorithm only accomplishes this nondeterministically. They prove that
for every ǫ > 0, there is an algorithm Algǫ that is (1+ǫ)-speed O(1

ǫ2
)-competitive. A problem,

however, is that this algorithm Algǫ depends on ǫ. Hence, to have one algorithm it would have
to runs Algǫ after nondeterministically guessing the correct ǫ. We prove that like Equi-partition,
every fixed deterministic nonclairvoyant algorithm has a suboptimal speed threshold, namely
for every (graceful) algorithm Alg, there is a threshold 1+βAlg that is βAlg > 0 away from being
optimal such that the algorithm ω(1) competitive with speed 1+βAlg. We go on to prove that
choosing an algorithm is a trade off between its performance and the peek load it can handle.
Though the SODA09 paper allows us to choose a algorithm with a speed threshold arbitrarily
close to one, it comes at a cost of 1

βAlg
in its competitive ratio, because even when given speed

(1+βAlg)+ǫ, the competitive ratio is at least Ω(1
(βAlg+ǫ)βAlg

).

In addition to being an interesting result, the proof technique is quite novel. It use Brouwer’s
fixed point theorem to break the cycle of needing to know which input will be given before one
can know what the algorithm will do and needing to know what the algorithm will do before
one can know which input to give.

Key words: lower bound, resource augmented competitive ratio, nonclairvoyant online scheduling,
multi-processor, average response time, nondeterministic, Brouwer’s fixed point theorem

∗York University, Canada. jeff@cse.yorku.ca. Supported in part by NSERC Canada.

Dagstuhl Seminar Proceedings 10071
Scheduling
http://drops.dagstuhl.de/opus/volltexte/2010/2544

1 Introduction

Computer chip designers agree upon the fact that chips with hundreds to thousands of processors
chips will dominate the market in the next decade. The founder of chip maker Tilera asserts that a
corollary to Moore’s law will be that the number of cores/processors will double every 18 months [?].
Intel’s director of microprocessor technology asserts that while processors will get increasingly
simple, software will need to evolve more quickly than in the past to catch up [?]. In fact, it is
generally agreed that developing software to harness the power of multiple processors is going to
be a much more difficult technical challenge than the development of the hardware. In this paper,
we consider one such software technical challenge: developing operating system algorithms/policies
for scheduling processes with varying degrees of parallelism on a multiprocessor.

We will consider the setting where n processes/jobs arrive to the system over time. Job Ji

arrives at time ri, has a work wi, and speedup function Γi(ρ) specifying the rate at which work
is completed when allocated ρ of the p processors, [?]. The upper bounds consider jobs with
multiple phases each with an arbitrary sublinear nondecreasing speedup curve. Our lower bound,
on the other hand, only considers parallelizable jobs which have Γi(ρ) = ρ and sequential jobs with
Γi(ρ) = 1.

An operating system scheduling algorithm Alg generally needs to be online in that it does not
know what jobs will arrive in the future and nonclairvoyant in that it does not know either wi nor
Γi(ρ). At each point of time, the algorithm specifies the number of processors ρ〈i,t〉 that it allocates
to each job Ji. If a job Ji completes at time Ci, then its response time is Ci−ri. In this paper we will
consider the schedule quality of service metric total response time, F (Alg(J)) =

∑n
i=1(Ci − ri) =

∫

t ntδt. This (or equivalently average response time) is by far the mostly commonly used schedule
quality of service metric. (Because we allow the allocation ρ〈i,t〉 to be any real number, we can
scale p to one.)

Let us now review the definitions of competitive ratio and resource augmentation. A scheduling
algorithm Alg is s-speed c-competitive if maxJ

F (Algs(J))
F (Opt1(J)) ≤ c where Algs(J) is the algorithm with

sp processors and Opt1(J) is the optimal schedule when given only p processors [?, ?]. Instead of
giving Alg extra speed s, you could equivalently think of giving it reduced load L = 1

s . We say that
algorithm Alg has speed threshold 1+βAlg and load threshold 1

1+βAlg
if it is a ((1+βAlg)+ǫ)-speed

Θ(1
ǫO(1))-competitive algorithm. The optimal speed/load threshold is 1 because then the algorithm

is constant competitive no matter how little extra resources it is given. The literature [?, ?,?]
uses the term scalable for such an algorithm. To understand the motivation for these definitions
consider the sort of quality of service curves that are ubiquitous in server systems. See figure ??.
That is, there is a relatively modest degradation in quality of service as the load increases until
one nears some threshold, after which any increase in the load precipitously degrades the quality
of service provided by the server. Load, which generally reflects the number of users of the system,
is formalized here as follows. Lets say that a job stream J has load L ∈ [0, 1], if F (OptL(J)) = 1,
namely the stream can be optimally handled with speed L. Note that with this definition, load
increases with L ∈ [0, 1) and is unmanageable for load L = 1 for any nonclairvoyant speed 1
scheduler. Lemma ?? (in the appendix) proves that the quality of service of an algorithm given
load L is equal to its competitive ratio when given speed s = 1

L . Hence, if the competitive ratio sky
rockets with speed below the algorithm’s speed threshold s = 1 + βAlg, then its quality of service
does so with load above L = 1

1+βAlg
.

No nonclairvoyant scheduling algorithm can be O(1)-competitive for total response time if
compared against the optimal schedule with the same speed [?], even if all the jobs are parallelizable.
The intuition is that one can construct adversarial instances where the load is essentially the

1

0

0
.0
8

0
.1
6

0
.2
4

0
.3
2

0
.4

0
.4
8

0
.5
6

0
.6
4

0
.7
2

0
.8

0
.8
8

0
.9
6

40

80

120

160

200

240

280

B=1

B=0.5

B=0.1

load s

F(s)

Opt has F=1

Figure 1: The quality of service curve for the algorithm LAPSβ for β = 1, 0.5, and 1. The speed
threshold for this algorithm is roughly 1+β and its load threshold 1

1+β = 0.5. 0.67, and 0.91. Note

how the quality of service increases with 1
β . (Sorry the load label should be L not s.)

capacity of the system, and there is no time for the nonclairvoyant algorithm to recover from any
scheduling mistakes. Theorem ?? uses basically the same instance.

The nonclairvoyant algorithm Shortest Elapsed Time First (SETF) on parallelizable jobs is
(1+ǫ)-speed Θ(1

ǫ)-competitive and hence has the optimal speed threshold [?] when all the jobs are
fully parallelizable. However, it performs very poorly when there are sequential jobs. SETF shares
the processor equally among all processes that have been processed the least to date. Intuitively,
SETF gives priority to more recently arriving jobs, until they have been processed as much as older
jobs, at which point all jobs are given equal priority. The process scheduling algorithm used by
most standard operating systems, e.g. Unix, essentially schedules jobs in way that is consistent
with this intuition.

The most obvious scheduling algorithm in the multiprocessor setting is Equi-partition (Equi),
which splits the processors evenly among all processes. Equi is analogous to the Round Robin or
Processor Sharing algorithm in the single processor setting. It is shown in [?] that Equi is (2+ǫ)-
speed (2s

ǫ)-competitive. It is also known that, even in the case of only parallelizable jobs, speed at
least 2+ǫ is required in order for Equi to be O(1)-competitive for total response time [?].

The paper [?] introduces a new algorithm call LAPSβ (Latest Arrival Processor Sharing). It
is parameterized by a real β ∈ (0, 1]. It partitions the processors equally among the ⌈βnt⌉ jobs
with the latest arrival times, where nt is the number of jobs alive at time t. Note that LAPSβ is a
generalization of Equi since LAPS1 is identical to Equi. But as β decreases, LAPSβ, in a manner
reminiscent of SETF, favors more recently released jobs. They prove that LAPSβ with s = (1+β+ǫ)

processors is
(

4s
βǫ

)

-competitive.

1.1 Our Results

We rebut the suggestion in [?] that their algorithm LAPSβ is scalable, i.e. has optimal speed
threshold 1. We show that their algorithm only accomplishes this nondeterministically.

The Desired Result: ∃Alg ∀ǫ
F (Alg1(J))

F (Opt1/(1+ǫ)(J)) = 1
ǫO(1)

Their Upper Bound: ∀ǫ ∃Algǫ
F (Alg1(J))

F (Opt1/(1+ǫ)(J)) = O(1
ǫ2

), namely Algǫ = LAPSβ with β = ǫ
2 .

2

Our Lower Bound: ∀Alg ∃ǫ
F (Alg1(J))

F (Opt1/(1+ǫ)(J)) = ω(1). For example, to make LAPS〈β,1+ǫ〉 noncom-

petitive, set ǫ = β
2 .

For them to have one scalable algorithm, it would have to runs Algǫ after nondeterministically
guessing the correct ǫ. In contrast, our result proves that every deterministic non-clairvoyant
algorithm Alg has a speed threshold 1+βAlg that is βAlg > 0 away from being optimal. We go on
to prove that choosing an algorithm is a trade off between its performance and the peek load it can
handle. See Figure ??. Equi has the best performance, but it only can handle “half” load. LAPSβ

with a small β can handle almost full load, but its performance degrades with 1
β .

Theorem 1. For all graceful deterministic sufficiently non-clairvoyant algorithms Alg, there exists
a speed threshold 1+βAlg that is βAlg > 0 away from being optimal so that with speed (1+βAlg)+ǫ, the
algorithm is Ω(1

(βAlg+ǫ)βAlg
) competitive and with speed 1+βAlg, the algorithm is ω(1) competitive.

This lower bound is completely tight with the upper bounds for LAPSβ . In fact, we prove that
(triangle) LAPSβ is optimal. The restrictions that the algorithm is graceful is defined later and is
believe to be minor.

1.2 Related Results

For the objective of total response time on a single processor, the competitive ratio of every de-
terministic nonclairvoyant algorithm is Ω(n1/3), and the competitive ratio of every randomized
nonclairvoyant algorithm against an oblivious adversary is Ω(ln n) [?]. There is a randomized algo-
rithm, Randomized Multi-Level Feedback Queues, that is O(ln n)-competitive against an oblivious
adversary [?, ?]. The online clairvoyant algorithm Shortest Remaining Processing time is optimal
for total response time. The competitive analysis of SETFs for single processor scheduling was
improved for cases when s ≫ 1 in [?].

Variations of Equipartition are built into many technologies. For example, the congestion control
protocol in the TCP Internet protocol essentially uses Equipartition to balance bandwidth to TCP
connections through a bottleneck router. Extensions of the analysis of Equi in [?] to analyzing
TCP can be found in [?, ?]. Other extensions to the analysis of Equi in [?] for related scheduling
problems can found in [?, ?, ?]. An application in another area is that [?, ?] reduces the model with
sequential jobs to the model in which a page can be simultaneously broadcast to many users.

Another area of increased interest is speed scaling. In this model, the scheduler gets to decide
how much extra resources it gets but must pay for the energy that it consumes. [?] shows that a
version of LAPSβ is Θ(α2)-competitive when there is only one processor and the objective is average
response time plus energy and the energy consumed is P (st) = (st)

α when the processor is at speed
st. [?] generalizes it to include sublinear nondecreasing speed-up curves on multiple processors. It is
Θ(α2)-competitive when the energy consumed is P (pt) = (pt)

α when the scheduler allocates pt unit
speed processors. It is Θ(log(p))-competitive when the energy consumed is P (~st) =

∑

i∈[p](s〈i,t〉)
α

when the ith of p processors is run at speed s〈i,t〉.
In addition to considering sublinear nondecreasing speedup curves, [?] also considers superlinear

and decreasing speedup curves. There are many other related scheduling problems with other
objectives, and/or other assumptions about the machine and job instance. Surveys can be found
in [?, ?].

3

2 Proof Sketch

Our goal is to prove that ∀Alg ∃ǫ F (Alg1(J))
F (Opt1/(1+ǫ)(J)) = ω(1). Believing that LAPSβ (or a triangle

version of it) is optimal, we will get all of our intuition from it and from the known lower bounds
for it. We know from [?] that LAPSβ is made noncompetitive by giving it extra speed ǫ = β

2 .
For every algorithm, we need to come up with a constant ǫ such that with this amount of extra

speed the competitive ratio R is unbounded. The first complication arises because there is a trade
off between these two. See Figure ??. We know that the competitive ratio R can be pushed up
to nΩ(1) but then there is the danger that ǫ will decrease with n. We could simply set ǫ to 10,
but then we know that the competitive ratio will be O(1). To achieve both simultaneously, we fix
the competitive ratio R to Θ(ln(n)), not more and not less, and then minimize the extra speed ǫ
needed to achieve this.

Given an arbitrary algorithm Alg, the next challenge is to measure what it does in some way to
choose the extra speed ǫ. For LAPSβ, ǫ is set to β

2 and β is a measure of how much the algorithm
concentrates its resources on the later jobs. We will do the same.

Let ρ〈i,t〉 denote the resources given at time t to the ith job alive, when the nt jobs currently
alive are sorted by their arrival time. Being speed one, we have that

∑

i∈[nt]
ρ〈i,t〉 = 1. Define

βt = 1
2 [1 − 1

nt

∑

i∈[nt]
iρ〈i,t〉]. (This is similar to the potential function used in proving the upper

bound for LAPSβ [?].) Define β = limt→∞ βt. (This measure is cooked so that LAPSβ has measure
β.)

The lower bound follows the two that are in the literature. The first will prove that the
competitive ratio is Ω(1

β) (and Ω(1
βǫ) if the algorithm favors later jobs) so that when this measure

β = limt→∞ βt is zero, the competitive ratio is unbounded. The second technique proves that if
β = limt→∞ βt is a constant, then the competitive ratio is unbounded when ǫ = 4

9β.
The first technique is referred to as steady state stream [?, ?]. We prove that if Alg concentrates

its resources on a few jobs as measured by βj , then there exists at least ℓ = O(1) j jobs that each
receive about ρ〈i,j〉 = 1

βjj fraction of the processors. The input is constructed so that unbeknownst

to the nonclairvoyant algorithm these ℓ jobs are sequential. These resources are effectively wasted
because the nature of sequential work is that it cant uses these processors. Because of this waste,
Alg falls behind on the parallelizable jobs and as such the number of them remaining alive increase.
However, to compensate for such mistakes, Alg, has been given ǫ extra resources. It reaches a
steady state when the wasted resources equals the extra resources. This occurs when ℓ

βjj = ǫ, or

j = ℓ
βjǫ . Opt, mean while is completing the parallelizable work as it arrives so only has these ℓ

sequential jobs alive. This gives a competitive ratio of Ω(1
ǫβj

).

The second technique defines a very carefully fine tuned instance MPT which was introduced
in [?, ?, ?,?] as a lower bound instance for Equi, Equi2+ǫ, and LAPSβ. As done in the steady
state stream, Alg initially falls behind on the stream of parallel jobs because it wastes resources on
sequential jobs. However, on this instance the number of alive jobs nt briefly peeks way above the
steady state number because none of the parallelizable jobs complete. This is possible even though
the total parallelizable work in the system is decreasing rapidly, because the work remaining per job
decreases even faster. This is achieved by having the next jobs to arrive have work approximately
equal to the work remaining in the previous jobs. If β = limt→∞ βt is a constant, then Alg cannot
concentrate too many resources on this new job and hence it falls behind too.

This lower bound also has the same basic circular argument that every lower bounds does. You
need to know what the input is before you can know what the algorithm does and you need to know
what the algorithm does before you can know on which input it performs poorly. The standard
way of breaking this cycle is proceed step by step revealing the minimum amount of information

4

about the input to fix what the algorithm does in the next step. In this paper, we break this
classic cycle instead by using Brouwer’s fixed point theorem. We tell the non-clairvoyant algorithm
the order J1, J2, . . . that the jobs will arrive and that none of these jobs complete. This serves
the dual purpose of keeping its flow time high and revealing to it most of the information that it
learns as it proceeds. The only things remaining that it learns are the gaps ti between the times
at which the jobs arrival. Being nonclairvoyant, it suffices to specify these ~t = 〈ti | i ∈ [1, n]〉, but
not the work in the jobs, to know what the algorithm does. What it does is fully specified by
~ρ =

〈

ρ〈i,j〉 | i ∈ [1, n], j ∈ [i, n]
〉

, where ρ〈i,j〉 is the amount of resources allocated by algorithm Alg
to job Ji when there are currently j parallel jobs alive. This information tells us the total amount
of work wi =

∑

j≥i ρ〈i,j〉tj completed on the job. To ensure that the job is not completed by Alg,
we need to set its work to this amount wi. However, the other concern is that we must keep the
the optimal algorithm Opt’s flow time down. We do this by assuring that it is able to complete
this stream of jobs as they arrive. This is at all possible even though it has speed 1

1+ǫ while Alg
has speed 1 because it does not waste any processing power on sequential jobs. Given this speed,
it takes Opt time (1 + ǫ)wi to complete job Ji. However, the only time it has to work on it is
the time between when Ji arrives and when Ji+1 arrives. Hence, we to set the length of this time
interval to be t′i = (1 + ǫ)wi. This completes the cycle, because we started this process by setting
the length of this time interval to being ti. Let A(~t) = ~t′ denote this mapping from these initially
stated times ~t to these desired times ~t′. What we need are times ~t for which A(~t) = ~t. This is where
we use Brouwer’s fixed point theorem. Of course to do this, we will have to make the assumption
that the algorithm Alg is such that the function A is continuous and we will have to prove that A
is bounded within a finite closed space.

Theorem ?? is restricted in that it requires the algorithm to be graceful and deterministic. We
will now formally define these restrictions and argue that they are minor.

1. The distribution
〈

ρ〈i,j〉 | i ∈ [n], j ≥ i
〉

must be a continuous function of the times 〈ti | i ∈ [n]〉.
This is true for all algorithms in the literature. Recall that the order that the jobs arrive is
fixed and that they have not completed. The only scheduler we can think of that depends
at all on the ti is Shortest Elapsed Time First (SETF) which gives priority to more recently
arriving jobs, until they have been processed as much as older jobs, at which point all jobs
are given equal priority. This relationship, however, is continuous.

2. |
δβ′

j

δj | ≤ β
10j .

It would be nice to let the algorithm have βj be an arbitrary function of j. However, this
causes some complications in the proof. See Figure ??. Hence, we insist that the βj cannot
change too quickly as a function of the number of jobs j currently alive. This is not an
unreasonable requirement, however. Every time the number of jobs j doubles, βj can change

by β
10 . Recall, however, that βj can never change all that much because it is limited between

zero and one. Also we see no real advantage for it changing at all. The algorithm LAPSβ,
for example, keeps it constant.

3. Given we define β = limt→∞ βt, one might thing that we need another constraint that this
limit exists. However, the truth, however, is that because of the previous constraint, this one
does not matter. Instead, one can simply choose some large n. Because βj does not change
much between j ∈ [12n, n] we can used β = βn as our approximation.

4. Being nondeterministic in this context only means that the algorithm knows the amount of
extra resources ǫ that it is given. We, on the other hand, need to hide this information.

5

We will now summarize the above intuition.
Defn Given a fixed past and j parallel jobs alive, let βj = 1

j
P

i≤j ρ2
〈i,j〉

.

βj measures how much Alg concentrates its resources on to individual jobs (likely the later ones).
This definition is designed so that LAPSβ has

∑

i∈[1,j−βj] 0
2 +

∑

i∈[j−βj+1,j](
1
βj)

2 = βj · (1
βj)

2 = 1
βj

and βj = β.

Theorem 2. If limt→∞ βt < β, then there exists an ǫ and a set of jobs on which Alg has a
competitive ratio of F (Alg1(J))

F (Opt1/(1+ǫ)(J)) > 1
βǫ .

Note that if β = limt→∞ βt = 0, then the competitive ratio is infinity.

Theorem 3. Consider any graceful deterministic non-clairvoyant algorithms Alg. Suppose β =
limt→∞ βt is a constant, then F (Alg1(J))

F (Opt1/(1+ǫ)(J)) = ω(1), when ǫ = 4
9β.

Theorem 4. We show that triangle LAPSβ is optimal. See Figure ??. Rectangle LAPSβ against
Opt1/(1+ǫ) needs β = 2ǫ and competitive ratio 1

ǫβ = 1
2ǫ2

, while triangle LAPSβ needs β = 9
4ǫ and

competitive ratio 1
ǫβ = 4

9ǫ2
, which is a factor of 8

9 better.

Outline: Section ?? describes the steady state instance needed for Theorem ?? giving that com-
petitive ratio is Ω(1

β) (and Ω(1
βǫ) if the algorithm favors later jobs). Section ?? describes the MPT

instance needed for Theorem ??, giving that speed 1 + ǫ. This instance is a special case of the
steady state instance. Section ?? proves that ǫ is minimized to 4

9β when the resource distribution
strategy fj(x) is graceful. Section ?? proves that the resource distribution strategy fj(x) is graceful
when βj changes gracefully. Section ?? uses the fixed point theorem to choose the values for ti.
Some of the proofs have been moved to Section ?? the appendix.

3 Whimsical LAPS

Edmonds and Pruhs [?] introduced a nonclairvoyant algorithm, which they call LAPSβ, and showed
that it is scalable for scheduling jobs with sublinear nondecreasing speedup curves with the objective
of total response time. In this section, we stretch their proof to apply for the slightly wider class
of algorithms.

LAPSβ(Latest Arrival Processor Sharing) Definition: The processors are equally partitioned
among the ⌈βnt⌉ jobs with the latest arrival times, where nt is the number of jobs alive at time t
and β ∈ (0, 1] is a parameter of the algorithm.

The parameter β gives a tradeoff. As β decreases towards zero, LAPS favors more recently released
jobs in a manner reminiscent of SETF. As such it does not perform well when there are sequential
jobs. Equi, which is identical to LAPS with β = 1, spreads the resources two thinly and as such
needs 1 + β + ǫ extra speed to be competitive. Within these restrictions, we relax the definition of
LAPSβ as follows.

WLAPS〈α,β〉(Whimsical LAPS) Definition: Let ρ〈i,t〉 denote the resources given at time t to

the ith job alive, when the nt jobs currently alive are sorted by their arrival time. The algorithm
can allocate its resources at each point in time however it likes under the following three conditions.

1. Speed one:
∑

i∈[nt]
ρ〈i,t〉 = 1.

6

2. Do not focus too much: ∀i ∈ [nt], ρ〈i,t〉 ≤
1
αi .

A efficient nonclairvoyant algorithm should not give too many resources to any single job
because it may be sequential. (At least for the analysis, it is also problematic if the algorithm
gets too far ahead of the optimal algorithm on any individual job.)

3. Do not focus too little:
∑

i∈[nt]
iρ〈i,t〉 ≥ (1 − β

2)nt (or βt
def
= 2[1 − 1

nt

∑

i∈[nt]
iρ〈i,t〉] ≤ β).

The algorithm should not spread its resources too thinly or else the more recently arriving
jobs do not get enough. If a newly arrived job has a small amount of work, then it needs to
be completed relatively quickly.

LAPSβ has parameters α = β and β. The first because ρ〈i,t〉 is either zero or 1
βnt

≤ 1
αi . The

second because
∑

i∈[nt]
iρ〈i,t〉 =

∑

i∈[(1−β)nt,nt]
i 1
βnt

= 1
βnt

[i
2

2]nt

i=(1−β)nt
= 1

2βnt
[(nt)

2− ((1−β)nt)
2] =

nt
2β [1 − [1 − 2β + β2]] = nt

2β [2β − β2] = nt[1 − β
2]. A quick modification of result in [?] gives the

following.

Theorem 5. Whimsical LAPS with parameters α and β and s = (1+β+ǫ) times as many processors
as the optimal is a

(

4s
αǫ

)

-competitive algorithm for scheduling processes with sublinear nondecreasing
speedup curves for the objective of average response time.

Proof. Their proof uses an amortized local competitiveness argument with a simple potential
function, Φt. The decrease in Φt due to WLAPS〈α,β〉’s processing is defined to be −dΦt

dt =
∑

i=[1,nt]−Lt
iρ〈i,t〉 where Lt denotes the set of jobs on which WLAPS〈α,β〉 is executing a sequential

phase at this time or WLAPS〈α,β〉 is ahead of Opt on this job at this time. By the parameters of

the algorithm this decrease is at least
∑

i iρ〈i,t〉 − |Lt| ·maxi iρ〈i,t〉 ≥ (1 − β
2)nt −

|Lt|
α . The rest of

the proof follows the same.

4 The Steady State Technique

Theorem ??: If limt→∞ βt ≤ β, then even if Alg is given s times as much resources for some
large s, there still exists a set of jobs on which Alg has a competitive ratio of F (Alg1(J))

F (Opt1/s(J)) ≥ Ω(1
β).

If the algorithm favors the most recently arriving jobs, then this lower bound can be improved to
F (Alg1(J))

F (Opt1/(1+ǫ)(J)) ≥ Ω(1
ǫβ).

This result is tight with the for large s, but not for s ≈ 1 + 2β.
** When s = γ + 1, then all jobs get complete in place and competitive ratio is 1. β is

2(1 − 1
s) ≈ 2. Hence the statement is not false, but not meaningful. What if we had Q copies of

this same job set so that β has more meaning. Actually, if alg had small β then it would give all
resources to most recent sequential job and get nowhere.

If the algorithm favors the most recently arriving jobs, which is the case for every algorithm
considered in the literature.

Proof. The concept of a steady state stream was introduced in [?]. Not only does it provide a lower
bound, it also provides intuition as to why LAPSβ manages to work at all. It is perhaps hard to
believe that a nonclairvoyant scheduler, even with more processors, can perform well here. The
scheduler does not know which of the jobs is parallelizable. Hence it wastes most of the processors
on the sequential jobs, and falls further and further behind on the parallelizable jobs. Alg, however,
is able to automatically “self adjust” the number of processors wasted on the sequential jobs so
that it eventually reaches a steady state. The definition of steady state is that Alg is completing

7

parallelizable work at the rate that it arrives, where the rate that it arrives is 1
1+ǫ , because this is

the rate at which Opt is able to complete it as it arrives. Let wastet denote the total resources
wasted on sequential jobs at time t. The Alg has ǫ′ = 1− 1

1+ǫ = 1 − 1
s extra resources. Hence, Alg

reaches a steady state when wastet = ǫ′.
For this lower bound, it is sufficient to observe that if Alg is not in such a steady state, then

the amount parallelizable work that has arrived and not completed continues to increase. Because
the initial work wi in each parallelizable job does not increase with their arrival time, the number
nt of uncompleted jobs continues to increase. Once in the steady state, it can stay there for a long
enough time so that these costs dominate the cost of reaching the steady state.

The input is defined by the parameters ~t ∈ Rn, ǫ > 0, γ : Z → Z, and ℓ ∈ O(1). It contains
a stream of n parallelizable jobs. For each i ∈ [n], job Ji is released at time ri =

∑i−1
j=1 tj with

parallelizable work 1
1+ǫ ti. For each i ∈ [n], ℓ sequential jobs are released at the same time ri that

the parallelizable job Ji is released. The amount of work in each of these is designed to be such
that when there are nt parallelizable jobs alive, ℓγ(nt) sequential jobs are still alive. If, for example,
none of the parallelizable jobs have completed, then there j parallelizable jobs still alive during the
period [rj , rj+1] of length tj and hence for all i ∈ [j − γ(j), j], the ℓ sequential jobs that arrived at
the same time as Ji are still alive. We assume that γ(j) << j and hence, the inverse of i = j−γ(j)
is approximately j = i + γ(i) and the sequential jobs released at time ri will have work

∑

i′∈[i,j] ti′

so that they complete at time rj+1. Suppose, on the other hand, that some of the parallelizable
jobs complete to the point that there are only nt of them remaining at time t. Let Pt be the set
containing the nt indexes of these jobs. Let St ⊆ Pt be the γ(nt) of these that arriving the most
recently. For each i ∈ St, the ℓ sequential jobs that arrived at the same time as Ji are still alive.
Being nonclairvoyant, the algorithm knows nothing about the work in a job until the moment it
completes. Hence, the adversary can easily dynamically adjust work in the sequential jobs so that
this is the case.

For each time t and each i ∈ [nt], let ρ〈i,t〉 denote the resources allocated to the ith parallelizable
job that is alive at time t, where there jobs are sorted by arrival time. We now want to prove that
Alg in the worst case allocates this same amount ρ〈i,t〉 to each of the ℓ sequential jobs with the same
release time assuming that they are still alive. Being nonclairvoyant, Alg is unable to distinguish
between these 1 + ℓ jobs. Hence, the adversary can switch the one receiving the least during the
time that the sequential jobs are alive to be the parallel one. It follows that the total resources
wasted on sequential jobs is at least wastet =

∑

i∈[nt−γ(nt),nt]
ℓρ〈i,t〉.

The algorithm worth noting we call the delay algorithm. It achieves competitive ratio Ω(1
β)

on this set of jobs. It notes that if no processors are given to the jobs than the sequential jobs
will complete on their own. Once they are done, the algorithm knows that the remaining jobs are
parallelizable. In this way it wastes no resources on the sequential jobs and as such is immediately
in a steady state.

At steady state, this waste is equal to the amount of extra resources ǫ′. This gives that
∑

i∈[nt−γ(nt),nt]
ρ〈i,t〉 ≤ ǫ′

ℓ . From this we get that
∑

i≤[nt]
i · ρ〈i,t〉 ≤

∑

i∈[1,nt−γ(nt)−1][nt − γ(nt)] ·

ρ〈i,t〉 +
∑

i∈[nt−γ(nt),nt]
[nt] · ρ〈i,t〉 = [nt − γ(nt)] · [1 − ǫ′

ℓ] + [nt] · [ǫ
′

ℓ] = nt − γ(nt) · [1 − ǫ′

ℓ]. This

is more or less tight for the delay algorithm. Recall that 2βt = 1 − 1
nt

∑

i≤[nt]
iρ〈i,t〉. This gives

2βt ≥ 1 − 1
nt

[

nt − γ(nt) · [1 − ǫ′

ℓ]
]

= γ(nt)
nt

· [1 − ǫ′

ℓ] ≥ γ(nt)
2nt

.

We now bound the competitive ratio. At time t, there are nt parallelizable jobs ℓγ(nt) and
sequential jobs alive under Alg. Under Opt, there are the same ℓγ(nt) sequential jobs alive but
only one parallelizable job. If we continue being in this steady state for a long time then these
costs dominate. This gives that the competitive ratio is F (Alg1(J))

F (Opt1/s(J)) = nt+ℓγ(nt)
1+ℓγ(nt)

≥ nt
ℓγ(nt)

≥ Ω(1
β) as

8

required for the first result.
Now suppose that the algorithm favors the most recently arriving jobs, i.e. for all i and t,

ρ〈i,t〉 ≤ ρ〈i+1,t〉. The delay algorithm, for example, is not allowed. As we did above, let us maximize
∑

i≤[nt]
i · ρ〈i,t〉 subject to

∑

i∈[nt−γ(nt),nt]
ρ〈i,t〉 ≤

ǫ′

ℓ .
We maximize

∑

i≤[nt]
i · ρ〈i,t〉 by moving as must resources as possible forward to jobs with the

largest coefficients, i.e. to more recently arriving jobs. The constraint
∑

i∈[nt−γ(nt),nt]
ρ〈i,t〉 ≤ ǫ′

ℓ ,
however, imposes a barrier at the job index i = nt − γ(nt) − 1 past which resources can’t be
moved. Hence, let ρ′ denote this optimal allocation ρ〈nt−γ(nt)−1,t〉 to this job, i.e. to the first
parallelizable jobs whose corresponding sequential jobs have completed. Because the algorithm
favors the most recently arriving jobs, we know that ρ〈i,t〉 ≤ ρ′ for all i ∈ [1, nt − γ(nt) − 1]. The
resources to these jobs will be moved forward so that for all i ∈ [1, imin − 1] ρ〈i,t〉 = 0 and for all
i ∈ [imin, nt − γ(nt) − 1] ρ〈i,t〉 = ρ′. Similarly, ρ〈i,t〉 ≥ ρ′ for all i ∈ [nt − γ(nt), nt]. The resources
to these jobs will be moved forward so that for all i ∈ [nt − γ(nt), nt − 1] ρ〈i,t〉 = ρ′ increasing the
most recent job’s allocation to ρ〈nt,t〉 ≥ ρ′. It takes a bit more calculus, but in fact

∑

i≤[nt]
i · ρ〈i,t〉

by setting ρ〈nt,t〉 = ρ′ as well. This gives that the optimal algorithm is LAPS. More over, the

statement of the theorem defines βt for this algorithm, giving ρ〈i,t〉 ≤
1

βtnt
for all i ∈ [(1−βt)nt, nt].

The constraint ǫ′

ℓ ≥
∑

i∈[nt−γ(nt),nt]
ρ〈i,t〉 = γ(nt)

1
βtnt

can be used to bound the competitive ratio
F (Alg1(J))

F (Opt1/s(J)) ≥ nt
ℓγ(nt)

≥ Ω(1
ǫ′β) as required for the second result.

5 Stuff

Intuition: As explained in the introduction, we modify the MPT instance [?, ?, ?,?] to lower
bound the performance of any β-algorithm Alg. As with Theorem ??, it contains a stream of n− ℓ
parallelizable jobs. For each i ∈ [ℓ+1, n], job Ji is released at time ri =

∑i−1
j=ℓ+1 tj with parallelizable

work 1
1+ǫ ti, where the values ti are carefully defined later. As before, it could have some sequential

jobs in order to distract Alg away from the stream parallelizable work. In Theorem ??, the algorithm
set β small, meaning that it was focusing on the newly arriving jobs. This is why the proof of this
theorem had the sequential jobs be the most recently arrived jobs. Now, however, the algorithm
set β large, meaning that it is giving some (though likely a small amount) of its resources to the
old job. This is why this proof can have the sequential jobs be the oldest jobs. Unlike the question
which jobs are newest jobs, which are the oldest does not change as more jobs arrive. Hence, we
can have these sequential jobs be the first ℓ to arrive. Because there are only ℓ of them for some
small constant ℓ, it wont hurt the adversary by more than a factor of ℓ to make these constant.

6 The MPT Instance

Theorem ??. Consider any graceful deterministic non-clairvoyant algorithms Alg. Suppose β =
limt→∞ βt is a constant, then F (Alg1(J))

F (Opt1/(1+ǫ)(J)) = ω(1), when ǫ = 4
9β. This is true even if all the jobs

are parallelizable.

Proof. As explained in the introduction, we modify the MPT instance [?, ?, ?, ?] to lower bound the
performance of any β-algorithm Alg. As with Theorem ??, it contains a stream of n−ℓ parallelizable
jobs. For each i ∈ [ℓ+1, n], job Ji is released at time ri =

∑i−1
j=ℓ+1 tj with parallelizable work 1

1+ǫ ti,
where the values ti are carefully defined later. The input also has ℓ extra jobs identical to the first
stream job Jℓ+1, i.e. arrives at time zero with 1

1+ǫtℓ+1 parallelizable work.

9

Opt1/(1+ǫ) ignores the extra ℓ jobs until the end. Using all of its 1/(1 + ǫ) processors, it can
complete the parallelizable stream in place. Opt flow time during the stream is

∑n
i=1(ℓ + 1)ti,

because it always has only ℓ + 1 jobs alive. In the end, it must complete the ℓ extra jobs. It can
complete each of these in t1 time for an additional flow of ℓ2

2 t1. Hence the total is at most ℓ2
∑n

i=1 ti.
In contrast, Alg does not do as well. By the statement of the theorem, it sets its parameter

β large, meaning that it gives some (though likely a small amount) of its resources to older jobs.
When the number of jobs alive is small relative to ℓ, the algorithm must be giving some of its
resources to the ℓ extra jobs. We consider this to be a waste because it has no hope of completing
these jobs before the stream is over. Because of this waste, the algorithm falls so hopelessly behind
on the earliest arriving stream jobs that it can never complete these either. This problem snow
balls. As more and more stream jobs arrive, the large β means that the algorithm allocates some
of its resources to the older already hopeless stream jobs. Hence, it falls hopelessly behind on these
newly arrived stream jobs as well. This snowballing is all extremely finely orchestrated so that Alg
manages to complete none of the jobs during the stream. This results in a flow time of at least
[
∑n

i=1 iti].
Lemma ?? then carefully constructs the values ti with the following conditions.

0. Distribution of Resources: When the jobs arrive according to 〈ti | i ∈ [ℓ + 1, n]〉, Alg dis-
tributes its resources according to

〈

ρ〈i,j〉 ≥ 0 | j ∈ [ℓ + 1, n], i ∈ [1, j]
〉

. Here ρ〈i,j〉 denotes the
average number of processors allocated to job Ji during the time period [rj , rj + tj].

1. Don’t Complete: ∀i ∈ [ℓ + 1, n], wi
def
=

∑

j≥i ρ〈i,j〉tj ≤
1

1+ǫti.
All of these inequality will be tight except for i = n.
Here wi is the amount of work that Alg has done on job Ji by time rn+1 and 1

1+ǫti is the
amount of work in the job. This ensures that as promised, the job does not complete under
Alg during the stream. This is proved in Lemma ??.

The first ℓ + 1 jobs are identical. The adversary let Jℓ+1 denote the one that is allocated the
most resources by Alg. Given Jℓ+1 does not complete, neither do the ℓ jobs.

2. Speed one: ∀j,
∑

i∈[j] ρ〈i,j〉 = 1.

3. Defn of β: ∀j,
∑

i∈[j] iρ〈i,j〉 = (1 −
βj

2)j.
This is by definition of βj .

4. Total Time:
∑

i ti = 1
There is no harm is scaling the jobs so that this is true.

5. F (~t)
def
==

∑

i iti = ln(n)

This assures that the competitive ratio is F (Alg1(J))
F (Opt1/(1+ǫ)(J)) ≥

P

i iti
ℓ2

P

i ti
= Ω(ln n).

6. Loss(~t)
def
=

∑

i∈[1,ℓ]

∑

j∈[ℓ+1,n].

Lemma 6. Conditions[1&5] requires that ǫ ≤ β
2

Lets set ǫ = β
4 in order to give us some slack.

10

Proof. Multiplying condition[1] by i and summing gives that
∑

i iwi =
∑

i i
∑

j≥i ρ〈i,j〉tj ≤
∑

i i
1

1+ǫ ti
∑

j

[

∑

i≤j iρ〈i,j〉

]

tj ≤
∑

i i
1

1+ǫ ti

Condition[5] then gives
∑

j

[

j[1 − β
2

]

tj ≤ (1 − ǫ)
∑

i iti

1 − β
2 ≤ 1 − ǫ

ǫ ≤ β
2 .

7 The Resource Distribution Strategy fj(x)

Lemma 7. Suppose that |
δβ′

j

δj | ≤ β
10j and that β = limn→∞ βj is a constant. Subject to the con-

straints[1,6] stated in the proof of Theorem ??, ǫ is minimized to 4
9β. In fact, (triangle) LAPSβj

is
optimal.

Defn The resource distribution strategy fj: For each j and x ∈ [0, 1], let fj(x) = jρ〈xj,j〉. For

example, LAPSβ has f(x) = 0 for x ∈ [0, 1 − β] and f(x) = 1
β for x ∈ [1 − β, 1].

The change of variables with i = xj and δi = jδx gives the following conversions.

Lemma 8.

1.
∫

x∈[0,1] fj(x)δx =
∫

i∈[0,j]

[

jρ〈xj,j〉

]

[

δi
j

]

=
∫

i∈[0,j] ρ〈xj,j〉δi = 1. This uses constraint[2].

2.
∫

x∈[0,1] xfj(x)δx =
∫

i∈[0,j]

[

i
j

]

[

jρ〈xj,j〉

]

[

δi
j

]

= 1
j

[

∫

i∈[0,j] iρ〈xj,j〉δi
]

= 1
j

[

j(1 −
βj

2)
]

= (1 −
βj

2)

This uses constraint[2].

We can now prove Lemma ??.

Proof. An initial concern is that because the fixed point theorem gives us the ti, we don’t know
what they are. However, after getting the ρ〈i,j〉 and ǫ, the ti can be uniquely determined using

back substitution into the equations wi =
∑

j≥i ρ〈i,j〉tj = 1
1+ǫ ti. Computing these ti would be hard.

However, it is sufficient to guess the ti and check that the required equations hold. Set ti = c
iqi ,

where qi = 1 + β
βi

. Note that limn→∞ qj = 2.

We first check that
P

i iti
P

i ti
≥ ln n holds. Note that if βi was equal to the constant β, then

effectively qi = 2. This then gives
∑

i ti = 1 +
∑

i
1
i2

= Θ(1) and
∑

i iti = 1 · 1 +
∑

i i
1
i2

= Θ(ln n).

Hence, as needed
P

i iti
P

i ti
= Θ(ln n). Now more generally suppose limi→n βi = β. Then there is some

i′ after which βi is effectively β. Hence as before,
∑

i≤i′ ti = Θ(1),
∑

i>i′ ti =
∑

i>i′
1
i2

= Θ(1),
∑

i≤i′ iti = Θ(1), and
∑

i>i′ iti =
∑

i>i′ i
1
i2

= Θ(ln n).

Let us now check wi =
∑

j≥i ρ〈i,j〉tj ≤ 1
1+ǫ ti. This requires a change of variables with j = i

x

and δj = − i
x2 δx. Lemma ?? proves that that the algorithm’s resource distribution strategy fj is

either independent of j or changes slowly enough that fj can be approximated by fi. Lemma ??

(in the appendix) bounds
∫ 1
x=0 xq−1f(x)δx.

wi =
∑

j≥i

ρ〈i,j〉tj =

∫ ∞

j=i

fj(
i
j)

j
·
(

1
j

)qi

δj =

∫ ∞

j=i
fj

(

i
j

)

·
(

1
j

)qi+1
δj =

∫ 0

x=1
fi(x) ·

(x

i

)qi+1
[

−
i

x2
δx

]

=

[∫ 1

x=0
xqi−1fi(x)δx

]

ti ≤

[

1 −
4

9
(qi − 1)βi

]

ti =

[

1 −
4

9
β

]

ti ≈
1

1 + ǫ
ti

11

8 Lagrange Multipliers

The lower bounds apply as long as ǫ ≈ 1 − 1
1+ǫ < β

2 . We express one over the gap between these

amounts with a = 1/(1
1+ǫ − (1 − β

2)).

Lemma 9. Suppose βj = β is a constant independent of j and constraint[1] is tight, i.e. each job
just finishes at time rn +1. Subject to the constraints[1,4], the amount F (~t)+aLoss surprisingly is
a constant independent of how the adversary sets the ~t algorithm sets the ~t. Specifically, its value
agrees with that in given in Lemma ??. More over, this amount increases when a constraint C1j

is not tight and decreases when a parameter βj increase.

Recall that F (~t) = ω(1), Loss ∈ [0, 1], and a is a constant. Hence, F (~t) + aLoss ≈ F (~t).
BUG!!! If you give these equations to Maple, they say that F (~t) + aLoss = 0. Looking

at EQUI, we see C3 should actually have (j + 1)(1 − β
2). This improves things slightly. giving

F (~t) + aLoss = 1−β
a = 1−β

β
2
−ǫ

. But how can this be the value for every setting of ~t and ~ρ when we

have setting which give F (~t) = ln(n). Plugging in EQUI with ρ〈i,j〉 = 1
j , maple says there are no

values of ~t satisfying the equations. I guess
∑

j∈[i,n] ρ〈i,j〉tj = ti
1+ǫ does not hold exactly.

Proof. The Lagrange multipliers method says to take as follows a linear combination of the goal
and each of the constraints.

The Kuhn-Tucker Conditions state (http://www.economics.utoronto??)
Max f(x) subject to gj(x) ≤ cj for j = 1, . . . ,m
are L′

i(n) = 0 for i = 1, . . . , n
λj ≥ 0, gj(x) ≤ cj , and λj(gj(x) − cj) = 0, for j = 1, . . . ,m
where L(x) = f(x) +

∑m
j=1 λj(gj(x) − cj).

The key is that constraint gj can be relaxed if λj ≥ 0.

G =
[

F (~t) + aLoss
]

+
∑

i∈[ℓ+1,n]

γi
(C1i)
1+ǫ +

∑

j∈[ℓ+1,n]

λj(C2j) −
∑

j∈[ℓ+1,n]

αj(C3j) + W (C4)

=
∑

j∈[ℓ+1,n]

jtj + a
∑

i∈[1,ℓ]

∑

j∈[ℓ+1,n]

iρ〈i,j〉tj

+
∑

i∈[ℓ+1,n]

γi





∑

j∈[i,n]

ρ〈i,j〉tj −
ti

1+ǫ



 +
∑

j∈[ℓ+1,n]

λj





∑

i∈[1,j]

ρ〈i,j〉 − 1





−
∑

j∈[ℓ+1,n]

αj





∑

i∈[1,j]

iρ〈i,j〉 − j
(

1 − β
2

)



 + W





∑

j∈[ℓ+1,n]

tj − 1





The Lagrange multipliers method goes on to say that the optimal occurs when the derivative of G
with respect to each variable is zero. This gives two new sets of conditions on the optimal values.

6. ∀i ∈ [1, ℓ], j ∈ [ℓ + 1, n] and 〈i, j〉 = 〈n, n〉,

δG

δρ〈i,j〉
= aitj + λj − αji = 0 or iαj = aitj + λj

12

Using this expression, we can fix many of our parameters. This equation with i = 2 minus
that with i = 1 gives (2− 1)αj = a(2− 1)tj , which gives for j ∈ [ℓ + 1, n], αj = atj. Plugging
this back in gives λj = 0.

6’. ∀i ∈ [ℓ + 1, n], j ∈ [i, n],

δG

δρ〈i,j〉
= γitj + λj − αji = γitj + (0) − (atj)i = 0 or γi = ai

7 ∀j ∈ [ℓ + 1, n],

δG

δtj
= j +

∑

i∈[1,ℓ]

aiρ〈i,j〉 +
∑

i∈[ℓ+1,j]

γiρ〈i,j〉 − γj
1

1+ǫ + W

= j +
∑

i∈[1,j]

aiρ〈i,j〉 − aj 1
1+ǫ + W

= j + (aj(1 − β
2)) − aj 1

1+ǫ + W = 0 + W = 0

The surprising thing is that we were able to show that this is a minimum independent of how the
algorithm sets the ρ〈i,j〉.

9 Original Lagrange Multipliers

This was the original version when the measure was
∑

i∈Z|j
ρ2
〈i,j〉 = 1

β . It manages to tell you what

~ρ is supposed to be.

Lemma 10. Suppose |
δβ′

j

δj | ≤ β
10j . Subject to the constraints[1,6], the algorithm’s resource distribu-

tion strategy fj changes slowly enough that fj can be approximated by fi.

Proof. Let us again minimize ǫ subject to the constraints[1,6]. Let us begin by using constraint[6]
that ρ〈i,j〉 ≥ 0 to define the set Z =

{

〈i, j〉 | ρ〈i,j〉 > 0
}

. (If Alg is (triangle) LAPSβ as we claim,
then Z will consist of i ∈ [(1 − β)j, j].) See Figure ?? (in the appendix).

The Lagrange multipliers method says to take as follows a linear combination of the goal and
each of the constraints.
G = ǫ +

∑

i γi

[

∑

j∈Z|i
ρ〈i,j〉tj − (1 − ǫ)ti

]

−
∑

j λj

[

∑

i∈Z|j
ρ〈i,j〉] + [maxi ρ〈i,j〉]ℓ − 1

]

−
∑

j
1
2αj

[

∑

i∈Z|j
ρ2
〈i,j〉 −

1
β

]

− W [
∑

i iti − ln(n)] − W ′ [
∑

i ti − 1].

The Lagrange multipliers method goes on to say that the optimal occurs when the derivative of G
with respect to each variable is zero. This gives two new conditions on the optimal values.

7. ∀ 〈i, j〉 ∈ Z, δG
δρ〈i,j〉

= tjγi − λj − ρ〈i,j〉αj = 0, or ρ〈i,j〉 = max
(

tjγi−λj

αj
, 0

)

.

8. ∀j, δG
δtj

=
∑

i≤j ρ〈i,j〉γi − jW − W ′ = 0, or
∑

i≤j ρ〈i,j〉γi = jW + W ′.

Lemma ?? (in the appendix) proves that these new constraints[7,8] are satisfied by the same
triangle LAPSβ algorithm shown in Lemma ?? to satisfy constraints[1,6]. We, however, are more
concerned with showing that fj changes slowly enough that fj can be approximated by fi. Suppose
the parameters 〈γi | i ∈ [n]〉 were determined. The key thing about these values γi is that they do
not depend on j. Hence, constraint[7] states that the distribution ρ〈1,j〉, . . . , ρ〈j,j〉 and hence fj(x)

13

depend on j via only two parameters
tj
αj

and
λj

αj
. Condition[2], stating that

∑

i ρ〈i,j〉 = 1, can be

used to determine the first of these parameters (as a function of the second) and Condition[3],
stating that

∑

i≤j ρ2
〈i,j〉 = 1

jβj
, can be used to completely determine fj(x) as a function βj (and the

parameters 〈γi | i ∈ [n]〉). By the condition of the lemma, |
δβ′

j

δj | ≤ β
10j . Hence, as a function of j,

fj(x) cannot change quickly. When the algorithm is triangle LAPSβj
, Lemma ?? (in the appendix)

proves that this suffices to show that fj(x) changes sufficiently slowly to be approximated by
fi(x).

10 Zeros of Lagrange Multipliers

Defn A Manhattan path of non-zero ρ〈i,j〉 consists of a path of tuples 〈ik, jk〉 such that

1. 〈i1, j1〉 = 〈1, ℓ + 1〉 and 〈i2n−l, j2n−l〉 = 〈n − 1, n〉,

2. ∀k ∈ [1, 2n− ℓ− 1], either (ik+1 = ik and jk+1 = jk + 1) or (ik+1 = ik + 1 and jk+1 = jk), and

3. ∀k ∈ [1, 2n − ℓ], ρ〈ik ,jk〉 6= 0 and ρ〈ik+1,jk〉 6= 0.

Lemma 11. Suppose:

1. There is a Manhattan path of non-zero ρ〈i,j〉.

2. ∀i ∈ [1, ℓ], j ∈ [ℓ + 1, n] and 〈i, j〉 = 〈n, n〉, if ρ〈i,j〉 6= 0, then i
tj
a = iαj + λj .

3. ∀i ∈ [ℓ + 1, n − 1], j ∈ [i, n], if ρ〈i,j〉 6= 0, then γitj = iαj + λj

then

1. ∀i ∈ [1, n], γi = i
a′ + b.

2. j ∈ [ℓ + 1, n], αj =
tj
a and λj = 0.

Proof. The proof is by induction on k that the statement is true for i ∈ [1, ik] and j ∈ [ℓ+1, jk]. The
base case is k = 1 and 〈i1, j1〉 = 〈1, ℓ + 1〉. We have ρ〈1,ℓ+1〉 6= 0 and ρ〈2,ℓ+1〉 6= 0, and hence that

1
tℓ+1

a = 1αℓ+1 + λℓ+1 and 2
tℓ+1

a = 2αℓ+1 + λℓ+1. subtracting and plugging back in give αℓ+1 =
tℓ+1

a
and λℓ+1 = 0.

Using this expression, we can fix many of our parameters. This equation with i = 2 minus that
with i = 1 gives (2− 1)

tj
a = (2− 1)αj , which gives for j ∈ [ℓ + 1, n], αj =

tj
a . Plugging this back in

gives λj = 0.
Using this expression, we can fix many of our parameters. This equation with i = 2 minus that

with i = 1 gives (2− 1)
tj
a = (2− 1)αj , which gives for j ∈ [ℓ + 1, n], αj =

tj
a . Plugging this back in

gives λj = 0.
Using this expression, we can fix many of our parameters. This equation with i = ℓ + 2 minus

that with i = ℓ + 1 gives (γℓ+2 − (γℓ+1)tj = αj . This gives that for j ∈ [ℓ + 2, n], αj = a′tj for some
constant a′. This equation with i and j = n minus that with i = ℓ + 1 gives (γi − (γℓ+1)tn = αn.
This gives that for i ∈ [ℓ + 1, n], γi = i

a′ + b for some constant b. Plugging these in for i = ℓ + 1
gives (i

a′ + b)(a′αj) = iαj + λj. This gives that for j ∈ [ℓ + 2, n], λj = a′bαj = btj. For j ∈ ℓ + 1,
we do not have αj = a′tj.

14

11 The Fixed Point Theorem

Lemma 12. For every nonclairvoyant algorithm Alg such that the total work wi done on the ith job
is a continuous function of the times 〈ti | i ∈ [n]〉, there are values ti that satisfy constraints[0,6].

Proof. Fix parameters n and ℓ = ω(1).
Defn: Let B = {~t ∈ Rn−ℓ |

∑

i∈[ℓ+1,n] ti = 1 and each ti ≥ 0} to be our 1-norm unit ball.
OR

Defn: Let B = {~t ∈ Rn |
∑

i ti = 1, L(~t)
def
=

∑

i
1
i ti ≥ L = 1 − 1

2ℓ , and each ti ≥ 0} to be our
1-norm unit ball.

OR tℓ+1 ≥ .5.
Note that B is a closed, bounded, connected, and without holes, and hence Brouwer’s fixed

point theorem works for mappings within this space.
In order to use the fixed point theorem, our goal is to define a mapping A : B ⇒ B. Fix a

vector ~t ∈ B. Knowing ~t, let ρ〈i,j〉 be the allocations specified by Alg. Let wi =
∑

j≥i ρ〈i,j〉tj be the
work completed on Ji by time

∑

i∈[ℓ+1,n] ti = 1.

In an attempt to satisfy condition[1], consider changing the ti to t′i = (1 + ǫ)wi. Note that
this does not actually satisfy condition[1] because changing the ti directly changes the wi, but even
more seriously it also may cause the algorithm to change the ρ〈i,j〉 which again changes the wi.

Define E
def
= 1 −

∑

i∈[ℓ+1,n] t
′
i to be the extra amount that needs to be added to the t′. Split

this some how (????) into E = Eℓ+1 + En. Defining the mapping A to be A(~t)ℓ+1 = t′ℓ+1 + Eℓ+1,

A(~t)i = t′i for i ∈ [ℓ+2, n − 1], and A(~t)n = t′n + En. The ball B is closed under the mapping A,
i.e. that A(~t) ∈ B (????). By construction,

∑

i∈[ℓ+1,n] A(~t)i = 1. A(~t)i ≥ 0, because ρ〈i,j〉 ≥ 0 and
(???) proves that E ≥ 0.

Because B is a closed, bounded, connected, and without holes, and because the mapping A :
B ⇒ B is closed and continuous, Brouwer’s fixed point theorem gives us that there exists a fixed
point ~t such that A(~t) = ~t. A quick check will show ~t satisfies constraints[0,6]. For example,
constraint[1] is satisfied because for each i, wi = 1

1+ǫ t
′
i ≤ 1

1+ǫA(~t)i = 1
1+ǫ ti. In fact, all of these

inequality will be tight except for i = n.

12 Loss

Lemma 13. E = (1 + ǫ)Loss − ǫ ≥ 0.

Proof. Alg has speed
∑

i≥j ρ〈i,j〉 = 1 and hence its total amount of work done during the first
∑

i∈[ℓ+1,n] ti = 1 time units is 1×1 = 1. We already defined, wi
def
=

∑

j≥i ρ〈i,j〉tj is the amount of this

work done on job Ji. Similarly, define Loss
def
=

∑

j∈[ℓ+1,n]

∑

i∈[1,ℓ] ρ〈i,j〉tj to be the amount of these
resources that the algorithm “wastes” on the first ℓ jobs. It follows that

∑

j∈[ℓ+1,n] wi = 1 − Loss,

that
∑

i∈[ℓ+1,n] t
′
i =

∑

i∈[ℓ+1,n](1 + ǫ)wi = (1 + ǫ) [1 − Loss], and that E
def
= 1 −

∑

i∈[ℓ+1,n] t
′
i =

1 − (1 + ǫ) [1 − Loss] = (1 + ǫ)Loss − ǫ.

Lemma 14. Lossj ≥ 1 − (1 − β
2) j

ℓ : assume all at zero or all at ℓ + 1

Lossj ≥ 2[1 − (1 − β
2) j

ℓ]: assume flat within ℓ or all at ℓ + 1

Lossj ≥
ℓ
j − (1 − β): assume flat within ℓ and flat within (j − ℓ)

Becomes zero when ℓ = (1 − β
2)j or ℓ = (1 − β)j. When ℓ = (1 − β

4)j, Lossj ≥
β
4 or β

2 or 3β
4 .

15

13 Ultimate Problems

The details change but the core problem is the same. We need Loss ≥ ǫ, (1) it is why Alg does
poorly, (2) We need E = (1 + ǫ)Loss − ǫ ≥ 0 to keep the tn positive.

Whether the loss is to old jobs or new jobs the key period is t1. (In fact old=new for t1.) The
loss rate is the highest there, at a staggering ℓ

ℓ+1 . Hence, the way to increase Loss is to increase
t1. This is done in two ways: (1) Show the alg is working on J1 because t′1 =

∑

j ρ〈1,j〉tj. A key
problem where is that ρ〈1,j〉tj for j 6= ℓ + 1 may be zero, at first because tj may (but shouldn’t) be
zero and later because ρ〈1,j〉 may (likely will) be zero. (2) Give it more of the E to E1. To keep
t1 from shrinking (without the help of t2), it needs E1 = (1 − δ)Loss for δ = ǫ

ℓ . This leaves only
E2 = (ǫ−δ)Loss− ǫ, which seems to be zero or negative. In Section ??, t1 was encouraged to grow.
The danger is it becoming one, making all other tj = 0. This is a fine fixed point where everything
is balanced. This is one reason things are close but not quite working. Section ?? tried to keep t1
(or L =

∑

i
ti
i) in perfect balance. It found En = (ǫ − δ)Loss − ǫ negative, which is odd because if

E1 is given less so it does not increase then why is En smaller?

Lemma 15. A(~t)1 ≥ t1.

Proof. Assume Equi during t1. A(~t)1 = t′1E1 = (1 + ǫ)w1 + (1 − ǫ
ℓ)Loss = (1 + ǫ)

∑

j≥1 ρ〈1,j〉tj +

(1 − ǫ
ℓ)

∑

j ℓρ〈j,j〉tj ≥ (bigloss???) (1 + ǫ)ρ〈1,1〉t1 + (ℓ − ǫ)ρ〈1,1〉t1 = (ℓ + 1)(1
ℓ+1 t1 = t1.

Note, you would think adding increasing the number ℓ of waste jobs (either old or new) would
increase Loss. It does. But it deceases t′1 ≈ ρ〈1,1〉 by the same amount.

Then Loss =
∑

j

∑

i∈[1,ℓ] ρ〈i,j〉tj ≥ (bigloss??) ≥ ℓ
ℓ+1t1.

En = (ǫ
ℓ + ǫ)Loss − ǫ = (ǫ

ℓ + ǫ) ℓ
ℓ+1 t1 − ǫ = ǫ(1 + ℓ) 1

ℓ+1t1 − ǫ = ǫ(t1 − 1) ≤ 0!!!
The same is true of not EQUI during tℓ+1.
Maybe we should look to giving some to E2 to guarantee that t2 is big so that it can give to t1.

14 Try to increase
∑

i
1
i ti.

The bug in this is outlined above in Ultimate Problems.
Split the amount E into E1 = (1 − ǫ

ℓ)Loss and En = (ǫ
ℓ + ǫ)Loss − ǫ.

Lemma 16. L(A(~t)) ≥ L(~t).

Proof. L(A(~t)) =
∑

i
1
i A(~t)i =

[
∑

i
1
i t

′
i

]

+ 1
1E1 + 1

nEn ≥
[
∑

i
1
i [(1 + ǫ)wi]

]

+ (1 − ǫ
ℓ)Loss =

[

∑

i
1+ǫ

i

[

∑

j≥i ρ〈i,j〉tj

]]

+ (1 − ǫ
ℓ)

[

∑

j ℓρ〈j,j〉tj

]

=
∑

j

[[

∑

i≤j
1+ǫ

i ρ〈i,j〉

]

+
[

(1 − ǫ
ℓ)ℓρ〈j,j〉

]

]

tj
def
=

∑

j [Qj] tj. L(~t) =
∑

i
1
j tj. Hence, to prove the lemma, it is sufficient to prove that ∀j, Qj ≥

1
j .

Note that the amount
∑

i≤j
1+ǫ

i ρ〈i,j〉 depends on how the algorithm distributes its resources to
the j parallelizable jobs during the time period t ∈ [rj, rj + tj]. It is clearly minimized by moving
these resources forward to the jobs with the larger index i, i.e. those arriving later. However, because
the algorithm favors the most recent job, ρ〈i,j〉 ≤ ρ〈j,j〉. It follows that

∑

i≤j
1+ǫ

i ρ〈i,j〉 is minimized
by choosing some index rj and having ρ〈i,j〉 = 0 for i ∈ [1, j−rj] and ρ〈i,j〉 = ρ〈j,j〉 for i ∈ [j−rj+1, j].
This gives rj parallel and ℓ sequential jobs receiving this same allocation. Being speed one, gives

(rj + ℓ)ρ〈j,j〉 = 1 or rj = 1
ρ〈j,j〉

− ℓ. This gives Qj =
[

∑

i∈[j−rj+1,j]
1+ǫ

i ρ〈j,j〉

]

+
[

(1 − ǫ
ℓ)ℓρ〈j,j〉

]

=
[[

∑

i∈[j−rj+1,j]
1+ǫ

i

]

+ (ℓ − ǫ)
]

ρ〈j,j〉.

16

It is true that decreasing ρ〈j,j〉, increases rj , which increases the harmonic sum, however, calculus
will show that this increase will be overshadowed by the fact that this harmonic sum is being multi-
plied by ρ〈j,j〉. Hence, this expression is minimized by setting ρ〈j,j〉 to be as small as possible. This

is done by running Equi, i.e. ρ〈j,j〉 = ρ〈i,j〉 = 1
j+ℓ . This gives Qj =

[[

∑

i∈[1,j]
1+ǫ

i

]

+ (ℓ − ǫ)
]

1
j+ℓ ≥

[1 + ℓ] 1
j+ℓ ≥ 1

j .

Lemma 17.
∑

i iti ≥
ǫ
3ℓn.

Proof.
∑

i iti =
∑

i iA(~t)i = [
∑

i it
′
i]+1E1 +nEn ≥ nEn. Recall En = (ǫ

ℓ + ǫ)Loss− ǫ = (ǫ
ℓ + ǫ)(1−

1
2ℓ) − ǫ ≥ ǫ

3ℓ .

Bug!! Loss =
∑

j

∑

i∈[1,ℓ] ρ〈i,j〉tj ≥ (bigloss??) ≥ ℓ
ℓ+1t1. This is smaller than L.

15 Try to Fix
∑

i
1
i ti.

The bug in this is outlined above in Ultimate Problems.
Define two extra amounts to be

E1
def
= L − L(~t′) − 1

nEn

En
def
=

1

1 − 1
n

[L(~t′) + (1 + ǫ)Loss(~ρ,~t) − (L + ǫ)]

Lemma 18.
∑

i A(~t)i = 1

Proof.

∑

i

A(~t)i =
∑

i

t′i + E1 + En =
∑

i

t′i +
[

L − L(~t′) − 1
nEn

]

+ En =
∑

i

t′i + L − L(~t′) + (1 − 1
n)En

=
∑

i

[(1 + ǫ)wi] + L − L(~t′) +
[

L(~t′) + (1 + ǫ)Loss(~ρ,~t) − (L + ǫ)
]

=
[

(1 + ǫ)(1 − Loss(~ρ,~t))
]

+ (1 + ǫ)Loss(~ρ,~t) − ǫ = 1

Lemma 19. L(A(~t)) = L.

Proof.

L(A(~t)) =
∑

i

1
i A(~t)i =

[

∑

i

1
i t

′
i

]

+ 1
1E1 + 1

nEn

=
[

L(~t′)
]

+
[

L − L(~t′) − 1
nEn

]

+ 1
nEn = L

Lemma 20. R(A(~t)) =?.

17

Proof.

1
nR(A(~t)) = 1

n

∑

i

iA(~t)i = 1
n

[[

∑

i

it′i

]

+ 1E1 + nEn

]

≥

[

∑

i

i
nt′i

]

+
[

L(~t′) + (1 + ǫ)Loss(~ρ,~t) − (L + ǫ)
]

=

[

∑

i

(i
n + 1

i)t
′
i

]

+ (1 + ǫ)





∑

j

ℓρ〈j,j〉tj



 − (L + ǫ)

=





∑

i

(i
n + 1

i)



(1 + ǫ)
∑

j≥i

ρ〈i,j〉tj







 + (1 + ǫ)





∑

j

ℓρ〈j,j〉tj



 − (L + ǫ)

=



(1 + ǫ)
∑

j









∑

i≤j

(i
n + 1

i)ρ〈i,j〉



 + ℓρ〈j,j〉



 tj



 − (L + ǫ)

We will drop the i
n . The amount Qj

def
=

[

∑

i≤j
1
i ρ〈i,j〉

]

+ ℓρ〈j,j〉 depends on how the algorithm

distributes its resources to the j parallelizable jobs during the time period t ∈ [rj , rj + tj]. It
is clearly minimized by moving these resources forward to the jobs with the larger index i, i.e.
those arriving later. However, because the algorithm favors the most recent job, ρ〈i,j〉 ≤ ρ〈j,j〉. It
follows that Qj is minimized by choosing some index rj and having ρ〈i,j〉 = 0 for i ∈ [1, j−rj]
and ρ〈i,j〉 = ρ〈j,j〉 for i ∈ [j − rj +1, j]. This gives rj parallel and ℓ sequential jobs receiving

this same allocation. Being speed one, gives (rj + ℓ)ρ〈j,j〉 = 1 or rj = 1
ρ〈j,j〉

− ℓ. This gives

Qj =
[

∑

i∈[j−rj+1,j]
1
i ρ〈j,j〉

]

+ ℓρ〈j,j〉 =
[[

∑

i∈[j−rj+1,j]
1
i

]

+ ℓ
]

ρ〈j,j〉.

It is true that decreasing ρ〈j,j〉, increases rj , which increases the harmonic sum, however, calculus
will show that this increase will be overshadowed by the fact that this harmonic sum is being
multiplied by ρ〈j,j〉. Hence, this expression is minimized by setting ρ〈j,j〉 to be as small as possible.

This is done by running Equi, i.e. ρ〈j,j〉 = ρ〈i,j〉 = 1
j+ℓ . This gives Qj =

[[

∑

i∈[1,j]
1
i

]

+ ℓ
]

1
j+ℓ ≥

[1 + ℓ] 1
j+ℓ ≥ 1

j . ** This is tight if when j = 1 and does not matter for j > 1 if tj = 0. **

1
nR(A(~t)) =



(1 + ǫ)
∑

j

[

1
j

]

tj



 − (L + ǫ)

= (1 + ǫ)L − (L + ǫ) = ǫL − ǫ = neg

18

16 Increasing FJ(~t)
def
=

∑

i∈[ℓ+1,J] iti

Proof.

Loss
def
=

∑

j∈[ℓ+1,n]

∑

i∈[1,ℓ]

ρ〈i,j〉tj ≥ 1
ℓ

∑

j∈[ℓ+1,J]

∑

i∈[1,ℓ]

iρ〈i,j〉tj

Maybe can get an extra factor of 2

FJ(~t′)
def
=

∑

i∈[ℓ+1,J]

it′i =
∑

i∈[ℓ+1,J]

i(1 + ǫ)wi ≥ (1 + ǫ)
∑

i∈[ℓ+1,J]

i





∑

j∈[i,J]

ρ〈i,j〉tj





= (1 + ǫ)
∑

j∈[ℓ+1,J]

∑

i∈[ℓ+1,j]

iρ〈i,j〉tj

FJ(~t′) + (1 + ǫ)ℓLoss = (1 + ǫ)
∑

j∈[ℓ+1,J]





∑

i∈[1,j]

iρ〈i,j〉



 tj = (1 + ǫ)
∑

j∈[ℓ+1,J]

[

(1 − β
2)j

]

tj

= (1 + ǫ)(1 − β
2)FJ(~t)

17 Changing βj

Also does not work.

Lemma 21. The minimum for the amount amount
∑

j∈[ℓ+1,n] jtj increases with βj .

Proof.

R(~w)
def
=

∑

i∈[ℓ+1,n]

iwi =
∑

i∈[ℓ+1,n]

i
∑

j≥i

ρ〈i,j〉tj =
∑

j∈[ℓ+1,n]





∑

i∈[ℓ+1,j]

iρ〈i,j〉



 tj

R(Loss)
def
=

∑

j∈[ℓ+1,n]

∑

i∈[1,ℓ]

iρ〈i,j〉tj = o





∑

j∈[ℓ+1,n]

∑

i∈[1,ℓ]

nρ〈i,j〉tj



 = o (nLoss)

R(~w) + R(Loss) =
∑

j∈[ℓ+1,n]





∑

i∈[1,j]

iρ〈i,j〉



 tj =
∑

j∈[ℓ+1,n]

[

j(1 −
βj

2)
]

tj

≤ (1 − β
2)

∑

j∈[ℓ+1,n]

jtj
def
= (1 − β

2)R(~t)

R(~t′)
def
=

∑

i∈[ℓ+1,n]

it′i =
∑

i∈[ℓ+1,n]

i(1 + ǫ)wi = (1 + ǫ)R(~w)

R(A(~t))
def
=

∑

i∈[ℓ+1,n]

iA(~t)i ≤
∑

i∈[ℓ+1,n]

it′i + nE

= (1 + ǫ)
[

(1 − β
2)R(~t) − R(Loss)

]

+ n [(1 + ǫ)Loss − ǫ]

= (1 + ǫ)
[

(1 − β
2)R(~t) + (1−o(1))nLoss

]

− ǫn

19

Increasing βj increase amount allocated to earlier jobs, which increases Loss.

Oooooops. It decreases 1 −
βj

2 .

18 Absurd Kludge

Initially ℓ + 1 jobs arrive at time zero. One can assume that job Jl+1 is given at least its share
ρ〈ℓ+1,ℓ+1〉 = 1

ℓ+1 of the resources. What if this was not the case?
This does not work as well.

Lemma 22. A(~t)ℓ+1 = tℓ+1 = 1
2 .

Proof.

t′ℓ+1 = (1 + ǫ)wℓ+1 = (1 + ǫ)
∑

j≥1

ρ〈ℓ+1,j〉tj ≥ (1 + ǫ)ρtℓ+1.

∑

i∈[1,ℓ+1]

ρ〈i,ℓ+1〉 = 1. ρ
def
= ρ〈ℓ+1,ℓ+1〉.

Loss =
∑

j∈[ℓ+1,n]

∑

i∈[1,ℓ]

ρ〈i,j〉tj ≥
∑

i∈[1,ℓ]

ρ〈i,ℓ+1〉tℓ+1 = (1 − ρ)tℓ+1.

Eℓ+1 = (1 − δ)Loss. δ = ǫρ
1−ρ .

A(~t)ℓ+1 = t′ℓ+1 + Eℓ+1 ≥ [(1 + ǫ)ρ + (1 − δ)(1 − ρ)] tℓ+1

=
[

(1 + ǫ)ρ + (1 − ǫρ
1−ρ)(1 − ρ)

]

tℓ+1

= [ρ + ǫρ + (1 − ρ) − ǫρ] tℓ+1 = tℓ+1

Lemma 23. If ρ〈ℓ+1,ℓ+1〉 ≤
β

ℓ+1 , then
∑

i∈[ℓ+1,n] iA(~t)i ≥??.

Proof.

∑

i

iA(~t)i =

[

∑

i

it′i

]

+ 1E1 + nEn ≥ nEn.

En = (δ + ǫ)Loss − e = (ǫρ
1−ρ + ǫ)(1 − ρ)tℓ+1 − ǫ

= (ǫρ + ǫ(1 − ρ))tℓ+1 − ǫ = ǫtℓ+1 − ǫ ≤ 0

20

