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Abstract

Robotic manipulation is important for real, physical world
applications. General Purpose manipulation with a robot (eg.
delivering dishes, opening doors with a key, etc.) is demand-
ing. It is hard because (1) objects are constrained in posi-
tion and orientation, (2) many non-spatial constraints interact
(or interfere) with each other, and (3) robots may have multi-
degree of freedoms (DOF). In this paper we solve the prob-
lem of general purpose robotic manipulation using a novel
combination of planning and motion planning. Our approach
integrates motions of a robot with other (non-physical or
external-to-robot) actions to achieve a goal while manipulat-
ing objects. It differs from previous, hierarchical approaches
in that (a) it considers kinematic constraints in configuration
space (C-space) together with constraints over object manipu-
lations; (b) it automatically generates high-level (logical) ac-
tions from a C-space based motion planning algorithm; and
(c) it decomposes a planning problem into small segments,
thus reducing the complexity of planning.

1. Introduction

Algorithms for general purpose manipulations of daily-life
objects are still demanding (e.g. keys of doors, dishes in a
dish washer and buttons in elevators). However, the com-
plexity of such planning algorithm is exponentially propor-
tional to the dimension of the space (the degree-of-freedom
(DOF) of the robot and the number of objects) (Canny
1987). It was shown that planning with movable objects
is P-SPACE hard (Chen and Hwang 1991; Dacre-Wright,
Laumond, and Alami 1992; Stilman and Kuffner 2005).
Nonetheless, previous works examined such planning in
depth (Likhachev, Gordon, and Thrun 2003; Kuffner and
LaValle 2000; Kavraki et al. 1996; Brock and Khatib 2000;
Alami et al. 1998; Stilman and Kuffner 2005) because of the
importance of manipulating objects. The theoretical analysis
gave rise to some practical applications (Alami et al. 1998;
Cortés 2003; Stilman and Kuffner 2005; Conner et al. 2007),
but general purpose manipulation remains out of reach for
real-world-scale applications.

Motion planning algorithms have difficulty to represent
non-kinematic constraints despite of its strength in planning
with kinematic constraints. Suppose that we want to let a
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robot push a button to turn a light on. CSpace' can repre-
sent such constraints. However, the CSpace representation
could be (1) redundant and (2) computationally inefficient
because CSpace is not appropriate for compact representa-
tions. It could be redundant, because it always considers the
configurations of all objects beside our interests (i.e. a but-
ton and a light). Moreover, mapping such constraints into
CSpace would be computationally inefficient, because map-
ping a constraint among n objects could take O(2™) evalu-
ations in worst case. Thus, most of motion planning algo-
rithms assume that such mappings in CSpace are encoded.

Al planning algorithms and description languages (e.g.
PDDL (McDermott 1998)) have difficulty to execute real-
world robots despite of its strength in planing with logical
constraints. Suppose that we have a PDDL action for ‘push
the button” which makes a button pushed and a light turned
on. However, the PDDL description could be (1) ambiguous
and (2) incomplete (require details). Given a robot with m
joints, it is ambiguous how to execute the robot to push the
button, because such execution is not given in the descrip-
tion. Instead, it assumes that there is a predefined action
which makes some conditions (e.g. a button pushed) satis-
fied whenever precondition is hold and the action is done.

Both methods solve this problem in different ways. Mo-
tion planning algorithms use abstractions to solve this prob-
lem. Al plannings use manual encodings. Although abstrac-
tion provides solutions in a reasonable amount of time in
many applications, abstraction lose completeness. Thus, it
has no computational benefit in worst cases. Although Al
plannings have no need to search the huge CSpace, it re-
quires manual encodings which are not only error-prone but
also computationally inefficient.

We minimize manual encodings using the reachability of
objects. That is, logical actions are extracted from a tree
(planned by a motion planning algorithm), if the actions
change the reachability of objects (i.e. a switch can be reach-
able by opening a door).

Our algorithm provides a path of a robot given following
inputs: configurations of a robot and objects; constraints be-
tween objects; an initial state; and a goal condition.? We
use logical expressions to represent both spatial constraints

!CSpace is the set of all possible configurations
ZFor each object, we provide a function which maps from a
configuration to discrete states (labels) of objects, if discrete states



in C-space (e.g. collision) and constraints in state space (we
define them formally in section 4. We automatically build a
set of actions from a motion planner, while it was done by
hands in previous works.

In detail, our algorithm unifies a general purpose (logi-
cal) planner and a motion planner in one algorithm. Our
algorithm is composed of three subroutines: (1) extract-
ing logical actions from a motion planner, (2) finding an
abstract plan from the logical domain, and (3) decoding it
into C-space. It extracts PDDL actions (McDermott 1998)
from a tree constructed by a motion planner in C-space.
Then, it combines extracted actions with a given K Bopject
(Knowledge Base) that has propositions, axioms (proposi-
tional formulas) and abstract PDDL actions. To find an
abstract plan efficiently, we automatically partitioned the
domain by a graph decomposition algorithm before plan-
ning. In the planning step, an abstract plan is found by a
factored planning algorithms (Amir and Engelhardt 2003;
Brafman and Domshlak 2006) which are designed for the
decomposed domain. In decoding, a motion plan is found
from the abstract plan.

We argue that the complexity of a planning problem is
bounded by the treewidth of the encoded KB. One may think
some analogy between the treewidth of KB in this paper
and the number of mutually-interfering objects in the motion
planning literature. However, the treewidth is more general
expression because KB has more expressive power than the
conventional C-space. In addition, this work proposes two
improvements in terms of efficiency. One improvement is to
use a factored planning algorithm for the decomposed do-
main. The other is to encode actions on behalf of workspace
which is much smaller than C-space.

This approach is a unique decomposition-based path plan-
ning algorithm. We minimize manual encodings which are
required to manipulate objects. Both (kinematic) constraints
of the robot, and constraints of manipulating object are con-
sidered in our planning. It is efficient because its efficiency
depends only on the workspace (2D or 3D), when appro-
priate conditions are met. Moreover, our method calculates
actions of a robot once and can reuse them for other tasks.

Section 2presents related works. Section 3provides a mo-
tivational example. Section 4explains our encoding to build
a KB. Sections Sand 6show our algorithm. Finally, section 7.
provides experimental results followed by the conclusion in
section 8.

2. Related Works

Here, we review the related works in two aspects: (1) using
logical representation in robot planning; and (2) modifying
the motion planning algorithm to achieve complex task (eg.
manipulating objects). One may see the former way as top-
down and the latter way as bottom-up.

(Alami et al. 1998) presents a well-integrated robot archi-
tecture which controls multiple robots. It uses logical repre-
sentations in higher level planners and C-space based motion
planners in lower-level planning. However, the combination
of two planners is rather naive (manual).

are required for the provided constraints of objects (K Bopject)-
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Figure 1: This figure shows an example of manipulating objects
with a robotic arm. The goal is to take care of beans in a glasshouse.
Beans require water and light everyday. The robot will provide
water and light for beans. To accomplish this goal, the arm needs
to manipulate objects such as doors and switches.

Recently, (Conner et al. 2007) provides an improved way
to combine the Linear Temporal Logic (LTL) to control con-
tinuously moving cars in the simulated environment.® How-
ever, their model is a nondeterministic automata, while our
model is deterministic. Due to the intractability of nondeter-
ministic model, their representation is restricted to a subset
of LTL to achieve a tractable (polynomial time) algorithm.
Experiments are focused on controlling cars instead of ma-
nipulating objects.

Motion planning research has a long-term goal of build-
ing a motion planning algorithm that finds plans for com-
plex tasks (eg. manipulating objects). (Stilman and Kuffner
2005) suggests such a planning algorithm based on a heuris-
tic planner (Chen and Hwang 1991) which efficiently relo-
cates obstacles to reach a goal location. Recently, it was
extended to embed constraints over object into the C-space
(Stilman 2007). In fact, the probabilistic roadmap method
(Kuffner and LaValle 2000) of the algorithm is highly ef-
fective in manipulating objects in detail. However, we argue
that our algorithm (factored planning) is more appropriate in
terms of generality and efficiency than a search-based (with
backtracks) heuristic planner.

Other works also present efforts in this direction to build
a motion planning algorithm for complex tasks. (Plaku,
Kavraki, and Vardi 2008) solves a motion planning problem
focused on safety with logical constraints represented with
LTL . (M. Pardowitz 2007) focuses on learning actions for
manipulating objects based on the explanation based learn-
ing (Dejong and Mooney 1986). They use a classical hier-
archical planner in planning. (J. Van den Berg 2007) pro-
vides an idea that extracts the propositional symbols from a
motion planner. The symbols are used to check the satisfi-
ability of the planning problems. (S. Hart 2007) uses a po-
tential field method to achieve complex tasks with two arms.
However, the main interests of these works are not planning
algorithm, or are limited to the rather simpler tasks.

3Any First Order Logic (FOL) sentences can be reduced to Lin-
ear Temporal Logic (LTL). Thus, LPL is a superset of FOL.
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Figure 2: This is a possible tree decomposition for the toy prob-
lem of figure 1. The shared propositions appear on edges between
subgroups. For example, a proposition (‘@Qdoors_lock’) is shared
by two subgroups (‘Main Room’ and ‘Small Room’) because
the proposition is used by actions of two subgroups (respectively
‘Open(Close)_doors’ and “Turn_shower_on(of f)’). The KB
is decomposed into small groups based on the geometric informa-
tion (eg. the configurations of the room).

3. A Motivating Example

Figure 1 shows a planning problem. The goal is to provide
water and light to beans. The robotic arm should be able to
manipulate buttons in the spatial space to provide water and
light. There are also non-spatial constraints. At any time
either the shower is off or doors is closed or both.

The planner requires both a general purpose (logical)
planner and a motion planner. It requires general pur-
pose planner because the arm needs to revisit some points
of C-space several times in a possible solution. The
way points may include ‘Open_door,’, ‘Close_doory’, and
‘Turn_light_on’. The state space can be different, when-
ever the robot revisits the same point in the C-space. It is
certainly motion planning problem because the kinematic
constraints of the arm should be considered. For example,
the arm should not collide with obstacles, although the hand
of the arm may contact objects.

Hierarchical planners have been classical solutions for
these problems. A hierarchical planner takes in charge of
high level planning. A motion planner takes in charge of low
level planning. However, researchers (or engineers) need
to define actions of the robot in addition to axioms among
propositions for objects. Without the manual encodings, the
hierarchical planner may need to play with the large number
of propositions (O(exp(DO F,.opot ) )=|discretized C-Space))
, when DOF,.,p: is the DOF of the robot. With such naive
encoding, computational complexity of planning become
(O(exp(exp(DOFs)))).

Moreover, naive hierarchical planners often have diffi-
culty to find solutions for the following reason. Firstly, it
requires interactions between subgoals. For example, the
arm must go into the “Bean room” and turn the “light”
on (subgoal) before it goes into the “small room” and turn
the “shower” on (subgoal). This is essentially the ‘Susman
anomaly’ which means that the planner dose one thing (be-
ing in the Bean room) and then it has to retract it in order to

KBuoion
@ actions:
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Figure 3: This figure illustrates a process to encode a motion plan
into K Bjs. The process is follows: (1) a motion plan (a tree) is
built by a motion planning algorithm; (2) actions which changes
the states of objects are found; (3) propositions are generated (and
grouped) based on the found actions; and (4) a K By is created.
Here, we assume that we have a function which provides discrete
states of objects given the configuration of an object in finding ac-
tions (2). In this figure, the door; in figure 1 and 2 is closed in
a set of states (A). The doory is moved little in B. However, the
door is not fully opened. Thus, configurations in the area D is not
connected. The area C corresponds to the pushed light button on
figure 1 and 2.

achieve other goal (turning the shower on). Thus, it may re-
quire several backtracking in planning. Secondly, there are
two ways of (in principle) achieving “on(light)”: (1) going
through the small room; and (2) opening door to the Bean
room from the Arm-base room. Unless manual encoding
is given by an engineer, The latter way (going through the
small room) is fine from the perspective of hierarchical plan-
ning. However, it will not work in practice because the arm
is not long enough (kinematics). Formally, there is no down-
ward solution.

Thus, this toy problem shows that (1) hierarchical plan-
ning does not work with a naive (simple) encoding, and (2)
a complete encoding is too complex to engineer directly. We
are interested in general principles that underlie a solution to
this problem.

In motion planning literature, hybrid planners are used to
address these problem (Alami, Siméon, and Laumond 1989;
Alami, Laumond, and Siméon 1997; Alami et al. 1998,
Conner et al. 2007; Plaku, Kavraki, and Vardi 2008). How-
ever, these are either hard to engineer due to manual encod-
ings, or infeasible to conduct complex tasks due to the curse
of dimensionality of expanded C-space. The size of C-space
of a hybrid planner exponentially increases with additional
movable objects and given propositions. Thus, solving a
complex problem may require extensive search.

Here, we seamlessly combine the general purpose plan-
ning and the motion planning. Our planner finds all reach-
able locations and possible actions that change states of ob-
ject, states of propositions, or the reachable set of objects.*
Thus, high-level planner can start to plan based on the ac-
tions extracted by a motion planner.’> The number of actions
and states can be different according to constraints of the
robot.

However, the number of actions and states can be still
intractable. To solve this problem, we partition the do-
main into the smaller groups of actions and states. For

“Here, we assume that we know states of objects without un-
certainty as in (Conner et al. 2007).

3Qur planner may have more actions and states than the hand-
encoded case.
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Figure 4: This shows an operation (or algorithm) to combine the
extracted K Bjs with pre-existing K Bo. K Bo is independently
given in a general form to a robot. Thus, K Bo can be reusable for
robots with different configurations space. Meanwhile, K Bysp is
specific to a robot. Thus, some actions (e.g. acty and actg) in
K Bo are invalidated by the K B

example, the domain can be partitioned as shown in fig-
ure 2. It is composed of three parts: (1) operating the
shower switch; (2) operating the light switch; and (3) oper-
ating in between. The partition can be automatically done
with approximate tight bound (Becker and Geiger 1996;
Amir 2001).

A factored planner(Amir and Engelhardt 2003) efficiently
finds a plan with the partitioned domain. The partitioned
groups are connected as a tree shape. In the factored do-
main, our factored planner finds all the possible effects of
the set of actions in each factored domain. Then, the planner
passes the planned results into the parents of the domain in
the tree. In the root node, all the valid actions and effects are
gathered. The planner finds a plan for the task, if it exists.

Then, we use a local planner to find a concrete path in C-
space at the final step. However, there is no manual (explicit)
encoding (eg. ‘turning the switch A’) between two layers,
except logical constraints and mapping functions provided
as input.

4. Problem Formulation

Combining C-space and State Space

Here we suggest new problem formulation to combine C-
space of an object-manipulating robot and KB (defined in
the next paragraph) of objects and propositions. An ob-
ject, located in a specific workspace, generates propositions
into KB. Other axioms (propositional formulas) and actions
(PDDL(McDermott 1998)) are given for the propositions.
We will call this KB as CPMP (Combining Planning and
Motion Planning).

Definition CPMP (Combining Planning and Motion Plan-
ning) is composed of propositions for states of a robot and
objects, logical axioms over a robot and objects, and PDDL
actions of a robot. It groups a set of points in C-space into a
proposition (p.) in the CPMP. Actions of a robot are trans-
lated into actions of the CPMP. A set of propositions and
actions are constrained each other by logical axioms (propo-
sitional formulas).

A CPMP is composed of propositional symbols, logical
axioms, and PDDL actions. The propositional symbols (P)
represent states in binary values. The axioms (Aziom) are

A) Light

A hand
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Figure 5: This example shows a situation in which one position
in the workspace can correspond to two different states in the com-
bined space (CPMP). Although the physical locations of the arm
and button are the same in the workspace, the state (eg. light is on)
is different. The situation can be represented when the C-space and
state space in KB are combined (CPMP), and it is not possible to
represent in the classical C-space alone.

propositional formulas. The actions (Action) represent the
pair of preconditions and effects of a robot motion. It has a
set of propositions that represents states of a robot and ob-
jects. External states are propositions in K By, extracted
from C-space. Internal states are propositions explicitly
given in K Bo.

It also include a set of axioms. The axioms (logical for-
mulas) represent relations among states of objects. When a
state of an object (0%) is 0} (e.g. light), the state of another
object (07) is constraints o] (e.g. —shower).% It is repre-
sented as follows.

o} « o}

In CPMP, a set of actions, K By, is generated from a
tree (or network) in C-space built by a motion planning al-
gorithm as shown in figure 3. In detail, two points (p; and
p2) in the network are connected by a line (an action of the
robot). This can be simply encoded as follows.

Action : Move(p1,p2)

Precond : p;
Effect : po A —p1

When the action changes the state of an object (0) from
07 to 09, the action can be encoded as follows.

Action : MoveObject(p1, p2, 01, 02)

Precond : p; A 03
Effect : po A oo A =p1 A =01

Figure 5 represents the expressive power of CPM P. It
represents a situation which can not be described by a C-
space but CPM P. The same physical locations are dif-
ferent states in CPM P because the state of the light is
changed.

A CPM P has following properties.

®Such axioms are manually encoded. However, the encodings
are independent of a specific robot. Thus, the encodings can be
reusable to other types of robot. Moreover, there are algorithms
(Amir and Russell 2003; Shahaf and Amir 2007) which can gener-
ate such axioms with a sensor-mounted robot.
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Figure 6: This figure represents an action which changes states of
the object (Door) to change the reachable set of objects. Before
doing the action (actg B — B’), the set of reachable objects are {
Door1, Doors, and Light_button }. After the action, { Doors,
Shower _button } are also included in the reachable set.

e A C'PM P has more expressive power than a C-space, if
no two configurations in C-space can distinguish the two
internal states.’

e It may reduce the number of propositions in CPM P, if
spatial locations of end-effector are well-defined into dis-
joint sets. In each disjoint set, all spatial locations of end-
effector have an identical internal state. Thus, any edge
between the two disjoint sets changes some of the inter-
nal state.

Lemma 1. The complexity of planning problem in the
CPMP is as hard as P-SPACE.

Proof. Any motion planning problem (P-SPASE hard) with
movable objects can be reduced to a planning problem in
CPMP. Suppose that CPMP includes only external
propositions which are extracted from the motion planning
algorithm. O

Encoding with Mapping Functions and
Reachability

Here, we suggest an automatic encoding for moving ob-
jects while maintaining states given mapping functions® and
reachability of objects. When a robot manipulates mov-
able objects, it changes C-space of the robot. Hybrid sys-
tems(Alami, Siméon, and Laumond 1989; Alami, Laumond,
and Siméon 1997; Alami et al. 1998) consider each C-space
as a mode. Then, each manipulation connects two distinct
modes. However, the size of the space is exponentially pro-
portional to the number of objects and the number of joints.
To address this issue, we group a set of modes based on the
states of propositions and reachability of objects as shown
in figure 3 and 6.

There are two cases to register an action (an edge between
two points extracted from a motion planner) into CPMP.
Firstly, we register an action into CPMP, if two points have
different states in CPMP with a mapping function as shown

"C-space normally takes into account configurations which
only consider spartial locations of a robot or objects.

8 A mapping function provides a state of a proposition (eg. ob-
ject) given a configuration of objects and a robot.

in figure 3. We validate abstract PDDL actions which are
realized by the action. Secondly, we also register an ac-
tion into CPMP, if an edge changes a set of reachable ob-
jects as shown in figure 6.° Thus, we build a hypergraph
whose nodes are sets of modes (C-spaces) which have the
same states (in terms of mapping functions) and the same
set of reachable object. Our algorithm extensively searches
actions with a resolution complete motion planner until no
new action is found in the hypergraph given a specific reso-
lution.

Lemma 2. The size of the discretized C-space for a robot
manipulating n objects with given propositions in CPMP is
bounded by O(exp(|objects| + n + p)), when |objects| is
the number of objects, n is the DOF (Degree of Freedom) of
the robot, and p is the number of propositions.

Lemma 3. The number of possible actions (edges) in
the discretized C-space for objects is only bounded by
O((Jobjects|) - exp(|objects|)), when the robot moves one
object with an action.

Proof. From a point in C-space of object
O(exp(|objects|)), we can choose an object O(|objects|)
to change states. O

5. Finding a Solution in C'PM P

To solve a task in C'PM P, we provide a naive algorithm
followed by two improvements: (1) it solves the problem in
the (smaller) factored KBs; and (2) it reduces the number of
propositions in C'PM P using workspace.

A Naive Solution

Given a CPMP, algorithm NaiveSolution finds a solu-
tion for a task. It may use a general purpose planner
(General Planner) to find an abstract solution. Then,
(Local M otion Plan) encodes a path in C-space.

Input: r(a robot), K Bo(KB of objects), Sstqr¢(initial state),
and s 40q1(goal condition)

Output: pathconcrete(Solution)

K Bjs <+ FindActionFromMP(7)

CPMP=T(KBwu,KBo)

pathabstract < GeneralPlanner( CPM P, Sstart, Sgoal)

patheoncrete «— LocalMotionPlan( pathapstract )
Algorithm 1: NaiveSolution provides a path for a robot. It
uses a general planner (General Planner) to find an abstract
solution. Then, it is encoded into the path in the C-space by a
motion plan (Local M otion Plan).

Tree Decomposition of KB with Objects

Given a KB, finding a tree-decomposition of the minimum
treewidth is a NP-hard problem. However, the complex-
ity is only bounded by the treewidth of CPMP, if a tree-
decomposition is found once by an efficient heuristic(Becker
and Geiger 1996; Amir 2001).

The reachable objects are added to preconditions and effects
respectively.
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Figure 7: This figure shows a mapping function (f()) from a C-
space to an EF-Space. p1, p2, and p3 in C-space are mapped into p’
in EF-Space. The connected lines ((p1, p2) and (p2, p3)) represent
the first condition of Theorem 3. The circles represent the second
condition.

Theorem 4. The complexity of planning in CPMP
is bounded by O(exp(tw(CPMP))) if the tree-
decomposition is given.'”

Proof. Proofs in (Brafman and Domshlak 2006; Amir 2001)
can be easily modified to prove this theorem. 0

From Exponential C-space to Polynomial EF-Space

In this section, we provide an improvement for a previous
approach(Choi and Amir 2007) which uses workspace in-
stead of exponential C-space. Although it is not always
applicable, it efficiently finds a solution when applicable.
Here, we want to transform C-space into a smaller space,
EF-Space, using a mapping function f(). The function (f())
maps each point (p) in C-space into a point (p’) in EF-Space
with satisfying following conditions.
1. Suppose that P is a set of points whose image are p’ in
EF-Space (f(p) = p’). Any pair of two elements (p;, p2
€ P) is connected each other in C-space;

2. Suppose that two points (p and ¢) are mapped into two
points (p’ and ¢’) in EF-Space. p and ¢ are connected
neighbor if and only if p’ and ¢’ are connected neighbor.

The connected neighbor means that they are directly con-
nected in the space.

Theorem 5. The complexity of motion planning in EF-
Space is bounded by following

O(EF-Space) - O(malﬂepeEF-Space(ba”(Pep)))'

P, is a set of points whose image is ep. (That is, P, =
{p|f(p) = ep}) The ball(P) is volume of the ball which
includes P.

Proof. Given a motion planning problem (an initial config-
uration and goal one), a path in EF-Space can be found in
O(EF-Space) with a graph search algorithm. Given the path
in EF-Space, one needs to search the whole ball in worst
case. O

One simple example of EF-Space is the workspace of end-
effector. Suppose that the points in C-space are mapped

Otw(KB) is the treewidth of KB.

into the points of end-effector in workspace. One can build
an algorithm that finds all the neighboring points from the
innermost joint (or wheel) to the outermost joint with dy-
namic programming. If points of the previous joint are con-
nected to all the neighboring points, the neighboring points
of the current joint are found by a movement of current joint
(current step) or a movement of any previous joint (previ-
ous steps). The found connected points in workspace sat-
isfy the second conditions, if the first condition holds in the
workspace.

In worst case, the first condition is hard to satisfy. In the
environment, the mapping function (f) should be bijective.
Thus, the EF-Space is nothing but the C-space. However,
the first condition holds in many environment where the dis-
tance between the obstacles (or object) and the robot is far
enough. That is the theoretical reason why the planning
problem in the spare environment is easy even in C-space.

Moreover, one can find another EF-Space considering
topological shape of robot (Choi and Amir 2007). In the
space, two points (p; and ps) are mapped into the same
point p) if two configurations (p; and p-) are homotopic,
and they indicate the same end point. Otherwise, another
point p), is generated in the EF-Space. In 2D, two groups
of configurations are divided by an island in right and left
slides. Thus, the EF-Space is exponential to the number of
island obstacles. However, the EF-Space itself is bounded
by the workspace which is polynomial to the number of
joints. Thus, it is much smaller than the C-space.

6. A Unified Motion Plan

We present our algorithms in this section. The main algo-
rithm , UnifiedMotionPlanner (Algorithm 2), is composed
of three parts: FindActionFromMP (Algorithm 3); Factored-
Plan (Algorithm 4); and LocalPlanner. The goal of Unified-
MotionPlanner is to find a solution to achieve a goal situa-
tion.

Input: r(a robot), K Bo(KB of objects), sstqr«(initial state),
Sgoat(goal condition)

Output: pathconcrete(Solution)

K By <+ FindActionFromMP(7r)

CPMP=T(KBwu,KBo)

K Bryee < PartitionKBtoTree(C' P M P)

pathabstract — FactoredPlan( KBTree, Sstart, Sgoal )

pathconcrete — LocalPlan( pathabstract )

return pathconcrete
Algorithm 2: UnifiedMotionPlaner finds all the reachable lo-
cations and actions in each location with FindActionFromMP.
A motion planner is embedded in FindActionFromMP to ex-
tract abstracted actions in C-space. Then, PartitionKBtoTree
partitions the C PM P into a tree. FactoredPlan finds a solu-
tion given the pair of initial and goal condition in the parti-
tioned tree domain. The LocalPlan finds a concrete path for
the robot.

FindActoinFromMP
FindActionFromMP searches all the reachable locations and
actions in C-space or EF-Space. In both cases, it has a dra-



Input: r(a robot)
Output: K Bj(extracted actions)
M Pryee < arandom tree in C-space built by a motion
planner (e.g. Probabilistic Roadmap, Factored-Guided Motion
Planning)
for each edge (e;;) € M Prrec do
if state(p;) # state(p;) then
KBy — KBy J{
act;j(state(p;) A pi — state(p;) Ap; A —p;) }
KBy — KBy U {
actji(state(p;) A\ p; — state(pi) Api A —p;) }

return K B/

Algorithm 3: . FindActionFromMP finds all abstract ac-
tions for a robot. A motion planner (eg. FactorGuidedPlan
or RoadmapMethod) recursively finds all the reachable loca-
tions and actions. Then, the algorithm insert actions of each
configuration (c;;) of objects in the workspace. It assume that
the object is in the configuration (c;;). Thus, the condition
(configuration of objects) is combined into the actions (act;;).
The union of all actions become the K By .

matically reduced space.

FactoredPlan

FactoredPlan finds a solution after factoring the domain (the
space of end-effector in workspace) into small domains. It
decomposes the domain into a tree in which each partitioned
group becomes nodes, and shared axioms appear on a link
between nodes. Then, it finds partial plans for a node and
its children nodes with assuming that the parents nodes may
change any shared states in between. After all, it finds a
global solution in the root node.

Input: K Br,ce (partitioned KB as a tree), Sstqr¢ (initial
states), Sgoal (goal condition)
Output: pathgpsiract (An abstract plan)
depth < (predefined) number of interaction between domains.
for each node(K Bpart) in K Bryee from leaves to a root do
Actqp, < PartPlan( K Bpqrt, depth) .
SendMessage( Actqyp, the parent node of K Bpart )
pathqp < a solution from Sipni¢ t0 Sg0q: in the root node of
K Btree

return pathqp

Algorithm 4: FactoredPlanning algorithm automatically
partitions the domain to solve the planning problem (from s;n it
t0 540q1). It iterates domains from leaves to the root node with-
out backtracks. In each node, PartPlan finds all possible ac-
tions that change shared states in the parents node. PartPlan
assumes that the parent node may change any states in the
shared states in between. The planned actions in the subdo-
main become an abstract action in the parent node. They are
passed by SendMessage.

7. An Experiment in Simulation

In this preliminary simulation, we build our algorithm for a
task that pushes buttons to call numbers. There are 8 buttons
in total. 4 buttons (keyl(P1), key2(P2), unlock(P3), and

Figure 8: This is a capture of the motion of push button in the
wall in experiments. The robot has 5 DOFs (rotational joints on
the base and 4 revolute joints on the arm). We do experiment with
increasing the number of joints from 2 to 9.

lock(P4)) are used to lock (and unlock) the buttons. Other
4 buttons (#A(P5), #B(P6), #C(P7) and Call(P8)) are
used to make phone calls. Initially, the button is locked, the
robot needs to push unlock buttons after pushing both key
buttons (P1 and P2). Then, the robot can make a phone
call with pushing the C'all button (P8) after selecting an ap-
propriate number among # A(P5), #B(P6), and #C(P7).
After a call, the buttons are automatically unlocked. We en-
code such constraints and action in K Bg.

To build K B);, we build a tree from a randomized algo-
rithm with 80000 points in C-space. With a labeling function
that returned the states of buttons, we found 33 edges in the
tree'!. They are encoded into 8 actions in K By, for 8 but-
tons. Then, the combined KB (C'PM P) is used to find a
goal (calling all numbers (# A, # B, and #C). The returned
abstract actions are decoded into a path on the tree of motion
plan. Figure 8 is a snapshot of the simulation.'?

In this experiment, we focus on extracting actions from
a motion planning algorithm, because factored planer itself
is not a contribution of this paper. Theoretical and exper-
imental benefits of FactoredPlan is shown in the previous
papers (Amir and Engelhardt 2003; Brafman and Domshlak
2006). We run our simulation on a general purposed planner
(Fourman 2007). Thus, the NaiveSolution algorithm is used
in this simulation.

8. Conclusions and Future Research

We present an algorithm that combines the general purpose
(logical) planner and a motion planner. Our planner is de-
signed to manipulate objects with robot. To solve the prob-
lem, previous works used a hierarchical planner (high-level)
and a motion planner (low-level). Most of them used man-
ual encodings between two layers. That was one of technical

"We simplify the manipulations for attaching and detaching
buttons

"2The details of encoded actions and movies are available at
http://reason.cs.uiuc.edu/jaesik/cpmp/supplementary/.



hardness of this problem.

Theoretically, the combination of such planner is hard
for the following reasons: (1) hierarchical planner is hard
and not feasible sometime; and (2) direct combination of
C-space and state space gives an doubly exponential search
problem. Moreover, we can miss the geometric motion plan-
ning information, if we translate everything to PDDL (Mc-
Dermott 1998) without a motion planner.

We combine the C-space and state space in a KB, CPMP
(Combining Planning and Motion Planning). Moreover, we
provide the computational complexity of the problem. We
also argue that the treewidth of CPMP determines the hard-
ness of a manipulation task.

The suggested algorithm still has some limitations that
need to be improved in future research. First, mapping
function in Section 4needs manual encodings. Our algo-
rithms assume that there is a mapping function which pro-
vides the value of shared propositions given a configuration
of C-Space. Thus, an algorithm which can detect the change
of shared propositions with sensors would be promising.
Second, the exploration steps in FindActionFromMP may
take long time due to the large cardinality of state space
(O(n + |objects| + p) as in lemma 2. Third, assumptions
of EF-space would inappropriate for cluttered environments
where O(mazx (ball(Pep)) of theorem 5 are in-

tractable.

The combining planning and motion planning is a gener-
alized framework. However, there are many research prob-
lems to be solved in the future research. First, an algorithm
which learns the mapping function between two spaces is
necessary. Our algorithm assumes that there is a mapping
function which provides the value of shared propositions
given a configuration of C-Space. Thus, an algorithm which
can detect the change of shared propositions with sensors
would be promising. Second, the exploration step may take
long time due to the large cardinality of state space. Thus, an
adaptive exploration algorithm which builds a tree or a graph
in CSpace based on the constraints of stats space would be
useful.

epcEF-Space
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