
Coming up With Good Excuses:
What to do When no Plan Can be Found

Moritz Göbelbecker and Thomas Keller
and Patrick Eyerich and Michael Brenner and Bernhard Nebel

University of Freiburg, Germany
{goebelbe, tkeller, eyerich, brenner, nebel}@informatik.uni-freiburg.de

Abstract

When using a planner-based agent architecture, many things
can go wrong. First and foremost, an agent might fail to exe-
cute one of the planned actions for some reasons. Even more
annoying, however, is a situation where the agent is incom-
petent, i.e., unable to come up with a plan. This might be
due to the fact that there are principal reasons that prohibit a
successful plan or simply because the task’s description is in-
complete or incorrect. In either case, an explanation for such
a failure would be very helpful. We will address this problem
and provide a formalization of coming up with excuses for
not being able to find a plan. Based on that, we will present
an algorithm that is able to find excuses and demonstrate that
such excuses can be found in practical settings in reasonable
time.

Introduction
Using a planner-based agent architecture has the advantage
that the agent can cope with many different situations and
goals in flexible ways. However, there is always the pos-
sibility that something goes wrong. For instance, the agent
might fail to execute a planned action. This may happen be-
cause the environment has changed or because the agent is
not perfect. In any case, recovering from such a situation
by recognizing the failure followed by replanning is usually
possible (Brenner and Nebel 2009).

Much more annoying than an execution failure is a fail-
ure to find a plan. Imagine a household robot located in the
living room with a locked door to the kitchen that receives
the order to tidy up the kitchen table but is unable to come
up with a plan. Better than merely admitting it is incompe-
tent would be if the robot could provide a good excuse – an
explanation of why it was not able to find a plan. For exam-
ple, the robot might recognize that if the kitchen door were
unlocked it could achieve its goals.

In general, we will adopt the view that an excuse is a
counterfactual statement (Lewis 1973) of the form that a
small change of the planning task would permit the agent
to find a plan. Such a statement is useful when debugging a
domain description because it points to possible culprits that
prevent finding a plan. Also in a regular setting a counter-
factual explanation is useful because it provides a hint for

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

where to start when trying to resolve the problem, e.g., by
asking for help from a human or exploring the space of pos-
sible repair actions.

There are many ways to change a planning task so that it
becomes possible to generate a plan. One may change
• the goal description,
• the initial state, or
• the set of planning operators.

Obviously, some changes are more reasonable than oth-
ers. For example, weakening the goal formula is, of course,
a possible way to go. We would then reduce the search for
excuses to over-subscription planning (Smith 2004). How-
ever, simply ignoring goals would usually not be considered
as an excuse or explanation.

On the other hand, changing the initial state appears to be
reasonable, provided we do not make the trivial change of
making goal atoms true. In the household robot example,
changing the state of the door would lead to a solvable task
and thus give the robot the possibility to actually realize the
reasons of its inability to find a plan.

In some cases, it also makes sense to add new objects
to the planning task, e.g., while the robot is still missing
sensory information about part of its environment. Thus,
we will consider changes to the object domain as potential
changes of the task, too. Note that there are also situations
in which removing objects is the only change to the initial
state that may make the problem solvable. However, since
these situations can almost always be captured by changing
those objects’ properties, we ignore this special case in the
following.

Finally, changing the set of planning operators may in-
deed be a “better” way, e.g., if an operator to unlock the
door is missing. However, because the number of poten-
tial changes to the set of operators exceeds the number of
changes to the initial state by far, we will concentrate on the
latter in the remainder of the paper, which also seems like
the most intuitive type of explanation.

The rest of the paper is structured as follows. In the
next section, we introduce the formalization of the planning
framework we employ. After that we sketch a small moti-
vating example. Based on that, we will formalize the notion
of excuses and determine the computational complexity of
finding excuses. On the practical side, we present a method

Dagstuhl Seminar Proceedings 10081
Cognitive Robotics
http://drops.dagstuhl.de/opus/volltexte/2010/2773

herbstritt
Schreibmaschinentext
Originally published as: Moritz Göbelbecker, Thomas Keller, Patrick Eyerich, Michael Brenner and Bernhard Nebel, Coming Up With Good Excuses: What to do When no Plan Can be Found. Proc. of Int'l Conf. on Automated Planning and Scheduling (ICAPS'10), pp. 81-88, May 12-16, 2010. AAAI. Permission for online reproduction granted by AAAI.

herbstritt
Schreibmaschinentext

herbstritt
Schreibmaschinentext

herbstritt
Schreibmaschinentext

herbstritt
Schreibmaschinentext

herbstritt
Schreibmaschinentext

herbstritt
Schreibmaschinentext

herbstritt
Schreibmaschinentext

that is able to find good excuses, followed by a section that
shows our method’s feasibility by presenting empirical data
on some IPC planning domains and on domains we have
used in a robotic context. Finally, we discuss related work
and conclude.

The Planning Framework
The planning framework we use in this paper is the
ADL fragment of PDDL2.2 (Edelkamp and Hoffmann 2004)
extended by multi-valued fluents as in the SAS+ formalism
(Bäckström and Nebel 1995) or functional STRIPS (Geffner
2000).1 One reason for this extension is that modeling us-
ing multi-valued fluents is more intuitive. More importantly,
changing fluent values when looking for excuses leads to
more intuitive results than changing truth values of Boolean
state variables, since we avoid states that violate implicit
domain constraints. For example, if we represent the loca-
tion of an object using a binary predicate at(·, ·), changing
the truth value of a ground atom would often lead to hav-
ing an object at two locations simultaneously or nowhere
at all. The domain description does not tell us that, if we
make a ground atom with the at predicate true, we have to
make another ground atom with the identical first parameter
false. By using multi-valued fluents instead, such implicit
constraints are satisfied automatically.

Of course, our framework can be applied to any reason-
able planning formalism, since it is simply a matter of conve-
nience to have multi-valued fluents in the language. This be-
ing said, a planning domain is a tuple ∆ = 〈T , C∆,S,O〉,
where

• T are the types,

• C∆ is the set of domain constant symbols,

• S is the set of fluent and predicate symbols with associ-
ated arities and typing schemata, and

• O is the set of planning operators consisting of precon-
ditions and effects.

A planning task is then a tuple Π = 〈∆, CΠ, s0, s
∗〉,

where

• ∆ is a planning domain as defined above,

• CΠ is a set of task-dependent constant symbols disjoint
from C∆,

• s0 is the description of the initial state, and

• s∗ is the goal specification.

The initial state is specified by providing a set s0 of
ground atoms, e.g., (holding block1) and ground flu-
ent assignments, e.g., (= (loc obj1) loc2). As usual,
the description of the initial state is interpreted under the
closed world assumption, i.e., any logical ground atom not
mentioned in s0 is assumed to be false and any fluent not
mentioned is assumed to have an undefined value. In the
following sections we assume that S contains only fluents

1Multi-valued fluents have been introduced to PDDL in version
3.1 under the name of “object fluents”.

and no predicates at all. More precisely, we will treat predi-
cates as fluents with a domain of {⊥,>} and a default value
of ⊥ instead of unknown.

The goal specification is a closed first-order formula over
logical atoms and fluent equalities. We say that a planning
task is solvable iff there is a plan Ψ that transforms the state
described by s0 into a state that satisfies the goal specifica-
tion s∗.

Sometimes we want to turn an initial state description into
a (sub-)goal specification. Assuming that plan Ψ solves the
task Π = 〈∆, CΠ, s0, s

∗〉, by nec(s0,Ψ, s∗) we mean the
formula that describes the setting of the fluents necessary for
the correct execution of Ψ started in initial state s0 leading to
a state satisfying s∗. Note that s0 |= nec(s0,Ψ, s∗) always
holds.

Motivating Examples
The motivation for the work described in this paper mostly
originated from the DESIRE project (Plöger et al. 2008), in
which a household robot was developed that uses a domain-
independent planning system. More often than not a sen-
sor did not work the way it was supposed to, e.g., the vi-
sion component failed to detect an object on a table. If the
user-given goal is only reachable by utilizing the missing ob-
ject, the planning system naturally cannot find a plan. Obvi-
ously, thinking ahead of everything that might go wrong in a
real-life environment is almost impossible, and if a domain-
independent planning system is used, it is desirable to also
realize flaws in a planning task with domain-independent
methods. Furthermore, we wanted the robot to not only re-
alize that something went wrong (which is not very hard to
do after all), but it should also be able to tell the user what
went wrong and why it couldn’t execute a given command.

However, not only missing objects may cause problems
for a planning system. Consider a simple planning task on
the KEYS-domain, where a robot navigates between rooms
through doors that can be unlocked by the robot if it has the
respective key (see Fig. 1). The goal of such a task is to
have the robot reach a certain room, which in this example
is room1.

room0

room1 room2

door 1 door 2

robot

k1

k2

(:objects
room0 room1 room2 - room
door1 door2 - door
key1 key2 - key)

(:init
(= (robot_pos) room0)
(= (key_pos key1) room2)
(= (key_pos key2) room1)
(connects room0 room1 door1)
(connects room1 room0 door1)
(connects room0 room2 door2)
(connects room2 room0 door2)
(= (key_opens key1) door1)
(= (key_opens key2) door2)
(locked door1)
(locked door2))

(:goal (= (robot_pos) room1))

Figure 1: Unsolvable task in the Keys domain with corresponding
PDDL code.

Obviously there exists no plan for making the robot reach
its goal. What, however, are the reasons for this task being

2

unsolvable? As we argued in the introduction, the answer to
this question can be expressed as a counterfactual statement
concerning the planning task. Of course, there are numerous
ways to change the given problem such that a solution exists,
the easiest one certainly being to already have the goal ful-
filled in the initial state. An only slightly more complicated
change would be to have the door to room1 state) in which
case the robot could directly move to its destination, or have
the robot already carry the key to that door (changing the
value of (key pos key1) from room2 to robot) or even
a new one (adding an object of type key with the required
properties), or simply have one of the keys in room0 (e.g.
(= (key pos key1) room0)).

Having multiple possible excuses is, as in this case, rather
the rule than the exception, and some of them are more rea-
sonable than others. So, the following sections will answer
two important questions. Given an unsolvable planning task,
What is a good excuse? and How to find a good excuse?

Excuses
As spelled out above, for us an excuse is a change in the ini-
tial state (including the set of objects) with some important
restrictions: We disallow the deletion of objects and changes
to any fluents that could contribute to the goal. For example,
we may not change the location of the robot if having the
robot at a certain place is part of the goal.

A ground fluent f contributes to the goal if adding or
deleting an assignment f = x from a planning state can
make the goal true. Formally, f contributes to s∗ iff there
exists a state s with s 6|= s∗ such that s ∪ {f = x} |= s∗ for
some value x.

Given an unsolvable planning task Π = 〈∆, CΠ, s0, s
∗〉,

an excuse is a tuple χ = 〈Cχ, sχ〉 that implies the solvable
excuse task Πχ = 〈∆, Cχ, sχ, s∗〉 such that CΠ ⊆ Cχ and
if (f = x) ∈ s0 4 sχ (where 4 denotes the symmetric set
difference) then f must not contribute to s∗.

The changed initial state sχ is also called excuse state.
It should be noted that it is possible that no excuse ex-

ists, e.g., if there is no initial state such that a goal state is
reachable. More precisely, there is no excuse iff the task
is solvable or all changes to the initial state that respect the
above mentioned restrictions do not lead to a solvable task.

Acceptable Excuses
If we have two excuses and one changes more initial facts
than the other, it would not be an acceptable excuse, e.g., in
our example above moving both keys to the room where the
robot is would be an excuse. Relocating any one of them to
that room would already suffice, though.

So, given two excuses χ = 〈Cχ, sχ〉 and χ′ = 〈Cχ′ , sχ′〉,
we say that χ is at least as acceptable as χ′, written χ � χ′,
iff Cχ ⊆ Cχ′ and s0 4 sχ ⊆ s0 4 sχ′ . A minimal element
under the ordering � is called an acceptable excuse.

Good Excuses
Given two acceptable excuses, it might nevertheless be the
case that one of them subsumes the other if the changes in
one excuse can be explained by the other one.

In the example from Fig. 1, one obvious excuse χ would
lead to a task in which door1 was unlocked so that the robot
could enter room1. This excuse, however, is unsatisfactory
since the robot itself could unlock door1 if its key was lo-
cated in room0 or if door2 was unlocked. So any excuse χ′
that contains one of these changes should subsume χ.

We can formalize this subsumption as follows: Let χ =
〈Cχ, sχ〉 be an acceptable excuse to a planning task Π =
〈∆, CΠ, s0, s

∗〉 with the plan Ψ solving Πχ. Another accept-
able excuse χ′ = 〈Cχ′ , sχ′〉 to Π is called at least as good
as χ, in symbols χ′ v χ, if χ′ is an acceptable excuse also
to 〈∆, CΠ, s0, nec(sχ′ ,Ψ, s∗)〉. We call χ′ better than χ, in
symbols χ′ @ χ, iff χ′ v χ and χ 6v χ′.

In general, good excuses would be expected to consist
of changes to so-called static facts, facts that cannot be
changed by the planner and thus cannot be further regressed
from, as captured by the above definition. In our example
this could be a new key – with certain properties – and per-
haps some additional unlocked doors between rooms.

However, there is also the possibility that there are cyclic
dependencies as in the children’s song There’s a Hole in the
Bucket. In our example, one excuse would be χ, where the
door to room2 is unlocked. In a second one, χ′, the robot
carries key k2. Obviously, χ v χ′ and χ′ v χ hold and thus
χ and χ′ form a cycle in which all excuses are equally good.

In cases with cyclic dependencies, it is still possible to
find even “better” excuses by introducing additional objects,
e.g., a new door or a new key in our example. However,
cyclic excuses as above, consisting of χ and χ′, appear to
be at least as intuitive as excuses with additional objects.
For these reasons, we define a good excuse χ as one such
that there either is no better excuse or there exists a different
excuse χ′ such that χ v χ′ and χ′ v χ.

Perfect Excuses
Of course, there can be many good excuses for a task, and
one may want to distinguish between them. A natural way
to do so is to introduce a cost function that describes the cost
to transform one state into another. Of course, such a cost
function is just an estimate because the planner has no way
to transform the initial state into the excuse state.

Here, we will use a cost function c(·), which should re-
spect the above mentioned acceptability ordering � as a
minimal requirement. So, if χ′ � χ , we require that
c(χ′) ≤ c(χ). As a simplifying assumption, we will only
consider additive cost functions. So, all ground fluents have
predefined costs, and the cost of an excuse is simply the sum
over the costs of all facts in the symmetric difference be-
tween initial and excuse state. Good excuses with minimal
costs are called perfect excuses.

Computational Complexity
In the following, we consider ordinary propositional and
DATALOG planning, for which the problem of deciding
plan existence – the PLANEX problem – is PSPACE- and
EXPSPACE-complete, respectively (Erol, Nau, and Subrah-
manian 1995). In the context of finding excuses, we will
mainly consider the following problem for acceptable, good,
and perfect excuses:

3

• EXCUSE-EXIST: Does there exist any excuse at all?
In its unrestricted form, this problems is undecidable for

DATALOG planning.

Theorem 1 EXCUSE-EXIST is undecidable for DATALOG
planning.

Proof Sketch. The main idea is to allow an excuse to in-
troduce an unlimited number of new objects, which are ar-
ranged as tape cells of a Turing machine. That these tape
cells are empty and have the right structure could be veri-
fied by an operator that must be executed in the beginning.
After that a Turing machine could be simulated using ideas
as in Bylander’s proof (Bylander 1994). This implies that
the Halting problem on the empty tape can be reduced to
EXCUSE-EXIST, which means that the latter is undecid-
able.

However, an excuse with an unlimited number of new ob-
jects is, of course, also not very intuitive. For these reasons,
we will only consider BOUNDED-EXCUSE-EXIST, where
only a polynomial number of new objects is permitted. As
it turns out, this version of the problem is not more difficult
than planning.

Lemma 2 There is a polynomial Turing reduction from
PLANEX to BOUNDED-EXCUSE-EXIST for acceptable,
good, or perfect excuses.

Proof Sketch. Given a planning task Π = 〈∆, CΠ, s0, s
∗〉

with planning domain ∆ = 〈T , C∆,S,O〉, construct two
new tasks by extending the set of predicates in S by a fresh
ground atom a leading to S ′. In addition, this atom is added
to all preconditions in the set of operators resulting in O′.
Now we generate:

Π′ = 〈〈T , C∆,S ′,O′〉, CΠ, s0, s
∗〉

Π′′ = 〈〈T , C∆,S ′,O′〉, CΠ, s0 ∪ {a}, s∗〉
Obviously, Π is solvable iff there exists an excuse for Π′ and
there is no excuse for Π′′.

It is also possible to reduce the problems the other way
around, provided the planning problems are in a determinis-
tic space class.

Lemma 3 The BOUNDED-EXCUSE-EXIST problem can
be Turing reduced to the PLANEX problem – provided
PLANEX is complete for a space class that includes
PSPACE.

Proof Sketch. By Savitch’s theorem (1980), we know that
NSPACE(f(n)) ⊆ DSPACE((f(n))2), i.e., that all deter-
ministic space classes including PSPACE are equivalent to
their non-deterministic counterparts. This is the main rea-
son why finding excuses is not harder than planning.

Let us assume that the plan existence problem for our
formalism is XSPACE-complete. Given a planning task
Π = 〈∆, CΠ, s0, s

∗〉, the following algorithm will determine
whether there is an excuse:

1. If Π is solvable, return “no”.
2. Guess a χ = 〈Cχ, sχ〉 and verify the following:

a) CΠ ⊆ Cχ;

b) Πχ = 〈∆, Cχ, sχ, s∗〉 is solvable;

This non-deterministic algorithm obviously needs only
XSPACE using an XSPACE-oracle for the PLANEX prob-
lem. Since the existence of an excuse implies that there is
a perfect excuse (there are only finitely many different pos-
sible initial states), the algorithm works for all types of ex-
cuses.

From the two lemmas, it follows immediately that the
EXCUSE-EXIST problem and the PLANEX problem have
the same computational complexity.

Theorem 4 The BOUNDED-EXCUSE-EXIST problem is
complete for the same complexity class as the PLANEX
problem for all planning formalisms having a PLANEX
problem that is complete for a space class containing
PSPACE.

Using similar arguments, it can be shown that we can
compute which literals in the initial state can be relevant
or are necessary for an excuse. By guessing and verifying
using PLANEX-oracles, these problems can be solved and
are therefore in the same space class as the PLANEX prob-
lems, provided they are complete for a space class including
PSPACE.

Candidates for Good Excuses
The range of changes that may occur in acceptable excuses
is quite broad: The only excuses forbidden are those that
immediately contribute to the goal. We could try to find
acceptable excuses and apply goal regression until we find a
good excuse, but this would be highly suboptimal, because
it might require a lot of goal regression steps. Therefore, we
first want to explore if there are any constraints (on fluent
or predicate symbols, source or target values) that must be
satisfied in any good excuse.

In order to analyze the relations between fluent symbols,
we apply the notion of causal graphs and domain transition
graphs (Helmert 2006) to the abstract domain description.

The causal graph CG∆ of a planning domain ∆ =
〈T , C∆,S,O〉 is a directed graph (S, A) with an arc (u, v) ∈
A if there exists an operator o ∈ O so that u ∈ pre(o) and
v ∈ eff(o) or both u and v occur in eff(o). If u = v then
(u, v) is in A iff the fluents in the precondition and effect
can refer to distinct instances of the fluent.

The causal graph captures the dependencies of fluents on
each other; to analyze the ways the values of one fluent can
change, we build its domain transition graph. In contrast
to the usual definition of domain transition graphs (which is
based on grounded planning tasks), the domain of a fluent
f can consist of constants as well as free variables. This
fact needs to be taken into account when making statements
about the domain transition graph (e.g., the reachability of
a variable of type t implies the reachability of all variables
of subtypes of t). For the sake of clarity, we will largely
gloss over this distinction here and treat the graph like its
grounded counterpart.

If dom(f) is the domain of a fluent symbol f ∈ S , its
domain transition graph Gf is a labeled directed graph

4

(dom(f), E) with an arc (u, v) ∈ E iff there is an op-
erator o ∈ O so that f = u is contained in pre(o) and
f = v ∈ eff(o). The label consists of the preconditions of
o minus the precondition f = u. An arc from the unknown
symbol, (⊥, v), exists if f does not occur in the precondi-
tion. We also call such an arc (u, v) ∈ Gf a transition of f
from u to v and the label of (u, v) its precondition.

For example, the domain transition graph of the
robot pos fluent has one vertex consisting of a variable
of type room and one edge (room, room) with the label of
connected(room1 , room2 , door) ∧ open(door).

In order to constrain the set of possible excuses, we re-
strict candidates to those fluents and values that are relevant
for achieving the goal. The relevant domain, domrel(f),
of a fluent f is defined by the following two conditions and
can be calculated using a fixpoint iteration: If f = v con-
tributes to the goal, then v ∈ domrel(f). Furthermore, for
each fluent f ′ on which f depends, domrel(f ′) contains the
subset of dom(f ′) which is (potentially) required to reach
any element of domrel(f).

A static change is a change for which there is no path
in the domain-transition graph even if all labels are ignored.
Obviously all changes to static variables are static, but the
converse is not always true. For example, in most planning
domains, if in a planning task a non-static fluent f is unde-
fined, setting f to some value x would be a static change.

In the following, we show that in some cases it is suf-
ficient to consider static changes as candidates for excuses
in order to find all good excuses. To describe these cases,
we define two criteria, mutex-freeness and strong connect-
edness, that must hold for static and non-static fluents, re-
spectively.

We call a fluent f mutex-free iff changing the value of
an instance of f in order to enable a particular transition of a
fluent f ′ that depends on f does not prevent any other transi-
tion. Roughly speaking, excuses involving f ′ are not good,
because they can always be regressed to the dependencies f
without breaking anything else. Two special cases of mutex-
free fluents are noteworthy, as they occur frequently and can
easily be found by analyzing the domain description: If a flu-
ent f is single-valued, i.e. there are no two operators which
depend on different values for f , it is obviously mutex-free.
A less obvious case is free variables. Let o be an opera-
tor that changes the fluent f(p1, . . . pn) from pv to p′v . A
precondition f ′(q1, . . . qn) = qv of o has free variables iff
there is at least one variable in q1, . . . , qn that doesn’t occur
in {p1, . . . pn, pv, p

′
v}. Here the mutex-freeness is provided

because we can freely add new objects to the planning task
and thus get new grounded fluents that cannot interfere with
any existing fluents.

For example, consider the unlock operator in the
KEYS-domain. Its precondition includes key pos(key) =
robot ∧ key opens(key) = door . Here key is a free vari-
able, so it is always possible to satisfy this part of the pre-
condition by introducing a new key object and setting its
position to the robot and its key opens property to the door
we want to open. As we do not have to modify an existing
key, all actions that were previously applicable remain so.

The second criterion is the connectedness of the domain

transition graph. We call a fluent f strongly connected iff
the subgraph of Gf induced by the relevant domain of f is
strongly connected. This means that once f has a value in
domrel(f) any value that may be relevant for achieving the
goal can be reached in principle. In practice, most fluents
have this property because any operator that changes a fluent
from one free variable to another connects all elements of
that variable’s type.
Theorem 5 Let ∆ be a domain with an acyclic causal graph
where all non-static fluents are strongly connected and all
static fluents are mutex-free.

Then any good excuse will only contain static changes.
Proof. First note that a cycle free causal graph implies that
there are no co-occurring effects, as those would cause a
cycle between their fluents.

If an excuse χ = 〈Cχ, sχ〉 for Π = 〈∆, CΠ, s0, s
∗〉 is an

excuse that contains non-static changes, then we will con-
struct an excuse χ′ = 〈Cχ′ , sχ′〉 @ χ containing only static
facts which can explain χ. As all static fluents are mutex-
free, no changes made to the initial state sχ′ to fulfill static
preconditions can conflict with changes already made to sχ,
so we can choose the static changes in χ′ to be those that
make all (relevant) static preconditions true.

Let f, v, v′ be a non-static change, i.e., f = v ∈ s0 and
f = v′ ∈ sχ. This means that there exists a path from v to v′
in Gf . If all preconditions along this path are static, we are
done as all static preconditions are satisfied in sχ′ . If there
are non-static preconditions along the path from v to v′, we
can apply this concept recursively to the fluents of those pre-
conditions. As there are no co-occurring effects and the rel-
evant part of each non-static fluent’s domain transition graph
is strongly connected, we can achieve all preconditions for
each action and restore the original state later.

We can easily extend this result to domains with a cyclic
causal graph:
Theorem 6 Let ∆ be a domain where all non-static fluents
are strongly connected, all static fluents are mutex-free and
each cycle in the domain’s causal graph contains at least
one mutex-free fluent.

Then any good excuse will only contain static changes or
changes that involve a fluent on a cycle.
Proof. We can reduce this case to the non-cyclic case, by
removing all effects that change the fluents f fulfilling the
mutex-free condition, thus making them static. Let us call
this modified domain ∆′.

Let χ be an excuse with non-static changes. Because
∆′ contains only a subset of operators of ∆, any non-static
change that can further be explained in ∆′ can also be ex-
plained in ∆. So there exists an χ′ @ χ, which means that χ
cannot be a good excuse unless the changed fluent lies on a
cycle so that χ @ χ′ may hold, too.

While these conditions may not apply to all common
planning domains as a whole, they usually apply to a large
enough set of the fluents so that limiting the search to static
and cyclic excuses speeds up the search for excuses signifi-
cantly without a big trade-off in optimality.

5

Finding Excuses Using
a Cost-Optimal Planner

We use the results from the previous section to transform
the problem of finding excuses into a planning problem by
adding operators that change those fluents that are candi-
dates for good excuses. If we make sure that those change
operators can only occur at the start of a plan, we get an
excuse state sχ by applying them to s0.

Given an (unsolvable) planning task Π = 〈∆, CΠ, s0, s
∗〉,

we create a transformed task with action costs Π′ =
〈∆′, CΠ′ , s0

′, s∗〉 as follows.
We recursively generate the relevant domain for each flu-

ent symbol f ∈ S by traversing the causal graph, starting
with the goal symbols. During this process, we also iden-
tify cyclic dependencies. Then we check Gf for reachabil-
ity, adding all elements of dom(f) from which domrel(f)
is not reachable to changes(f). If f is involved in a cyclic
dependency we also add domrel(f) to changes(f).

To prevent further changes to the planning state after the
first execution of a regular action, we add the predicate
started to S ′ and as a positive literal to the effects of all
operators o ∈ O.

For every fluent f (with arity n) and v ∈ changes(f) we
introduce a new operator setfv as follows:

pre(setfv) = ¬started ∧ f(p1 . . . pn) = v
n∧
i=1

¬unused(pi)

eff(setfv) = {f(p1 . . . pn) = pn+1}

To add a new object of type t to the initial state, we
add a number2 of spare objects spt1 . . . sptn to CΠ′ . For
each of these objects spti, the initial state s0

′ contains the
facts unused(spti). We then add the operator addt(p) with
pre(addt) = unused(p) ∧ ¬started and eff(addt) =
{¬unused(p)}.

To prevent the use of objects that have not been activated
yet we add ¬unused(pi) to each operator o ∈ O for each
parameter pi to pre(o) if pre(o) does not contain a fluent or
positive literal with pi as parameter.

Due to the use of the started predicate, any plan Ψ can be
partitioned into the actions before started was set (those that
change the initial state) and those after. We call the subplans
Ψs0 and ΨΠ, respectively.

As a final step we need to set the costs of the change ac-
tions. In this implementation we assume an additive cost
function that assigns non-zero costs to each change and does
not distinguish between different instances of a fluent, so
c(f) are the costs associated with changing the fluent f
and c(t) the costs of adding an object of type t. We set
c(setfv) = αc(f) and c(addt) = αc(t) with α being a scal-
ing constant. We need to make sure that the costs of the
change actions always dominate the total plan’s costs as oth-
erwise worse excuses might be found if they cause ΨΠ to be

2As shown in the complexity discussion, the number of new
objects might be unreasonably high. In some cases this number can
be restricted further but this has been left out for space reasons. In
practice we cap the number of spares per type with a small constant.

shorter. We can achieve this by setting α to an appropriate
upper bound of the plan length in the original problem Π.

From the resulting plan Ψ we can easily construct an ex-
cuse χ = 〈CΨ, sΨ〉 with CΨ = CΠ ∪ {c : addt(c) ∈ Ψ}
and sΨ being the state resulting from the execution of Ψs0
restricted to the fluents defined in the original Problem Π.

Theorem 7 Let Π be a planning task, Ψ an optimal solution
to the transformed task Π′, and χ = 〈CΨ, sΨ〉 the excuse
constructed from Ψ. Then χ is an acceptable excuse to Π.

Proof. ΨΠ only contains operators in ∆ and constants from
Cχ. Obviously ΨΠ also reaches the goal from sΨ. So Πχ is
solvable and χ thus an excuse. To show that χ is acceptable,
we need to show that no excuse with a subset of changes
exists. If such an excuse χ′ existed it could be reached by
applying change operators (as the changes in χ′ are a subset
of those in χ). Then a plan Ψ′ would exist with c(Ψ′s0) <
c(Ψs0) and, as the cost of Ψs0 always dominates the cost of
ΨΠ, c(Ψ′) < c(Ψ). This contradicts that Ψ is optimal, so χ
must be acceptable.

Theorem 8 Let Π be a planning task, Ψ an optimal solution
to the transformed task Π′, and χ = 〈CΨ, sΨ〉 the excuse
constructed from Ψ. If χ changes only static facts, it is a
perfect excuse.

Proof. As χ contains only static facts, it must be a good
excuse. From the definition of the cost function it follows
that c(χ) = αc(Ψs0), so existence of an excuse χ′ with
c(χ′) < c(χ) would imply, as in the previous proof, the
existence of a plan Ψ′ with c(Ψ′) < c(Ψ), contradicting the
assumption that Ψ is optimal.

Cyclic Excuses
Solving the optimal planning problem will not necessarily
give us a good excuse (unless the problem’s causal graph is
non-cyclic, of course). So if we get an excuse that changes
a non-static fact, we perform a goal regression as described
earlier. We terminate this regression when all new excuses
have already been encountered in previous iterations or no
excuse can be found anymore. In the former case we select
the excuse with the lowest cost from the cycle, in the latter
case we need to choose the last found excuse.

Note though, that this procedure will not necessarily find
excuses with globally optimal costs: As there is no guaran-
tee that χ′ @ χ also implies c(χ′) ≤ c(χ) the goal regression
might find excuses that have higher costs than a good excuse
that might be found from the initial task Π.

Experiments
To test our implementation’s quality we converted selected
planning tasks of the IPC domains LOGISTICS (IPC’00),
ROVERS and STORAGE (both IPC’06) to use object fluents,
so that our algorithm could work directly on each problem’s
SAS+ representation. In order to give our program a rea-
son to actually search for excuses, it was necessary to create
flaws in each problem’s description that made it unsolvable.
For each problem file, we modified the initial state by ran-
domly deleting any number of valid fluents and predicates,

6

sat 0 opt 0 sat 1 opt 1 sat 2 opt 2 sat 3 opt 3 sat 4 opt 4
logistics-04 0.78s 1.43s 0.69s (0.5) 0.94s (0.5) 0.71s (1.5) 1.02s (1.5) 0.53s (1.0) 0.57s (1.0) 0.52s (2.5) 1.29s (2.5)
logistics-06 0.75s 9.81s 0.74s (1.5) 28.12s (1.5) 0.65s (2.5) 101.47s (2.5) 0.65s (3.0) 55.05s (2.5) 0.62s (3.5) 43.57s (3.5)
logistics-08 1.27s 76.80s 1.27s (1.0) 276.99s (1.0) 1.17s (1.0) 46.47s (1.0) 1.08s (5.5) 1176.49s (3.5) 0.96s (5.5) 1759.87s (4.5)
logistics-10 2.62s — 2.24s (2.0) — 2.36s (5.5) — 2.25s (4.0) — 1.29s (5.5) —
logistics-12 2.58s — 2.66s (2.0) — 2.66s (4.5) — 2.28s (5.0) — 1.89s (6.5) —
logistics-14 4.73s — 4.78s (2.5) — 4.24s (6.0) — 3.70s (7.5) — 2.71s (6.0) —
rovers-01 3.04s 3.61s 3.09s (0.5) 5.72s (0.5) 3.17s (1.5) 8.17s (1.5) 2.79s (5.5) — 2.90s (7.5) —
rovers-02 3.25s 3.79s 3.24s (0.5) 4.45s (0.5) 3.31s (2.5) 21.48s (2.5) 3.23s (3.0) 62.36s (3.0) 2.87s (6.5) —
rovers-03 4.15s 5.53s 4.11s (0.5) 7.90s (0.5) 3.55s (2.5) 112.43s (2.5) 4.04s (5.5) — 3.67s (6.5) —
rovers-04 5.01s 6.53s 4.94s (1.0) 8.97s (0.5) 68.60s (5.0) 22.01s (2.0) 3.21s (6.0) — 9.45s (12.0) —
rovers-05 5.29s — 6.23s (2.0) 925.61s (2.0) 7.25s (4.0) — 5.82s (5.0) 790.57s (5.0) 6.32s (8.0) —
storage-01 1.77s 1.83s 2.01s (0.5) 2.31s (0.5) 1.71s (3.0) 2.11s (2.0) 1.84s (5.0) 24.81s (4.0) 1.82s (4.5) 11.12s (3.5)
storage-05 11.14s 15.66s 10.85s (0.5) 37.09s (0.5) 8.25s (4.0) 53.38s (4.0) 10.25s (6.0) — 31.70s (6.0) —
storage-08 30.46s 101.32s 35.59s (1.5) — 774.17s (5.5) — 765.32s (7.5) — 110.31s (8.5) —
storage-10 88.07s 214.10s 62.93s (1.0) — 64.56s (2.0) — 423.71s (3.0) — 257.10s (4.0) —
storage-12 131.36s — — — — — — — — —
storage-15 1383.65s — — — — — — — — —

Table 1: Results for finding excuses on some IPC domains. All experiments were conducted on a 2.66 GHz Intel Xeon processor with a
30 minutes timeout and a 2 GB memory limit. We used two setting for the underlying Fast Downward Planner: sat is Weighted A* with
the enhanced-additive heuristic and a weight of 5, opt is A* with the admissible LM Cut Heuristic. For each problem instance there are five
versions: the original (solvable) version is referred to as 0 while versions 1 to 4 are generated according to the deletions described in the
Experiments section. We used an uniform cost measure with the exception that assigning a value to a previously undefined fluent costs 0.5.
Runtime results are in seconds; the excuses costs are shown in parentheses.

or by completely deleting one or more objects necessary to
reach the goal in every possible plan (the latter includes the
deletion of all fluents and predicates containing the deleted
object as a parameter). For instance, in the LOGISTICS do-
main, we either deleted one or more city-of fluents, or all
trucks located in the same city, or all airplanes present in the
problem.

In order to not only test on problems that vary in the diffi-
culty to find a plan, but also the difficulty to find excuses, we
repeated this process four times, each repetition taking the
problem gained in the iteration before as the starting point.
This lead to four versions of each planning task, each one
missing more initial facts compared to the original task than
the one before.

Our implementation is based on the Fast Downward plan-
ning system (Helmert 2006), using a Weighted A∗ search
with an extended context-enhanced additive heuristic that
takes action costs into account. Depicted are runtimes and
the cost of the excuse found. Because this heuristic is not
admissible, the results are not guaranteed to be optimal, so
we additionally ran tests usingA∗ and the (admissible) land-
mark cut heuristics (Helmert and Domshlak 2009).

To judge the quality of the excuses produced we used a
uniform cost measure, with one exception: The cost of the
assignment of a concrete value to a previously undefined flu-
ent is set to be 0.5. This kind of definition captures our defi-
nition of acceptable excuses via the symmetric set difference
and also appears to be natural: Assigning a value to an un-
defined fluent should be of lower cost than changing a value
that was given in the original task. Note that switching a
fluent’s value actually has a cost of 1.0.

As the results in Table 1 show, the time for finding ex-
cuses increases significantly in the larger problems. The
principal reason for that is that previously static predicates
like connected in the STORAGE domain have become non-
static due to the introduction of change operators. This leads
both to a much larger planning state (as they cannot be com-
piled away anymore), as well as a much larger amount of
applicable ground actions. This effect can be seen in the

first two columns which show the planning times on the un-
modified problems (but with the added change operators).

As expected, optimal search was able to find excuses for
fewer problems than satisficing search. Satisficing search
came up with excuses for most problems in a few seconds
with the exception of the storage domain, due to the many
static predicates. The costs of the excuses found were some-
times worse than those found by optimal search, but usu-
ally not by a huge amount. If better excuses are desired,
additional tests showed that using smaller weights for the
Weighted A∗ are a reasonable compromise.

It is interesting to note that for the satisficing planner the
number of changes needed to get a solvable task has little
impact on the planning time. The optimal search, on the
other hand, usually takes much longer for the more flawed
problems. A possible explanation for this behavior is that
the number of possible acceptable excuses grows drastically
the more facts we remove from the problem. This makes
finding some excuse little harder, but greatly increases the
difficulty of finding an optimal excuse.

While most of the excuses described in this paper can be
found in the problems we created this way, it is very un-
likely that a problem is contained that is unsolvable due to
a cyclic excuse3. The aforementioned KEYS-domain on the
other hand is predestined to easily create problems that are
unsolvable because of some cyclic excuse. So for our second
experiment, we designed problems on that domain with an
increasing number of rooms n connected so that they form a
cycle: for each room k, k 6= n, there is a locked door k lead-
ing to room k + 1, and an additional, unlocked one between
rooms n and 0 (each connection being valid only in the de-
scribed direction). For each door k there is a key k which
is placed in room k, with the exception of key 0 which is
placed in room n and the key to the already unlocked door
n which doesn’t exist. Obviously a good excuse for every n
remains the same: If the robot held the key to door 0 in the

3This is only possible if that cyclic excuse was already part of
the task, but didn’t cause a problem because there existed another,
after the deletion nonexistent way to the goal.

7

rooms sat opt rooms sat opt
3 0.91s (1) 0.97s (1) 10 19.20s (2) 368.09s (1)
4 1.2s (1) 1.72s (1) 11 57.39s (2) 849.69s (1)
5 1.75s (1) 4.23s (1) 12 72.65s (2) 1175.23s (1)
6 2.19s (2) 10.69s (1) 13 84.45s (2) —
7 4.24s (2) 27.01s (1) 14 215.05s (2) —
8 6.03s (2) 65.15s (1) 15 260.39s (2) —
9 14.22s (2) 158.28s (1) 16 821.82s (2) —

Table 2: Results for finding excuses on the KEYS domain. We
used the same settings as in the experiments for Table 1, except
that the weight in the satisficing run was 1. The rows labeled rooms
give the number of rooms or the size of the cycle minus 1.

initial state, or if that door was unlocked, the task would eas-
ily be solvable. The number of necessary regression steps to
find that excuse grows with n, though, which is why KEYS is
very well suited to test the performance of the finding cyclic
excuses part of our implementation.

As can be seen in the results in Table 2, the planning time
both scales well with the size of the cycle and is reasonable
for practical purposes.

Related Work
We are not aware of any work in the area of AI planning that
addresses the problem of explaining why a goal cannot be
reached. However, as mentioned already, there is some over-
lap with abduction (a term introduced by the philosopher
Peirce), counterfactual reasoning (Lewis 1973), belief re-
vision (Gärdenfors 1986), and consistency-based diagnosis
(Reiter 1987). All these frameworks deal with identifying a
set of propositions or beliefs that either lead to inconsisten-
cies or permit to deduce an observation. There are parallels
to our notions of acceptable, good and perfect approaches
in these fields (Eiter and Gottlob 1995) – for non-cyclic ex-
cuses. The main difference to the logic-based frameworks is
that in our case there is no propositional or first-order back-
ground theory. Instead, we have a set of operators that al-
lows us to transform states. This difference might be an ex-
planation why cyclic excuses are something that appear to
be relevant in our context, but have not been considered as
interesting in a purely logic-based context.

Conclusion
In this paper we have investigated situations in which a
planner-based agent is incompetent to find a solution for a
given planning task. We have defined what an excuse in such
a situation might look like, and what characteristics such an
excuse must fulfill to be accounted as acceptable, good or
even perfect. Our main theoretical contribution is a thorough
formal analysis of the resulting problem along with the de-
scription of a concrete method for finding excuses utilizing
existing classical planning systems. On the practical side,
we have implemented this method resulting in a system that
is capable of finding even complicated excuses in reasonable
time which is very helpful both for debugging purposes and
in a regular setting like planner-based robot control.

As future work, we intend to extend our implementation

to more expressive planning formalisms dealing with time
and resources.

Acknowledgements
This research was partially supported by DFG as part of
the collaborative research center SFB/TR-8 Spatial Cogni-
tion Project R7, the German Federal Ministry of Education
and Research (BMBF) under grant no. 01IME01-ALU (DE-
SIRE) and by the EU as part of the Integrated Project CogX
(FP7-ICT-2xo15181-CogX).

References
Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Comp. Intell. 11(4):625–655.
Brenner, M., and Nebel, B. 2009. Continual planning
and acting in dynamic multiagent environments. JAAMAS
19(3):297–331.
Bylander, T. 1994. The computational complexity of
propositional STRIPS planning. AIJ 69(1–2):165–204.
Edelkamp, S., and Hoffmann, J. 2004. PDDL2.2: The lan-
guage for the classical part of the 4th international planning
competition. Technical Report 195, Univ. Freiburg, Institut
für Informatik, Freiburg, Germany.
Eiter, T., and Gottlob, G. 1995. The complexity of logic-
based abduction. Jour. ACM 42(1):3–42.
Erol, K.; Nau, D. S.; and Subrahmanian, V. S. 1995. Com-
plexity, decidability and undecidability results for domain-
independent planning. AIJ 76(1–2):75–88.
Gärdenfors, P. 1986. Belief revision and the Ramsey test
for conditionals. The Philosophical Review XCV(1):81–
93.
Geffner, H. 2000. Functional STRIPS: a more flexible
language for planning and problem solving. In Minker,
J., ed., Logic-Based Artificial Intelligence. Dordrecht, Hol-
land: Kluwer.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
ICAPS 2009, 162–169.
Helmert, M. 2006. The fast downward planning system.
JAIR 26:191–246.
Lewis, D. K. 1973. Counterfactuals. Cambridge, MA:
Harvard Univ. Press.
Plöger, P.-G.; Pervölz, K.; Mies, C.; Eyerich, P.; Brenner,
M.; and Nebel, B. 2008. The DESIRE service robotics
initiative. KI 4:29–32.
Reiter, R. 1987. A theory of diagnosis from first principles.
AIJ 32(1):57–95.
Savitch, W. J. 1980. Relations between nondeterministic
and deterministic tape complexity. Journal of Computer
and System Sciences 4:177–192.
Smith, D. E. 2004. Choosing objectives in over-
subscription planning. In ICAPS 2004, 393–401.

8

