
Self-Maintenance for Autonomous
Robots in the Situation Calculus

Stefan Schiffer Andreas Wortmann Gerhard Lakemeyer

Knowledge-Based Systems Group
RWTH Aachen University

Aachen, Germany
andreas.wortmann@gmail.com

(schiffer,gerhard)@cs.rwth-aachen.de

Abstract. In order to make a robot execute a given task plan more
robustly we want to enable it to take care of its self-maintenance re-
quirements during online execution of this program. This requires the
robot to know about the (internal) states of its components, constraints
that restrict execution of certain actions and possibly also how to recover
from faulty situations. The general idea is to implement a transforma-
tion process on the plans, which are specified in the agent programming
language ReadyLog, to be performed based on explicit (temporal) con-
straints. Afterwards, a ’guarded’ execution of the transformed program
should result in more robust behavior.

1 Introduction

Today’s artificial intelligence provides a rich framework for the development of
“intelligent” autonomous agents. Several branches explore improvements of these
agents, dealing with perception, human-robot-interaction, locomotion, reason-
ing, planning, and more. One aspect of current robotics research is “the study of
the knowledge representation and reasoning problems faced by an autonomous
robot (or agent) in a dynamic and incompletely known world” [1], coined as
cognitive robotics by Ray Reiter. The central effort of Reiter’s vision [2] “is to
develop an understanding of the relationship between the knowledge, the per-
ception, and the action of such a robot”. This is outlined by through several
questions the research program of cognitive robotics is supposed to answer, es-
pecially “what does the robot need to know about its environment” and “when
should the inner workings of an action be available to the robot for reasoning”.
We approach a specialization of their intersection, namely “what does the robot
need to know about itself and its requirements”. This is especially interesting as
present agents are often unable to explicate their requirements (e.g., calibration
of manipulators before usage) relative to a plan. They usually need these require-
ments to be considered externally and in advance, otherwise they fail during plan
execution. Therefore, we propose a constraint based self-maintenance framework,
which will enable an agent to monitor its self-maintenance requirements dur-
ing program execution. Whenever the self-maintenance framework determines

Dagstuhl Seminar Proceedings 10081
Cognitive Robotics
http://drops.dagstuhl.de/opus/volltexte/2010/2636

unsatisfied requirements, appropriate recovery measures are performed online.
This behaviour increases agent autonomy and robustness. We do so by adding
a program transformation step in ReadyLog, a logic-based robot programming
language (with planning support) based on the Situation Calculus. This transfor-
mation uses explicitly formulated constraints that express dependencies between
task actions and the robot itself. These are important at run-time and we can-
not and do not want to consider them at planning time already. Thus we also
alleviate the costs for planning.

2 Foundations

In the following, we briefly sketch the foundations our approach builds on. For
one, that is the Situation Calculus and our robot control language ReadyLog,
for another that is a formulation of temporal constraints.

2.1 Situation Calculus & ReadyLog

The Situation Calculus [3] is a sorted logical language with sorts situations,
actions, and objects. Properties of the world are described by relational and
functional fluents that change over time (situation dependent). Actions have
preconditions, and effects of actions are described by successor state axioms.
The world evolves from situation to situation, e.g., s′ = do(a, s) means that
the world is in situation s′ after performing action a in situation s. GOLOG [4]
is a logic based robot programming (and planning) language based on the Sit-
uation Calculus. It allows for Algol-like programming but it also offers some
non-deterministic constructs. It uses an evaluation semantics: Do(δ, s, s′) means
that executing program δ transforms situation s to s′.

There exist various extensions and dialects to the original Golog interpreter,
one of which is ReadyLog [5]. It provides an online interpreter and integrates
several extensions like interleaved concurrency, sensing, exogenous events, and
online decision-theoretic planning (following [6]) into one framework. We use
ReadyLog to specify our agents and the approach presented here is an extension
to ReadyLog. As programs in ReadyLog represent task plans, we will use the
term program from now on instead of plan.

2.2 Temporal Constraints

To formulate (temporal) constraints we obviously require a notion of (tempo-
ral) relations between actions (or more generally, between states). Since we are
interested in constraints that should be easy to formulate for the designer we
prefer a qualitative description of these relations. We consider this sufficient for
most cases we intend to handle and spare computing explicit timing values. We
therefore chose Allen’s Interval Algebra [7] as our basis. For an overview on im-
portant relations in this algebra see Fig. 1. An example of a constraint that we

2

A

B

(a) A MEETS B

A

B

(b) A BEFORE B

A

B

(c) A STARTS B

A

B

(d) A ENDS B

A

B

(e) A CONTAINS B

A

B

(f) A OVERLAPS B

A

B

(g) A EQUALS B

Fig. 1. Seven of Allen’s interval relations.

want to formulate could be

calibrate arm BEFORE manipulate

to indicate that the manipulator has to be calibrated before we can actually use
it. We are not the first to consider an interval formulation in Golog [8], however,
our use is not targeted at flexible interval planning but more to formulate the
constraints and augment a given program according to these.

2.3 Durative Actions

Usually actions are durative, i.e., they consume time. The original Situation Cal-
culus only knows ’instantaneous’ actions. There are, however, some extensions
that we are going to adopt to represent durative actions [9, 10]. In these ap-
proaches, actions with a duration are considered activities that are bounded by
instantaneous start/stop-actions. The fact that such an activity is currently be-
ing performed is indicated by a fluent for each activity. See Fig. 2 for an example.

Going+ −

Fluent
“Going”

Action
“start going”

Action
“stop going”

Durative Action “Goto”

Fig. 2. Exemplary decomposition of a durative action

3 Approach

The general idea is to implement a program transformation process based on
temporal constraints and the program to be performed. Fig. 3 depicts how we
propose to integrate the components of our self-maintenance framework into
existing agent controllers.

3

Plan/Program Task BAT

Transformation ConstraintsTodo-List

Execution Monitoring

δ

δ′

Fig. 3. Architectural overview of our approach

We propose to intervene between decision-theoretic planning, whose output
is an executable program, and its online execution. Before any action of the
program is performed in the real world, a self-maintenance interpreter checks
whether there are unsatisfied constraints for this action. If such constraints are
found, the program execution is delayed and the program is augmented with
maintenance and recovery measures. The augmented program is only then passed
on for execution. Depending on the constraint(s) the transformation also includes
monitoring markers, e.g., making sure the locomotion module is off throughout
the execution of manipulating something.

3.1 Constraints

For this transformation to work, we need to make one important restriction,
though. Since the self-management may not invalidate the program, we separate
the task from the maintenance domain and restrict the constraints to only map
elements from the latter to the former.

Our approach is similar to [11] who propose a framework for online plan repair
and execution control based on temporal constraints. Their work is motivated by
the same problems than ours, namely that “taking into account run-time failures
and timeouts” requires online plan recovery, However, they rely on partial order
planning and assume temporal flexible plans. Their objective is to execute a plan
under resource and timing constraints by grounding time points at execution
time. We, on the other hand, are interested in interleaving self-maintenance and
task actions at execution time on a qualitative level. Time points in the Situation
Calculus are only characterized by actions. Still, we borrow their notion of (non)
preemptive actions and the idea that the system sends some form of report about
action completion and the systems’ components’ states.

Our constraint syntax is A⊗ B where

A is from self-management domain only. It can be (a) a instantaneous action
which corresponds to an interval end point, (b) a durative action that needs
to be decomposed to its end points, or (c) a fluent formula that needs to be
checked with respect to the interval.

⊗ is one of Allen’s relations.
B is from task domain only. The same cases as described above for A also apply

for B.

4

Table 1. Translation of a constraint to an order on situations

A BEFORE B Task (B)

b B ψ

M
g
m

t
(A

) a a < b a < B+ a < ∆+
ψ

A A− < b A− < B+ A− < ∆+
ψ

φ ∆−
φ < b ∆−

φ < B+ ∆−
φ < ∆+

ψ

3.2 Online Program Transformation

We transform the program (i.e., a plan generated by ReadyLog) using the set
of constraints available for the next task action to be executed. The set of con-
straints is translated to a Constraint Satisfaction Problem (CSP) by resolving
each constraint to an order on situations described by primitive or start/stop-
actions. An example is given in Table 1. Small case letters denote instantaneous
actions, capital letters stand for complex actions, and ∆−

φ and ∆+
φ represent a

fluent formula φ becoming false or true in a certain situation, respectively. The
solution of the CSP then dictates the transformation. It inserts maintenance
actions and monitoring markers at appropriate positions in the program.

3.3 Inheritance

It is an often seen bad practice to duplicate constraints for related actions. To
alleviate this and provide a more convenient way of formulating the constraints,
it should be possible to give constraints for actions classes, e.g., we would like
to have an action inheritance about several move actions. Building on [12], we
employ a modular BAT that allows for inheritance of constraints along the hi-
erarchy of actions. See Fig. 4 for an example.

Motion

Turn Goto

SneakHover

Fig. 4. Inheritance of constraints in a hierarchy of actions

3.4 A Simple Example

To clarify our approach we depict a simplistic example of the general process in
the following. The single steps of this process are depicted in Fig. 5.

In Step 1 we show the state of affairs before our process is about to kick
in. Then, as soon as the task program features an action that appears in any
of the constraints, the CSP solve is triggered. The solution forces us to insert a
start beep action before we can actually execute start goto. After executing

5

constraint
beep EQUALS goto

todo {}

Task

Mgmt

+ GOT O −

history h = ...
program δ = goto; ...

(a) Step 1

constraint
beep EQUALS goto

todo {}

Task

Mgmt

+ GOT O −

Now

history h = ...
program δ = start goto; ...

(b) Step 2

constraint
beep EQUALS goto

todo {stop beep at
stop goto, ensure beep}

Task

Mgmt

+ GOT O −

+ BEEP . . .

ε

Now

history h = ...
program δ = start beep;

start goto; ...

(c) Step 3

constraint beep EQUALS
goto

todo {stop beep at
stop goto, ensure beep}

Task

Mgmt

+ GOT O −

+ BEEP . . .

Now

history h = ...; start beep
program δ = start goto; ...

(d) Step 4

constraint
beep EQUALS goto

todo {stop beep at
stop goto, ensure beep}

Task

Mgmt

+ GOT O −

+ BEEP . . .

Now

history h = ...;
start beep; start goto; ...

program δ = stop goto; ...

(e) Step 5

constraint
beep EQUALS goto

todo {stop beep at
stop goto, ensure beep}

Task

Mgmt

+ GOT O −

+ BEEP

Now

history h = ...;
start beep; start goto; ...

program δ = stop goto; ...

(f) Step 6

constraint
beep EQUALS goto

todo {stop beep at
stop goto, ensure beep}

Task

Mgmt

+ GOT O −

+ BEEP −

Now

history h = ...;
start beep; start goto; ...

program δ = stop beep;
stop goto; ...

(g) Step 7

constraint
beep EQUALS goto

todo {}

Task

Mgmt

+ GOT O −

+ BEEP −

Now

history h = ...;
start beep; start goto; ...;
stop beep

program δ = stop goto; ...

(h) Step 8

constraint
beep EQUALS goto

todo {}

Task

Mgmt

+ GOT O −

+ BEEP −

Now

history h = ...;
start beep; start goto; ...;
stop beep; stop goto

program δ = ...

(i) Step 9

Fig. 5. Exemplary Maintenance Process

6

start beep the execution of start goto succeeds. Throughout the run-time of
the goto action we ensure that beep is also running. Then, when stop goto is
about to be executed, when detect that we have to stop beep. Only after we do
this, stop goto can actually be executed.

Note that in Step 3, when inserting the start beep action we make use of
something we call the ε-slot. We consider two actions happening simultaneously
if they happen within a time span not exceeding the ε-slot. This is due to the
fact that ReadyLog only supports interleaved concurrency [9] which executes
two action sequences concurrently by interleaving them. This is opposed to true
concurrency [13] where sets of actions may be executed ’truly concurrently’
between any two situations.

4 Discussion

In this paper we sketched our approach to self-maintenance for autonomous
robots controlled by ReadyLog. We modify a given program at run-time using
explicitly formulated temporal constraints that relate self-maintenance actions
with actions from the task domain. This way we achieve more robust and en-
during operation and take care of maintenance when it is relevant: at execution
time. Keeping our approach in one framework allows to use all of ReadyLog’s
features in maintenance and recovery.

In future work we will consider two extensions. Explanation: Since the robot
knows which constraint(s) failed in a particular situation and it probably does
not have means to take care of it itself the robot can at least exhibit to the
user what went wrong. Interaction: Alternatively, if the robot can not handle a
constraint itself (e.g., no emergency off while drive) but knows, that a human
user could do, it can simply trigger an interaction, e.g., ask “Could you please
release my emergency button?”.

References

1. Levesque, H., Lakemeyer, G.: Cognitive Robotics. Handbook of Knowledge Rep-
resentation. Elsevier (2007)

2. Levesque, H., Reiter, R.: High-level robotic control: Beyond planning. a position
paper. In: AIII 1998 Spring Symposium: Integrating Robotics Research: Taking
the Next Big Leap. (1998)

3. McCarthy, J.: Situations, Actions, and Causal Laws. Technical Report Memo
2, AI Lab, Stanford University, California, USA (1963) Published in Semantic
Information Processing, ed. Marvin Minsky. Cambridge, MA: The MIT Press, 1968.

4. Levesque, H.J., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.B.: GOLOG: A Logic
Programming Language for Dynamic Domains. Journal of Logic Programming 31
(1997) 59–83

5. Ferrein, A., Lakemeyer, G.: Logic-based robot control in highly dynamic domains.
Robotics and Autonomous Systems 56 (2008) 980–991

7

6. Boutilier, C., Reiter, R., Soutchanski, M., Thrun, S.: Decision-theoretic, high-
level agent programming in the situation calculus. In: Proceedings of the 17th
National Conference on Artificial Intelligence and 12th Conference on Innovative
Applications of Artificial Intelligence, AAAI Press / The MIT Press (2000) 355–362

7. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26
(1983) 832–843

8. Finzi, A., Pirri, F.: Flexible interval planning in concurrent temporal golog. In:
Working notes of the 4th Int. Cognitive Robotics Workshop. (2004)

9. de Giacomo, G., Lespérance, Y., Levesque, H.J.: Congolog, a concurrent program-
ming language based on the situation calculus. Artificial Intelligence 121 (2000)
109–169

10. Claßen, J., Hu, Y., Lakemeyer, G.: A Situation-Calculus Semantics for an Expres-
sive Fragment of PDDL. In: AAAI’07: Proceedings of the 22nd National Conference
on Artificial Intelligence, AAAI Press (2007) 956–961

11. Lemai, S., Ingrand, F.: Interleaving temporal planning and execution in robotics
domains. In: AAAI’04:Proceedings of the 19th National Conference on Artifical
Intelligence, AAAI Press / The MIT Press (2004) 617–622

12. Gu, Y., Soutchanski, M.: Reasoning about Large Taxonomies of Actions. In Fox,
D., Gomes, C.P., eds.: AAAI’08: Proceedings of the 23rd National Conference on
Artificial Intelligence. Volume 2., AAAI Press (2008) 931–937

13. Reiter, R.: Natural actions, concurrency and continuous time in the situation cal-
culus. In: In Principles of Knowledge Representation and Reasoning: Proceedings
of the Fifth International Conference (KR’96), Cambridge, Massachusetts, U.S.A.
(1996) 2–13

8

