
Groundwork	
 for	
 the	
 Development	
 of	
 Testing	
 Plans	
 for	
 Concurrent	

Software	

Eileen Kraemer and Laura K. Dillon
University of Georgia, Michigan State University

eileen@cs.uga.edu, ldillon@cse.msu.edu

Abstract

While multi-threading has become commonplace in
many application domains (e.g., embedded systems,
digital signal processing (DSP), networks, IP services,
and graphics), multi-threaded code often requires
complex co-ordination of threads. As a result, multi-
threaded implementations are prone to subtle bugs that
are difficult and time-consuming to locate. Moreover,
current testing techniques that address multi-threading
are generally costly while their effectiveness is
unknown. The development of cost-effective testing
plans requires an in-depth study of the nature,
frequency, and cost of concurrency errors in the
context of real-world applications. The full paper will
lay the groundwork for such a study, with the purpose
of informing the creation of a parametric cost model
for testing multi-threaded software. The current
version of the paper provides motivation for the study,
an outline of the full paper, and a bibliography of
related papers.

1. Introduction

The use of multi-threading has become commonplace
in domains, such as embedded systems, digital signal
processing (DSP), networks, IP services, and graphics,
where software must respond asynchronously and in a
timely manner to events produced by autonomous
agents in the execution environment. More recently,
its use is also being fueled by the increasing prevalence
of multi-core processors, integrated circuits to which
two or more individual processors (cores) have been
attached. The use of multi-threading is thus motivated
largely by the promise of performance benefits.

However, performance benefits of multi-threading rely
on the degree to which software algorithms can be
designed and implemented to execute in parallel, and
unfortunately such multithreaded code often requires
complex co-ordination of threads. As a result, multi-
threaded software is prone to subtle bugs that are
difficult and time-consuming to locate. The

unpredictable and asynchronous nature of the
execution environment necessitates reasoning about
either partially ordered or fully interleaved execution
models. Many developers find the former models
difficult to reason about, and the latter models produce
a combinatorial explosion of potential orderings. In
any case, timing-dependent errors may appear
intermittently. Most debugging techniques rely on
reproducing test executions that reveal errors, but such
executions are not easily reproduced.

The development of cost-effective testing plans
requires an in-depth study of the nature, frequency, and
cost of concurrency errors in the context of real-world
applications. In this paper we 1) survey the existing
literature on concurrency bugs; 2) survey prior work on
approaches to testing; 3) provide background on
related work and the state-of-the-art in bug reporting
and tracking; and 4) propose a structured reporting and
classification mechanism for concurrency bugs, the
execution environment in which they are found, their
resolution, and the associated approach and cost of
such resolution. This structured mechanism will
promote improved diagnosis, simplify large-scale
collection and analysis of real-world concurrency bugs,
and, applied to a sufficiently large and representative
collection of concurrency bugs, inform the creation of
a parameterized cost model for concurrency testing.

2. Prior studies of concurrency bugs

Survey prior studies of concurrency bugs, describing
approach of each and results.

Comment on effects of methodology and data set on
differences in results.

Discuss themes that emerge and effect on direction of
continuing collection and analyses of data on
concurrency bugs.

Dagstuhl Seminar Proceedings 10111
Practical Software Testing : Tool Automation and Human Factors
http://drops.dagstuhl.de/opus/volltexte/2010/2621

1

3. Related work in testing and debugging
of concurrent software

Survey major approaches to testing (and debugging) of
concurrent software.

Discuss costs and benefits of each, and how they apply
to current computing environments.

4. Prior work in bug reporting and

tracking

Survey major approaches to bug reporting and
tracking.

Discuss costs and benefits of each, and evaluate their
suitability for reporting and tracking of concurrency-
related bugs.

5. Benefits of structured reporting

We believe that the development and use of
appropriate structured representations of concurrency
bug data should both enable improved diagnosis of
individual bugs and permit systematic analysis of
collections of reports.

Expand on and provide support for this idea.

Provide examples of other domains in which such
structured reporting has facilitated analysis and
resulted in improved process e.g., MIAME data in
genomics domain, other examples.

6. Proposed reporting structure

 What data should be collected? What is necessary to
diagnose individual bugs? What additional info do we
need for larger analysis? How was the bug fixed?
How long did it take to locate? How many
interleavings/swapped memory accesses/ etc. would it
have taken/did it take to track this down and then to fix
it? … etc.

7. Cost model and testing plan

Present proposed approach to specification and
parameterization of cost model

Describe elements of cost model, preliminary data set,
fitting procedure, etc.

Describe how cost model would be used to help
formulate testing plans.

8. Conclusion

Recommend use of structured reporting for
concurrency bugs. Describe plan to apply
methodology to large data set and discuss expected
benefit of doing so.

9. References

An initial draft of potential references.

[1]	
 A.-­‐R.	
 Adl-­‐Tabatabai,	
 C.	
 Kozyrakis,	
 and	
 B.	
 Saha.	
 Transactional	

programming	
 in	
 a	
 multi-­‐core	
 environment.	
 In	
 PPOPP,	
 2007.	

	

[2]	
 C.	
 S.	
 Ananian,	
 K.	
 Asanovic,	
 B.	
 C.	
 Kuszmaul,	
 C.	
 E.	
 Leiserson,	
 and	

S.	
 Lie.	
 Unbounded	
 transactional	
 memory.	
 In	
 HPCA,	
 2005.	

	

[3]	
 C.	
 Boyapati,	
 R.	
 Lee,	
 and	
 M.	
 Rinard.	
 Ownership	
 types	
 for	
 safe	

programming:	
 Preventing	
 data	
 races	
 and	
 deadlocks.	
 In	
 OOPSLA,	

2002.	

	

[4]	
 	
 A.	
 Bron,	
 E.	
 Farchi,	
 Y.	
 Magid,	
 Y.	
 Nir,	
 and	
 S.	
 Ur.	
 Applications	
 of	

synchronization	
 coverage.	
 In	
 PPoPP,	
 2005.	

	

[5]	
 B.	
 D.	
 Carlstrom,	
 A.	
 McDonald,	
 H.	
 Cha_,	
 J.	
 Chung,	
 C.	
 C.	
 Minh,	

C.	
 Kozyrakis,	
 and	
 K.	
 Olukotun.	
 The	
 atomos	
 transactional	

programming	
 language.	
 In	
 PLDI	
 '06,	
 2006.	

	

[6]	
 S.	
 Chandra	
 and	
 P.	
 M.	
 Chen.	
 Whither	
 generic	
 recovery	
 from	

application	
 faults?	
 A	
 	
 fault	
 study	
 using	
 open-­‐source	
 software.	
 In	

DSN,	
 2000.	

	

[7]	
 J.-­‐D.	
 Choi	
 et	
 al.	
 Efficient	
 and	
 precise	
 datarace	
 detection	
 for	

multithreaded	
 object-­‐oriented	
 programs.	
 In	
 PLDI,	
 2002.	

	

[8]	
 A.	
 Chou,	
 J.	
 Yang,	
 B.	
 Chelf,	
 S.	
 Hallem,	
 and	
 D.	
 R.	
 Engler.	
 An	

empirical	
 study	
 of	
 operating	
 system	
 errors.	
 In	
 SOSP,	
 2001.	

	

[9]	
 J.	
 Corbet	
 (May	
 14	
 2008).	
 "Distributed	
 bug	
 tracking".	
 LWN.net.	

http://lwn.net/Articles/281849/.	
 Retrieved	
 2010-­‐05-­‐10.	

	

[10]	
 O.	
 Edelstein,	
 E.	
 Farchi,	
 Y.	
 Nir,	
 G.	
 Ratsaby,	
 and	
 S.	
 Ur.	
 Multi-­‐
threaded	
 java	
 program	
 test	
 generation.	
 IBM	
 Systems	
 Journal,	

2002.	

	

[11]	
 D.	
 Engler	
 and	
 K.	
 Ashcraft.	
 RacerX:	
 Effective,	
 static	
 detection	

of	
 race	
 conditions	
 and	
 deadlocks.	
 In	
 SOSP,	
 2003.	

	

[12]	
 E.	
 Farchi,	
 Y.	
 Nir,	
 and	
 S.	
 Ur.	
 Concurrent	
 bug	
 patterns	
 and	
 how	

to	
 test	
 them.	
 In	
 IPDPS,	
 2003.	

	

[13]	
 M	
 Fischer,	
 M	
 Pinzger,	
 H	
 Gall.	
 	
 Populating	
 a	
 release	
 history	

database	
 from	
 version	
 control	
 and	
 bug	
 tracking	
 systems	
 .	
 In	
 Proc.	

International	
 Conference	
 on	
 Software	
 Maintenance	
 	
 ICSM	
 2003).	

Amsterdam,	
 Netherlands,	
 September	
 2003.	
 IEEE.	

	

[14]	
 C.	
 Flanagan	
 and	
 S.	
 N.	
 Freund.	
 Atomizer:	
 a	
 dynamic	
 atomicity	

checker	
 for	
 multithreaded	
 programs.	
 In	
 POPL,	
 2004.	

2

[15] P. Godefroid. Model checking for programming
languages using verisoft. In POPL, 1997.

[16] Godefroid, P. and Nagappan, N. "Concurrency at
Microsoft - An Exploratory Survey Proceedings of (EC)^2
(CAV 2008 Workshop on "Exploiting Concurrency
Efficiently and Correctly"), Princeton, July 2008.

[17] W. Gu, Z. Kalbarczyk, R. K. Iyer, and Z. Yang.
Characterization of linux kernel behavior under errors. In
DSN, 2003.

[18] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D.
Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K.
Olukotun. Transactional memory coherence and consistency.
In ISCA, 2004.

[19] T. Harris and K. Fraser. Language support for
lightweight transactions. In OOPSLA, 2003.

[20] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy.
Composable memory transactions. In PPoPP '05, 2005.

[21] R. Hastings and B. Joyce. Purify: Fast detection of
memory leaks and access errors. In Usenix, 1992.

[22] J. Hess (6 April 2007). "Integrated issue tracking with
Ikiwiki". LinuxWorld.com. IDG.
http://www.linuxworld.com/news/2007/040607-integrated-
issue-tracking-ikiwiki.html. Retrieved 2010-05-10.

[23] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: A
tool for finding copy-paste and related bugs in operating
system code. In OSDI, 2004.

[24] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai.
Have things changed now?: an empirical study of bug
characteristics in modern open source software. In
Proceedings of the 1st workshop on Architectural and system
support for improving software dependability (ASID'06),
2006.

[25] S. Lu,W. Jiang, and Y. Zhou. A study of interleaving
coverage criteria. In FSE, 2007.

[26] S. Lu, S. Park, C. Hu, X. Ma,W. Jiang, Z. Li, R. A.
Popa, and Y. Zhou. Muvi: Automatically inferring multi-
variable access correlations and detecting related semantic
and concurrency bugs. In SOSP07, 2007.

[27] Lu, S., Park, S., Seo, E., and Zhou, Y. 2008. Learning
from mistakes: a comprehensive study on real world
concurrency bug characteristics. SIGARCH Comput. Archit.
News 36, 1 (Mar. 2008), 329-339. DOI=
http://doi.acm.org/10.1145/1353534.1346323

[28] S. Lu, J. Tucek, F. Qin, and Y. Zhou. Avio: Detecting
atomicity

violations via access interleaving invariants. In ASPLOS,
2006.

[29] B. McCloskey, F. Zhou, D. Gay, and E. Brewer.
Autolocker:
synchronization inference for atomic sections. In POPL,
2006.

[30] M. Moir. Transparent support for wait-free transactions.
In 11th International Workshop on Distributed Algorithms,
1997.

[31] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and
D. A. Wood. Logtm: Log-based transactional memory. In
HPCA, 2006.

[32] J. E. B. Moss and A. L. Hosking. Nested transactional
memory: model and architecture sketches. Sci. Comput.
Program., 2006.

[33] Multiple(wiki) "Bug report". Docforge.
http://docforge.com/wiki/Bug_report. Retrieved 2010-05-10.

[34] M. Musuvathi and S. Qadeer. Iterative context bounding
for systematictesting of multithreaded programs. In PLDI,
2007.

[35] G. C. Necula, S. McPeak, and W. Weimer. CCured:
Type-safe retrofitting of legacy code. In POPL, 2002.

[36] N. Nethercote and J. Seward. Valgrind: A program
supervision framework. ENTCS, 2003.

[37] R. H. B. Netzer and B. P. Miller. Improving the
accuracy of data race detection. In PPoPP, 1991.

[38] T. Ostrand, E. Weyuker, and R. Bell. Predicting the
location and number of faults in large software systems. TSE,
2005.

[39] M. Prvulovic and J. Torrellas. ReEnact: Using thread-
level speculation mechanisms to debug data races in
multithreaded codes. In ISCA, 2003.

[40] S. Qadeer and D. Wu. Kiss: keep it simple and
sequential. In PLDI, 2004.

[41] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx:
Treating bugs as allergies - a safe method to survive software
failures. In SOSP, 2005.

[42] H. E. Ramadan, C. J. Rossbach, D. E. Porter, O. S.
Hofmann, A. Bhandari, and E. Witchel. Metatm/txlinux:
transactional memory for an operating system. In ISCA,
2007.

[43] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: A dynamic data race detector for
multithreaded programs. ACM TOCS, 1997

3

[44] M. Sullivan and R. Chillarege. A comparison of
software defects in database management systems and
operating systems. In FTCS, 1992.

[45] R. N. Taylor, D. L. Levine, and C. D. Kelly. Structural
testing of concurrent programs. IEEE Trans. Softw. Eng.,
1992.

[46] M. Vaziri, F. Tip, and J. Dolby. Associating
synchronization constraints with data in an object-oriented
language. In POPL, 2006.

[47] M. Xu, R. Bodik, and M. D. Hill. A serializability
violation detector for shared-memory server programs. In
PLDI, 2005.

[48] Y. Yu, T. Rodeheffer, and W. Chen. Racetrack: Ef_cient
detection of data race conditions via adaptive tracking. In
SOSP, 2005.

[49] Z. Li et al. Have things changed now? An empirical
study of bug characteristics in modern open source software.
In ASID workshop in ASPLOS, 2006.
	

	

	

	

4

