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Abstract 

 
While multi-threading has become commonplace in 
many application domains (e.g., embedded systems, 
digital signal processing (DSP), networks, IP services, 
and graphics), multi-threaded code often requires 
complex co-ordination of threads.   As a result, multi-
threaded implementations are prone to subtle bugs that 
are difficult and time-consuming to locate.   Moreover, 
current testing techniques that address multi-threading 
are generally costly while their effectiveness is 
unknown.    The development of cost-effective testing 
plans requires an in-depth study of the nature, 
frequency, and cost of concurrency errors in the 
context of real-world applications.  The full paper will 
lay the groundwork for such a study, with the purpose 
of informing the creation of a parametric cost model 
for testing multi-threaded software.  The current 
version of the paper provides motivation for the study, 
an outline of the full paper, and a bibliography of 
related papers. 
 
1. Introduction 
 
The use of multi-threading has become commonplace 
in domains, such as embedded systems, digital signal 
processing (DSP), networks, IP services, and graphics, 
where software must respond asynchronously and in a 
timely manner to events produced by autonomous 
agents in the execution environment.  More recently, 
its use is also being fueled by the increasing prevalence 
of multi-core processors, integrated circuits to which 
two or more individual processors (cores) have been 
attached.  The use of multi-threading is thus motivated 
largely by the promise of performance benefits. 
   
However, performance benefits of multi-threading rely 
on the degree to which software algorithms can be 
designed and implemented to execute in parallel, and 
unfortunately such multithreaded code often requires 
complex co-ordination of threads.   As a result, multi-
threaded software is prone to subtle bugs that are 
difficult and time-consuming to locate.    The 

unpredictable and asynchronous nature of the 
execution environment necessitates reasoning about 
either partially ordered or fully interleaved execution 
models.  Many developers find the former models 
difficult to reason about, and the latter models produce 
a combinatorial explosion of potential orderings.  In 
any case, timing-dependent errors may appear 
intermittently.  Most debugging techniques rely on 
reproducing test executions that reveal errors, but such 
executions are not easily reproduced.   
 
The development of cost-effective testing plans 
requires an in-depth study of the nature, frequency, and 
cost of concurrency errors in the context of real-world 
applications.  In this paper we 1) survey the existing 
literature on concurrency bugs; 2) survey prior work on 
approaches to testing; 3) provide background on 
related work and the state-of-the-art in bug reporting 
and tracking; and 4) propose a structured reporting and 
classification mechanism for concurrency bugs, the 
execution environment in which they are found, their 
resolution, and the associated approach and cost of 
such resolution.  This structured mechanism will 
promote improved diagnosis, simplify large-scale 
collection and analysis of real-world concurrency bugs, 
and, applied to a sufficiently large and representative 
collection of concurrency bugs, inform the creation of 
a parameterized cost model for concurrency testing. 
  
2.  Prior studies of concurrency bugs 
 
Survey prior studies of concurrency bugs, describing 
approach of each and results. 
 
Comment on effects of methodology and data set on 
differences in results. 
 
Discuss themes that emerge and effect on direction of 
continuing collection and analyses of data on 
concurrency bugs. 
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3.  Related work in testing and debugging 
of concurrent software 

 
Survey major approaches to testing (and debugging) of 
concurrent software.   
 
Discuss costs and benefits of each, and how they apply 
to current computing environments.   
 
4.  Prior work in bug reporting and 

tracking  
 
Survey major approaches to bug reporting and 
tracking. 
 
Discuss costs and benefits of each, and evaluate their 
suitability for reporting and tracking of concurrency-
related bugs. 
 
 
5.  Benefits of structured reporting 
 
We believe that the development and use of 
appropriate structured representations of concurrency 
bug data should both enable improved diagnosis of 
individual bugs and permit systematic analysis of 
collections of reports.  
 
Expand on and provide support for this idea. 
 
Provide examples of other domains in which such 
structured reporting has facilitated analysis and 
resulted in improved process e.g., MIAME data in 
genomics domain, other examples. 
 
6.  Proposed reporting structure 
 
 What data should be collected?  What is necessary to 
diagnose individual bugs?  What additional info do we 
need for larger analysis?  How was the bug fixed?  
How long did it take to locate?  How many 
interleavings/swapped memory accesses/ etc. would it 
have taken/did it take to track this down and then to fix 
it? … etc. 
 
 
7.  Cost model and testing plan  
 
Present proposed approach to specification and 
parameterization of cost model 
 
Describe elements of cost model, preliminary data set, 
fitting procedure, etc.  

Describe how cost model would be used to help 
formulate testing plans. 
 
 
8.  Conclusion 
 
Recommend use of structured reporting for 
concurrency bugs.  Describe plan to apply 
methodology to large data set and discuss expected 
benefit of doing so. 
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