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introduction

Many developers have reason to be concerned with with power consumption. For example,
mobile app developers want to minimize how much power their applications draw, while still
providing useful functionality. However, developers have few tools to get feedback about
changes to their application's power consumption behavior as they implement an application
and make changes to it over time.

We present a tool that, using a team's existing test cases, performs repeated
measurements of energy consumption based on instructions executed, objects generated,
and blocking latency, generating a distribution of energy use estimates for each test run,
recording these distributions in a time series of distributions over time. Then, when these
distributions change substantially, we inform the developer of this change, and offer them
diagnostic information about the elements of their code potentially responsible for the
change and the inputs responsible. Through this information, we believe that developers will
be better enabled to relate recent changes in their code to changes in energy consumption,
enabling them to better incorporate changes in software energy consumption into their
software evolution decisions.

To understand the scenario for the tool, imagine a developer changes a case insensitive
string comparison to case sensitive string comparison, saves, and one unit test reports that
there was a 20% increase in energy consumption. The developer hovers over the feedback
and the tool highlights the offending calls, showing the developer that it was a particular call
of a function that contained that new string comparison that is being called repeatedly. In
this case, the developer can weigh the decision of using the case sensitive comparison with
increased power or using the case insensitive comparison while keeping power low. Without
this data, the developer would not have known about this potential change.

Contributions are reporting significant changes in power consumption behavior from unit
test analysis and in reporting which elements of the unit tests are likely to be responsible
for the changes.

related work

Power consumption research in software is a recent topic, but there are still many
approaches.

For example, Chan et al. [Chan 2009] contribute an approach to test definition that looks
for deviations in power consumption in wireless sensor networks, while also accounting for
the power consumption involved in actually executing tests. This approach is tailored
specifically for wireless sensor nodes.

Transmeta’s Code Morphing technology [Klaiber 2000] changes the entire approach to
designing microprocessors. By demonstrating that practical microprocessors can be
implemented as hardware-software hybrids, Transmeta has dramatically expanded the
design space that microprocessor designers can explore for optimum solutions.
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The Efficeon processor is Transmeta's second-generation 256-bit VLIW design which
employs a software engine to convert code written for x86 processors to the native
instruction set of the chip (Code Morphing Software, aka CMS). Like its predecessor, the
Transmeta Crusoe (a 128-bit VLIW architecture), Efficeon stresses computational efficiency,
low power consumption, and a low thermal footprint.
http://en.wikipedia.org/wiki/Efficeon

Girard et al's work instructs readers how low-power devices can be tested safely without
affecting yield and reliability [Girard et al. 2010]. Includes necessary background
information on design for test and low-power design. Incorporates detailed coverage of all
levels of abstraction for power-aware testing of (low-power) circuits and systems.

There are also several other power consumption optimizations, including energy aware
compilers and approaches for scheduling and laying out distributed systems. There are also
reference testing approaches for the power consumption of devices, in which we compare
consumption on multiple devices.

measuring a test's energy consumption

To measure energy consumption, we will use existing energy models for a processor,
counting instruction executions by type, objects generated to account for garbage collection,
and time blocked by interactions with server requests and other external entities. We will
repeatedly run a test to sample energy consumption from non-deterministic behavior, like
blocking and threads, producing a distribution of energy consumption measurements.

diagnosing the cause of changes to tests' energy use

Our approach is applicable when an increase in energy use between successive versions of a
program is unevenly distributed across program executions, that is, when we can
distinguish good executions (normal or decreased energy use) from bad executions
(increased energy use). The approach comprises two steps. In the first step, pairs of
executions (old and new) are classified. The classification step can be considered a form of
regression testing. In the second step, executions drawn from two contrasting buckets are
analyzed to allege blame on portions of the program.

Note that the distinction between bad and good is not based on energy use in the current
version only, but rather relates executions that were expected to exhibit like behavior
(modulo intentionally observable changes in program functionality). Different definitions of
"bad" are possible. For example, we might characterize as "bad" those executions whose
energy use is at least 50% greater than in an otherwise similar execution of the previous
version, or those whose execution is two standard deviations greater than n standard
deviations from the prior version.

In addition to good and bad executions, two more classes may be distinguished. Since
there is typically some intended change from one version to the next, some execution pairs
may be deemed incomparable, because they differ sufficiently in other observable
characteristics (amount of output produced, effects on resources outside the program, etc.)
that one should not expect their energy consumption to be similar. In addition, it is
desirable that comparable execution pairs fall very clearly into either the good or the bad
bucket; it may be necessary to add an intermediate semi-bad classification between them.
Execution pairs from the semi-bad bucket are discarded and have no further use.
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The second step begins with re-execution of the new components of pairs from the bad
bucket, and an equal number of execution pairs taken from the good bucket (groups "A"
and "B" in Figure x). In this re-execution, a dynamic invariant detection tool such as Daikon
is used to gather information that characterizes the "good" executions as a group, and
separately to gather information that characterizes the "bad" executions as a group. The
number of samples from the two buckets is balanced so that putative invariants will not
appear in only one of the two sets simply because of differences in statistical confidence. If
the buckets are of sufficient size, the samples may be balanced in other regards as well,
although in general we should not be surprised to find systematic differences between the
two buckets, and this is not a problem so long as the differences are indeed representative
rather than an accident of sampling. Energy use is not measured in the second step, as it is
certain to be perturbed by monitoring for invariant detection.

When invariants of the old version of the software (group "C" in Figure x) are compared to
invariants of the good new executions and invariants of the bad new executions, the
question we ask is: Are there invariants of the old system that were preserved in the good
executions, but violated in the bad new executions? Since invariants detected by a tool like
Daikon are specific to points in the source program (typically procedure entry and exit), we
can consider each such change as an allegation of blame.

True blame may not lie exactly where the allegation points. If an invariant at procedure
entry has changed, then blame could lie with the calling procedure; called procedures may
also deserve blame if their entry invariants are preserved but invariants at exit are
changed. Red herrings (changes to invariants that are highly correlated with differences in
energy use, but not to blame for it) are also possible, but even they may provide useful
hints as to the actual cause of increased energy use.
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a regression approach

We also propose learning regression models of power consumption from performance data.
Given the model derived from the baseline version of the program, we evaluate how
accurate the model is on the new version of the program, and how the model would have to
change to conform better to the new version. We then present the developer with the
differences in power consumption between the baseline and new versions of the program
when run on the test suite, and the differences in the regression models. We then study
the hypothesis that this data is considered useful by the developer.

Given source functions $f_1, \ldots, f_n$, we log each call to each $f_i$. Given test case
$T_j$, for $j$ from 1 to $m$, we record the number of times function $f_i$ has been called
in variable $c_{ij}$. We then search for a model linking the $c_{ij}$ values (or common
functions on those values) to the
power consumption $P_j$ of test case $T_j$.

We view this model search as an instance of the {\it model selection} problem. That is,
given the {\it predictor} variables \\
$c_1, log(c_1), c_1 \cdot log(c_1), c^2_1, \\
c_2, log(c_2), c_2 \cdot log(c_2), c^2_2, \\
\ldots, \\
c_n, log(c_n), c_n \cdot log(c_n), c^2_n$, \\
and the {\it outcome} variable $P$, we seek a subset $x_1, \ldots, x_p$ of the predictor
variables
and corresponding coefficients $a_1, \ldots, a_p$ such that the following is true for all test
cases $T_j$:
\[ P_j \cong a_1 \cdot x_{1j} + \cdots + a_p \cdot x_{pj} \]

In order to do this, we apply the standard model selection procedure LARS \cite{efron-etal-
lars-2004}, as implemented in the R statistical package \cite{venables-etal-R}. This
procedure adds predictor variables one by one while building a linear regression model, until
some desired measure of accuracy of the model has been achieved. We take as our desired
measure of accuracy an adjusted $R^2$ value of 0.95. ($R^2$ is the square of the
standard Pearson correlation; adjusted $R^2$ is a measure
that compensates for the number of variables in the model; and 0.95 is considered a high
level of linear regression model accuracy.)

The result is an equation that links power consumption to the number of times given
functions in the source code have been called, or the logs, squares and so on of those
numbers. The use of logs, squares and so on makes it more likely that if there is a non-
linear relationship between the predictor and outcome variables, the LARS procedure will be
able to find it. The use of the threshold value of 0.95 guards against overfitting and makes
it more likely that a relatively small number of variables will be involved in the model (we
predict between one and eight variables).

One such model may or may not be informative to the developer. However, when
comparing a model of power consumption of a baseline version to the model of power
consumption of a new version, we hypothesize that two classes of changes may indeed be
interesting to developers.

First, if a coefficient $a_k$ has increased (resp.\ decreased) substantially, this may indicate
that the corresponding function is taking more (resp.\ less) power to compute in the new
version, when compared to the baseline. It would be up to the developer to decide whether
the new version is taking too much power, and whether the increase or decrease in power
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consumption of the function
is acceptable.

Second, if a predictor variable has been added or deleted in the new model when compared
to the baseline model, this may indicate that the corresponding function has newly become
an important
influence on the power consumption of the application. Again, it would be up to the
developer to decide whether this is a problem.

We hypothesize that the first few iterations of the model-building process will not be very
informative to the developer, but that as they inspect the historical trend in the models over
various different releases, they will get a better intuitive sense of how to use and draw
conclusions from the
models.

presenting energy use changes to developers

Once we have computed the energy use changes in tests and predicted the cause of these
changes, we then present these changes to developers. Our assumption is that tests would
already be divided into some meaningfully distinct situations: for example, one test might
regard a login procedure and another might test a save feature. Therefore, we will present
change information at the level of a test.

We will present information as proportional changes. For example, a unit test will be
described as having increased in energy consumption by an approximate percentage. We do
this instead of other more user-centered units (such as minutes of battery life lost) because
the system will have no knowledge of the representativeness of tests with respect to the
application's intended use. Providing the proportional change allows a developer to make
this representativeness assessment with their domain knowledge and intents in mind.

evaluation

Any good tool evaluation will correspond to claims. Therefore, our claims are:

1) developers find these deltas useful in making energy consumptions decisions
2) our approaches for generating deltas, including the Daikon approach and the coefficient
and predictor variable approaches, is found to be meaningful by developers
3) developers can interpret the proportional changes in a meaningful and accurate way
4) developers can use the partial diagnostic information to perform a full diagnosis
5) the developer considers the information provided by the models to be more useful the
longer they observe it.

Given these claims, we would provide a lab study in which developers would make a series
of modifications to a program, observing the system's predictions of each test's energy use
change, and verbalizing their interpretations of the meaning of the predictions. We would
also ask participants to find the cause of the change in each test, observing to what extent
the diagnostic information would aid developers in selecting code elements likely
responsible for the change. Our tool would only provide value if developers were making
valid and accurate interpretations of the system's predictions; this study would allow us to
assess this.
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THOUGHTS FROM EARLIER (unrelated to the paper above)

ideas

developers label automatically generated assertions good or bad, test suite is regenerated
based on these labels, ultimately reducing test oracle brittleness.

apply delta debugging to minimize assertion sequence, such that test still fails.

people perform normal tasks on an application, labeling "slow" scenarios, while capturing
call profiles. From these labels and call profiles, we generate unit level performance tests.

simplifying assumptions

assume an incentive an for labeling
assume a meaningful test, something understandable
assume some understanding of the code

what to do with labels

The mental task of assessing the correctness of an assertion is quite demanding, so they
better get something meaningful from it. So what we do with that label better be pretty
useful!

Michal wants to use the label to have to ask for labels less often.

It's much easier to label concrete executions because developers have a rich understanding
of the meaning of the execution. It's inherently more difficult to label units because they're
inherently more abstract. Therefore, part of the challenge of eliciting labels is finding some
more concrete scenario for a developer to label and map that concrete scenario to more
abstract test cases. What types of mapping mechanisms might we use? Machine
learning? Program analyses?

Another way to make things more concrete is to better visualize the data that's being
manipulated, to facilitate oracle judgements. For example, showing a sorting algorithm run
visually, instead of watching the code execute it, is going to better facilitate correctness
judgements. Are there ways to generate these visualizations automatically? Are
there domains for which we can design these visualizations? Does any of this
generalize beyond a particular application?

non-functional qualities that might have low hanging fruit

variable name comprehensibility
performance
latency
echo latency/responsiveness
confusing labels on a web form
legibility
feedback proximity
contrast in visual semantics is conveying meaning
testability (observability and controllability)
security (no expert in the room!)
compliance (could be arbitrary requirements for data with certain properties to be
computed)
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data loss (all values with human origin must find a home by the end of a test)
consistency (many interpretations; for example, browser compatibility)
standards compliance (acid3 for HTML and CSS)
energy consumption

optimizations

17 optimizations the compiler was able to do are no longer applicable.
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